blob: 0af297470a64befa66cdccccf8c559b908e99e72 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Common initialisation for Qualcomm Snapdragon boards.
*
* Copyright (c) 2024 Linaro Ltd.
* Author: Caleb Connolly <caleb.connolly@linaro.org>
*/
#include "time.h"
#include <asm/armv8/mmu.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <asm/psci.h>
#include <asm/system.h>
#include <dm/device.h>
#include <dm/pinctrl.h>
#include <dm/uclass-internal.h>
#include <dm/read.h>
#include <power/regulator.h>
#include <env.h>
#include <fdt_support.h>
#include <init.h>
#include <linux/arm-smccc.h>
#include <linux/bug.h>
#include <linux/psci.h>
#include <linux/sizes.h>
#include <lmb.h>
#include <malloc.h>
#include <fdt_support.h>
#include <usb.h>
#include <sort.h>
#include "qcom-priv.h"
DECLARE_GLOBAL_DATA_PTR;
static struct mm_region rbx_mem_map[CONFIG_NR_DRAM_BANKS + 2] = { { 0 } };
struct mm_region *mem_map = rbx_mem_map;
static struct {
phys_addr_t start;
phys_size_t size;
} prevbl_ddr_banks[CONFIG_NR_DRAM_BANKS] __section(".data") = { 0 };
int dram_init(void)
{
/*
* gd->ram_base / ram_size have been setup already
* in qcom_parse_memory().
*/
return 0;
}
static int ddr_bank_cmp(const void *v1, const void *v2)
{
const struct {
phys_addr_t start;
phys_size_t size;
} *res1 = v1, *res2 = v2;
if (!res1->size)
return 1;
if (!res2->size)
return -1;
return (res1->start >> 24) - (res2->start >> 24);
}
/* This has to be done post-relocation since gd->bd isn't preserved */
static void qcom_configure_bi_dram(void)
{
int i;
for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
gd->bd->bi_dram[i].start = prevbl_ddr_banks[i].start;
gd->bd->bi_dram[i].size = prevbl_ddr_banks[i].size;
}
}
int dram_init_banksize(void)
{
qcom_configure_bi_dram();
return 0;
}
static void qcom_parse_memory(void)
{
ofnode node;
const fdt64_t *memory;
int memsize;
phys_addr_t ram_end = 0;
int i, j, banks;
node = ofnode_path("/memory");
if (!ofnode_valid(node)) {
log_err("No memory node found in device tree!\n");
return;
}
memory = ofnode_read_prop(node, "reg", &memsize);
if (!memory) {
log_err("No memory configuration was provided by the previous bootloader!\n");
return;
}
banks = min(memsize / (2 * sizeof(u64)), (ulong)CONFIG_NR_DRAM_BANKS);
if (memsize / sizeof(u64) > CONFIG_NR_DRAM_BANKS * 2)
log_err("Provided more than the max of %d memory banks\n", CONFIG_NR_DRAM_BANKS);
if (banks > CONFIG_NR_DRAM_BANKS)
log_err("Provided more memory banks than we can handle\n");
for (i = 0, j = 0; i < banks * 2; i += 2, j++) {
prevbl_ddr_banks[j].start = get_unaligned_be64(&memory[i]);
prevbl_ddr_banks[j].size = get_unaligned_be64(&memory[i + 1]);
/* SM8650 boards sometimes have empty regions! */
if (!prevbl_ddr_banks[j].size) {
j--;
continue;
}
ram_end = max(ram_end, prevbl_ddr_banks[j].start + prevbl_ddr_banks[j].size);
}
/* Sort our RAM banks -_- */
qsort(prevbl_ddr_banks, banks, sizeof(prevbl_ddr_banks[0]), ddr_bank_cmp);
gd->ram_base = prevbl_ddr_banks[0].start;
gd->ram_size = ram_end - gd->ram_base;
debug("ram_base = %#011lx, ram_size = %#011llx, ram_end = %#011llx\n",
gd->ram_base, gd->ram_size, ram_end);
}
static void show_psci_version(void)
{
struct arm_smccc_res res;
arm_smccc_smc(ARM_PSCI_0_2_FN_PSCI_VERSION, 0, 0, 0, 0, 0, 0, 0, &res);
debug("PSCI: v%ld.%ld\n",
PSCI_VERSION_MAJOR(res.a0),
PSCI_VERSION_MINOR(res.a0));
}
/* We support booting U-Boot with an internal DT when running as a first-stage bootloader
* or for supporting quirky devices where it's easier to leave the downstream DT in place
* to improve ABL compatibility. Otherwise, we use the DT provided by ABL.
*/
void *board_fdt_blob_setup(int *err)
{
struct fdt_header *fdt;
bool internal_valid, external_valid;
*err = 0;
fdt = (struct fdt_header *)get_prev_bl_fdt_addr();
external_valid = fdt && !fdt_check_header(fdt);
internal_valid = !fdt_check_header(gd->fdt_blob);
/*
* There is no point returning an error here, U-Boot can't do anything useful in this situation.
* Bail out while we can still print a useful error message.
*/
if (!internal_valid && !external_valid)
panic("Internal FDT is invalid and no external FDT was provided! (fdt=%#llx)\n",
(phys_addr_t)fdt);
if (internal_valid) {
debug("Using built in FDT\n");
} else {
debug("Using external FDT\n");
/* So we can use it before returning */
gd->fdt_blob = fdt;
}
/*
* Parse the /memory node while we're here,
* this makes it easy to do other things early.
*/
qcom_parse_memory();
return (void *)gd->fdt_blob;
}
void reset_cpu(void)
{
psci_system_reset();
}
/*
* Some Qualcomm boards require GPIO configuration when switching USB modes.
* Support setting this configuration via pinctrl state.
*/
int board_usb_init(int index, enum usb_init_type init)
{
struct udevice *usb;
int ret = 0;
/* USB device */
ret = uclass_find_device_by_seq(UCLASS_USB, index, &usb);
if (ret) {
printf("Cannot find USB device\n");
return ret;
}
ret = dev_read_stringlist_search(usb, "pinctrl-names",
"device");
/* No "device" pinctrl state, so just bail */
if (ret < 0)
return 0;
/* Select "default" or "device" pinctrl */
switch (init) {
case USB_INIT_HOST:
pinctrl_select_state(usb, "default");
break;
case USB_INIT_DEVICE:
pinctrl_select_state(usb, "device");
break;
default:
debug("Unknown usb_init_type %d\n", init);
break;
}
return 0;
}
/*
* Some boards still need board specific init code, they can implement that by
* overriding this function.
*
* FIXME: get rid of board specific init code
*/
void __weak qcom_board_init(void)
{
}
int board_init(void)
{
regulators_enable_boot_on(false);
show_psci_version();
qcom_of_fixup_nodes();
qcom_board_init();
return 0;
}
/**
* out_len includes the trailing null space
*/
static int get_cmdline_option(const char *cmdline, const char *key, char *out, int out_len)
{
const char *p, *p_end;
int len;
p = strstr(cmdline, key);
if (!p)
return -ENOENT;
p += strlen(key);
p_end = strstr(p, " ");
if (!p_end)
return -ENOENT;
len = p_end - p;
if (len > out_len)
len = out_len;
strncpy(out, p, len);
out[len] = '\0';
return 0;
}
/* The bootargs are populated by the previous stage bootloader */
static const char *get_cmdline(void)
{
ofnode node;
static const char *cmdline = NULL;
if (cmdline)
return cmdline;
node = ofnode_path("/chosen");
if (!ofnode_valid(node))
return NULL;
cmdline = ofnode_read_string(node, "bootargs");
return cmdline;
}
void qcom_set_serialno(void)
{
const char *cmdline = get_cmdline();
char serial[32];
if (!cmdline) {
log_debug("Failed to get bootargs\n");
return;
}
get_cmdline_option(cmdline, "androidboot.serialno=", serial, sizeof(serial));
if (serial[0] != '\0')
env_set("serial#", serial);
}
/* Sets up the "board", and "soc" environment variables as well as constructing the devicetree
* path, with a few quirks to handle non-standard dtb filenames. This is not meant to be a
* comprehensive solution to automatically picking the DTB, but aims to be correct for the
* majority case. For most devices it should be possible to make this algorithm work by
* adjusting the root compatible property in the U-Boot DTS. Handling devices with multiple
* variants that are all supported by a single U-Boot image will require implementing device-
* specific detection.
*/
static void configure_env(void)
{
const char *first_compat, *last_compat;
char *tmp;
char buf[32] = { 0 };
/*
* Most DTB filenames follow the scheme: qcom/<soc>-[vendor]-<board>.dtb
* The vendor is skipped when it's a Qualcomm reference board, or the
* db845c.
*/
char dt_path[64] = { 0 };
int compat_count, ret;
ofnode root;
root = ofnode_root();
/* This is almost always 2, but be explicit that we want the first and last compatibles
* not the first and second.
*/
compat_count = ofnode_read_string_count(root, "compatible");
if (compat_count < 2) {
log_warning("%s: only one root compatible bailing!\n", __func__);
return;
}
/* The most specific device compatible (e.g. "thundercomm,db845c") */
ret = ofnode_read_string_index(root, "compatible", 0, &first_compat);
if (ret < 0) {
log_warning("Can't read first compatible\n");
return;
}
/* The last compatible is always the SoC compatible */
ret = ofnode_read_string_index(root, "compatible", compat_count - 1, &last_compat);
if (ret < 0) {
log_warning("Can't read second compatible\n");
return;
}
/* Copy the second compat (e.g. "qcom,sdm845") into buf */
strlcpy(buf, last_compat, sizeof(buf) - 1);
tmp = buf;
/* strsep() is destructive, it replaces the comma with a \0 */
if (!strsep(&tmp, ",")) {
log_warning("second compatible '%s' has no ','\n", buf);
return;
}
/* tmp now points to just the "sdm845" part of the string */
env_set("soc", tmp);
/* Now figure out the "board" part from the first compatible */
memset(buf, 0, sizeof(buf));
strlcpy(buf, first_compat, sizeof(buf) - 1);
tmp = buf;
/* The Qualcomm reference boards (RBx, HDK, etc) */
if (!strncmp("qcom", buf, strlen("qcom"))) {
/*
* They all have the first compatible as "qcom,<soc>-<board>"
* (e.g. "qcom,qrb5165-rb5"). We extract just the part after
* the dash.
*/
if (!strsep(&tmp, "-")) {
log_warning("compatible '%s' has no '-'\n", buf);
return;
}
/* tmp is now "rb5" */
env_set("board", tmp);
} else {
if (!strsep(&tmp, ",")) {
log_warning("compatible '%s' has no ','\n", buf);
return;
}
/* for thundercomm we just want the bit after the comma (e.g. "db845c"),
* for all other boards we replace the comma with a '-' and take both
* (e.g. "oneplus-enchilada")
*/
if (!strncmp("thundercomm", buf, strlen("thundercomm"))) {
env_set("board", tmp);
} else {
*(tmp - 1) = '-';
env_set("board", buf);
}
}
/* Now build the full path name */
snprintf(dt_path, sizeof(dt_path), "qcom/%s-%s.dtb",
env_get("soc"), env_get("board"));
env_set("fdtfile", dt_path);
qcom_set_serialno();
}
void __weak qcom_late_init(void)
{
}
#define KERNEL_COMP_SIZE SZ_64M
#ifdef CONFIG_FASTBOOT_BUF_SIZE
#define FASTBOOT_BUF_SIZE CONFIG_FASTBOOT_BUF_SIZE
#else
#define FASTBOOT_BUF_SIZE 0
#endif
#define addr_alloc(size) lmb_alloc(size, SZ_2M)
/* Stolen from arch/arm/mach-apple/board.c */
int board_late_init(void)
{
u32 status = 0;
phys_addr_t addr;
struct fdt_header *fdt_blob = (struct fdt_header *)gd->fdt_blob;
/* We need to be fairly conservative here as we support boards with just 1G of TOTAL RAM */
addr = addr_alloc(SZ_128M);
status |= env_set_hex("kernel_addr_r", addr);
status |= env_set_hex("loadaddr", addr);
status |= env_set_hex("ramdisk_addr_r", addr_alloc(SZ_128M));
status |= env_set_hex("kernel_comp_addr_r", addr_alloc(KERNEL_COMP_SIZE));
status |= env_set_hex("kernel_comp_size", KERNEL_COMP_SIZE);
if (IS_ENABLED(CONFIG_FASTBOOT))
status |= env_set_hex("fastboot_addr_r", addr_alloc(FASTBOOT_BUF_SIZE));
status |= env_set_hex("scriptaddr", addr_alloc(SZ_4M));
status |= env_set_hex("pxefile_addr_r", addr_alloc(SZ_4M));
addr = addr_alloc(SZ_2M);
status |= env_set_hex("fdt_addr_r", addr);
if (status)
log_warning("%s: Failed to set run time variables\n", __func__);
/* By default copy U-Boots FDT, it will be used as a fallback */
memcpy((void *)addr, (void *)gd->fdt_blob, fdt32_to_cpu(fdt_blob->totalsize));
configure_env();
qcom_late_init();
return 0;
}
static void build_mem_map(void)
{
int i, j;
/*
* Ensure the peripheral block is sized to correctly cover the address range
* up to the first memory bank.
* Don't map the first page to ensure that we actually trigger an abort on a
* null pointer access rather than just hanging.
* FIXME: we should probably split this into more precise regions
*/
mem_map[0].phys = 0x1000;
mem_map[0].virt = mem_map[0].phys;
mem_map[0].size = gd->bd->bi_dram[0].start - mem_map[0].phys;
mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
PTE_BLOCK_NON_SHARE |
PTE_BLOCK_PXN | PTE_BLOCK_UXN;
for (i = 1, j = 0; i < ARRAY_SIZE(rbx_mem_map) - 1 && gd->bd->bi_dram[j].size; i++, j++) {
mem_map[i].phys = gd->bd->bi_dram[j].start;
mem_map[i].virt = mem_map[i].phys;
mem_map[i].size = gd->bd->bi_dram[j].size;
mem_map[i].attrs = PTE_BLOCK_MEMTYPE(MT_NORMAL) | \
PTE_BLOCK_INNER_SHARE;
}
mem_map[i].phys = UINT64_MAX;
mem_map[i].size = 0;
#ifdef DEBUG
debug("Configured memory map:\n");
for (i = 0; mem_map[i].size; i++)
debug(" 0x%016llx - 0x%016llx: entry %d\n",
mem_map[i].phys, mem_map[i].phys + mem_map[i].size, i);
#endif
}
u64 get_page_table_size(void)
{
return SZ_1M;
}
static int fdt_cmp_res(const void *v1, const void *v2)
{
const struct fdt_resource *res1 = v1, *res2 = v2;
return res1->start - res2->start;
}
#define N_RESERVED_REGIONS 32
/* Mark all no-map regions as PTE_TYPE_FAULT to prevent speculative access.
* On some platforms this is enough to trigger a security violation and trap
* to EL3.
*/
static void carve_out_reserved_memory(void)
{
static struct fdt_resource res[N_RESERVED_REGIONS] = { 0 };
int parent, rmem, count, i = 0;
phys_addr_t start;
size_t size;
/* Some reserved nodes must be carved out, as the cache-prefetcher may otherwise
* attempt to access them, causing a security exception.
*/
parent = fdt_path_offset(gd->fdt_blob, "/reserved-memory");
if (parent <= 0) {
log_err("No reserved memory regions found\n");
return;
}
/* Collect the reserved memory regions */
fdt_for_each_subnode(rmem, gd->fdt_blob, parent) {
const fdt32_t *ptr;
int len;
if (!fdt_getprop(gd->fdt_blob, rmem, "no-map", NULL))
continue;
if (i == N_RESERVED_REGIONS) {
log_err("Too many reserved regions!\n");
break;
}
/* Read the address and size out from the reg property. Doing this "properly" with
* fdt_get_resource() takes ~70ms on SDM845, but open-coding the happy path here
* takes <1ms... Oh the woes of no dcache.
*/
ptr = fdt_getprop(gd->fdt_blob, rmem, "reg", &len);
if (ptr) {
/* Qualcomm devices use #address/size-cells = <2> but all reserved regions are within
* the 32-bit address space. So we can cheat here for speed.
*/
res[i].start = fdt32_to_cpu(ptr[1]);
res[i].end = res[i].start + fdt32_to_cpu(ptr[3]);
i++;
}
}
/* Sort the reserved memory regions by address */
count = i;
qsort(res, count, sizeof(struct fdt_resource), fdt_cmp_res);
/* Now set the right attributes for them. Often a lot of the regions are tightly packed together
* so we can optimise the number of calls to mmu_change_region_attr() by combining adjacent
* regions.
*/
start = ALIGN_DOWN(res[0].start, SZ_2M);
size = ALIGN(res[0].end - start, SZ_2M);
for (i = 1; i <= count; i++) {
/* We ideally want to 2M align everything for more efficient pagetables, but we must avoid
* overwriting reserved memory regions which shouldn't be mapped as FAULT (like those with
* compatible properties).
* If within 2M of the previous region, bump the size to include this region. Otherwise
* start a new region.
*/
if (i == count || start + size < res[i].start - SZ_2M) {
debug(" 0x%016llx - 0x%016llx: reserved\n",
start, start + size);
mmu_change_region_attr(start, size, PTE_TYPE_FAULT);
/* If this is the final region then quit here before we index
* out of bounds...
*/
if (i == count)
break;
start = ALIGN_DOWN(res[i].start, SZ_2M);
size = ALIGN(res[i].end - start, SZ_2M);
} else {
/* Bump size if this region is immediately after the previous one */
size = ALIGN(res[i].end - start, SZ_2M);
}
}
}
/* This function open-codes setup_all_pgtables() so that we can
* insert additional mappings *before* turning on the MMU.
*/
void enable_caches(void)
{
u64 tlb_addr = gd->arch.tlb_addr;
u64 tlb_size = gd->arch.tlb_size;
u64 pt_size;
ulong carveout_start;
gd->arch.tlb_fillptr = tlb_addr;
build_mem_map();
icache_enable();
/* Create normal system page tables */
setup_pgtables();
pt_size = (uintptr_t)gd->arch.tlb_fillptr -
(uintptr_t)gd->arch.tlb_addr;
debug("Primary pagetable size: %lluKiB\n", pt_size / 1024);
/* Create emergency page tables */
gd->arch.tlb_size -= pt_size;
gd->arch.tlb_addr = gd->arch.tlb_fillptr;
setup_pgtables();
gd->arch.tlb_emerg = gd->arch.tlb_addr;
gd->arch.tlb_addr = tlb_addr;
gd->arch.tlb_size = tlb_size;
/* We do the carveouts only for QCS404, for now. */
if (fdt_node_check_compatible(gd->fdt_blob, 0, "qcom,qcs404") == 0) {
carveout_start = get_timer(0);
/* Takes ~20-50ms on SDM845 */
carve_out_reserved_memory();
debug("carveout time: %lums\n", get_timer(carveout_start));
}
dcache_enable();
}