| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (c) 2011 The Chromium OS Authors. |
| */ |
| |
| #define LOG_CATEGORY LOGC_SANDBOX |
| |
| #include <bootstage.h> |
| #include <cpu_func.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <os.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <asm/malloc.h> |
| #include <asm/setjmp.h> |
| #include <asm/state.h> |
| #include <dm/ofnode.h> |
| #include <linux/delay.h> |
| #include <linux/libfdt.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* Enable access to PCI memory with map_sysmem() */ |
| static bool enable_pci_map; |
| |
| #ifdef CONFIG_PCI |
| /* Last device that was mapped into memory, and length of mapping */ |
| static struct udevice *map_dev; |
| unsigned long map_len; |
| #endif |
| |
| void __noreturn sandbox_exit(void) |
| { |
| /* Do this here while it still has an effect */ |
| os_fd_restore(); |
| |
| if (state_uninit()) |
| os_exit(2); |
| |
| /* This is considered normal termination for now */ |
| os_exit(0); |
| } |
| |
| /* delay x useconds */ |
| void __udelay(unsigned long usec) |
| { |
| struct sandbox_state *state = state_get_current(); |
| |
| if (!state->skip_delays) |
| os_usleep(usec); |
| } |
| |
| int cleanup_before_linux(void) |
| { |
| return 0; |
| } |
| |
| int cleanup_before_linux_select(int flags) |
| { |
| return 0; |
| } |
| |
| /** |
| * is_in_sandbox_mem() - Checks if a pointer is within sandbox's emulated DRAM |
| * |
| * This provides a way to check if a pointer is owned by sandbox (and is within |
| * its RAM) or not. Sometimes pointers come from a test which conceptually runs |
| * output sandbox, potentially with direct access to the C-library malloc() |
| * function, or the sandbox stack (which is not actually within the emulated |
| * DRAM. |
| * |
| * Such pointers obviously cannot be mapped into sandbox's DRAM, so we must |
| * detect them an process them separately, by recording a mapping to a tag, |
| * which we can use to map back to the pointer later. |
| * |
| * @ptr: Pointer to check |
| * Return: true if this is within sandbox emulated DRAM, false if not |
| */ |
| static bool is_in_sandbox_mem(const void *ptr) |
| { |
| return (const uint8_t *)ptr >= gd->arch.ram_buf && |
| (const uint8_t *)ptr < gd->arch.ram_buf + gd->ram_size; |
| } |
| |
| /** |
| * phys_to_virt() - Converts a sandbox RAM address to a pointer |
| * |
| * Sandbox uses U-Boot addresses from 0 to the size of DRAM. These index into |
| * the emulated DRAM buffer used by sandbox. This function converts such an |
| * address to a pointer into this buffer, which can be used to access the |
| * memory. |
| * |
| * If the address is outside this range, it is assumed to be a tag |
| */ |
| void *phys_to_virt(phys_addr_t paddr) |
| { |
| struct sandbox_mapmem_entry *mentry; |
| struct sandbox_state *state; |
| |
| /* If the address is within emulated DRAM, calculate the value */ |
| if (paddr < gd->ram_size) |
| return (void *)(gd->arch.ram_buf + paddr); |
| |
| /* |
| * Otherwise search out list of tags for the correct pointer previously |
| * created by map_to_sysmem() |
| */ |
| state = state_get_current(); |
| list_for_each_entry(mentry, &state->mapmem_head, sibling_node) { |
| if (mentry->tag == paddr) { |
| debug("%s: Used map from %lx to %p\n", __func__, |
| (ulong)paddr, mentry->ptr); |
| return mentry->ptr; |
| } |
| } |
| |
| printf("%s: Cannot map sandbox address %lx (SDRAM from 0 to %lx)\n", |
| __func__, (ulong)paddr, (ulong)gd->ram_size); |
| os_abort(); |
| |
| /* Not reached */ |
| return NULL; |
| } |
| |
| struct sandbox_mapmem_entry *find_tag(const void *ptr) |
| { |
| struct sandbox_mapmem_entry *mentry; |
| struct sandbox_state *state = state_get_current(); |
| |
| list_for_each_entry(mentry, &state->mapmem_head, sibling_node) { |
| if (mentry->ptr == ptr) { |
| debug("%s: Used map from %p to %lx\n", __func__, ptr, |
| mentry->tag); |
| return mentry; |
| } |
| } |
| return NULL; |
| } |
| |
| phys_addr_t virt_to_phys(void *ptr) |
| { |
| struct sandbox_mapmem_entry *mentry; |
| |
| /* |
| * If it is in emulated RAM, don't bother looking for a tag. Just |
| * calculate the pointer using the provides offset into the RAM buffer. |
| */ |
| if (is_in_sandbox_mem(ptr)) |
| return (phys_addr_t)((uint8_t *)ptr - gd->arch.ram_buf); |
| |
| mentry = find_tag(ptr); |
| if (!mentry) { |
| /* Abort so that gdb can be used here */ |
| printf("%s: Cannot map sandbox address %p (SDRAM from 0 to %lx)\n", |
| __func__, ptr, (ulong)gd->ram_size); |
| os_abort(); |
| } |
| debug("%s: Used map from %p to %lx\n", __func__, ptr, mentry->tag); |
| |
| return mentry->tag; |
| } |
| |
| void *map_physmem(phys_addr_t paddr, unsigned long len, unsigned long flags) |
| { |
| #if defined(CONFIG_PCI) && !defined(CONFIG_SPL_BUILD) |
| unsigned long plen = len; |
| void *ptr; |
| |
| map_dev = NULL; |
| if (enable_pci_map && !pci_map_physmem(paddr, &len, &map_dev, &ptr)) { |
| if (plen != len) { |
| printf("%s: Warning: partial map at %x, wanted %lx, got %lx\n", |
| __func__, (uint)paddr, len, plen); |
| } |
| map_len = len; |
| return ptr; |
| } |
| #endif |
| |
| return phys_to_virt(paddr); |
| } |
| |
| void unmap_physmem(const void *ptr, unsigned long flags) |
| { |
| #ifdef CONFIG_PCI |
| if (map_dev) { |
| pci_unmap_physmem(ptr, map_len, map_dev); |
| map_dev = NULL; |
| } |
| #endif |
| } |
| |
| phys_addr_t map_to_sysmem(const void *ptr) |
| { |
| struct sandbox_mapmem_entry *mentry; |
| |
| /* |
| * If it is in emulated RAM, don't bother creating a tag. Just return |
| * the offset into the RAM buffer. |
| */ |
| if (is_in_sandbox_mem(ptr)) |
| return (u8 *)ptr - gd->arch.ram_buf; |
| |
| /* |
| * See if there is an existing tag with this pointer. If not, set up a |
| * new one. |
| */ |
| mentry = find_tag(ptr); |
| if (!mentry) { |
| struct sandbox_state *state = state_get_current(); |
| |
| mentry = malloc(sizeof(*mentry)); |
| if (!mentry) { |
| printf("%s: Error: Out of memory\n", __func__); |
| os_exit(ENOMEM); |
| } |
| mentry->tag = state->next_tag++; |
| mentry->ptr = (void *)ptr; |
| list_add_tail(&mentry->sibling_node, &state->mapmem_head); |
| debug("%s: Added map from %p to %lx\n", __func__, ptr, |
| (ulong)mentry->tag); |
| } |
| |
| /* |
| * Return the tag as the address to use. A later call to map_sysmem() |
| * will return ptr |
| */ |
| return mentry->tag; |
| } |
| |
| unsigned long sandbox_read(const void *addr, enum sandboxio_size_t size) |
| { |
| struct sandbox_state *state = state_get_current(); |
| |
| if (!state->allow_memio) |
| return 0; |
| |
| switch (size) { |
| case SB_SIZE_8: |
| return *(u8 *)addr; |
| case SB_SIZE_16: |
| return *(u16 *)addr; |
| case SB_SIZE_32: |
| return *(u32 *)addr; |
| case SB_SIZE_64: |
| return *(u64 *)addr; |
| } |
| |
| return 0; |
| } |
| |
| void sandbox_write(void *addr, unsigned int val, enum sandboxio_size_t size) |
| { |
| struct sandbox_state *state = state_get_current(); |
| |
| if (!state->allow_memio) |
| return; |
| |
| switch (size) { |
| case SB_SIZE_8: |
| *(u8 *)addr = val; |
| break; |
| case SB_SIZE_16: |
| *(u16 *)addr = val; |
| break; |
| case SB_SIZE_32: |
| *(u32 *)addr = val; |
| break; |
| case SB_SIZE_64: |
| *(u64 *)addr = val; |
| break; |
| } |
| } |
| |
| void sandbox_set_enable_memio(bool enable) |
| { |
| struct sandbox_state *state = state_get_current(); |
| |
| state->allow_memio = enable; |
| } |
| |
| void sandbox_set_enable_pci_map(int enable) |
| { |
| enable_pci_map = enable; |
| } |
| |
| int dcache_status(void) |
| { |
| return 1; |
| } |
| |
| void flush_dcache_range(unsigned long start, unsigned long stop) |
| { |
| } |
| |
| void invalidate_dcache_range(unsigned long start, unsigned long stop) |
| { |
| } |
| |
| /** |
| * setup_auto_tree() - Set up a basic device tree to allow sandbox to work |
| * |
| * This is used when no device tree is provided. It creates a simple tree with |
| * just a /binman node. |
| * |
| * @blob: Place to put the created device tree |
| * Returns: 0 on success, -ve FDT error code on failure |
| */ |
| static int setup_auto_tree(void *blob) |
| { |
| int err; |
| |
| err = fdt_create_empty_tree(blob, 256); |
| if (err) |
| return err; |
| |
| /* Create a /binman node in case CONFIG_BINMAN is enabled */ |
| err = fdt_add_subnode(blob, 0, "binman"); |
| if (err < 0) |
| return err; |
| |
| return 0; |
| } |
| |
| void *board_fdt_blob_setup(int *ret) |
| { |
| struct sandbox_state *state = state_get_current(); |
| const char *fname = state->fdt_fname; |
| void *blob = NULL; |
| loff_t size; |
| int err; |
| int fd; |
| |
| blob = map_sysmem(CONFIG_SYS_FDT_LOAD_ADDR, 0); |
| *ret = 0; |
| if (!state->fdt_fname) { |
| err = setup_auto_tree(blob); |
| if (!err) |
| goto done; |
| os_printf("Unable to create empty FDT: %s\n", fdt_strerror(err)); |
| *ret = -EINVAL; |
| goto fail; |
| } |
| |
| err = os_get_filesize(fname, &size); |
| if (err < 0) { |
| os_printf("Failed to find FDT file '%s'\n", fname); |
| *ret = err; |
| goto fail; |
| } |
| fd = os_open(fname, OS_O_RDONLY); |
| if (fd < 0) { |
| os_printf("Failed to open FDT file '%s'\n", fname); |
| *ret = -EACCES; |
| goto fail; |
| } |
| |
| if (os_read(fd, blob, size) != size) { |
| os_close(fd); |
| os_printf("Failed to read FDT file '%s'\n", fname); |
| *ret = -EIO; |
| goto fail; |
| } |
| os_close(fd); |
| |
| done: |
| return blob; |
| fail: |
| return NULL; |
| } |
| |
| ulong timer_get_boot_us(void) |
| { |
| static uint64_t base_count; |
| uint64_t count = os_get_nsec(); |
| |
| if (!base_count) |
| base_count = count; |
| |
| return (count - base_count) / 1000; |
| } |
| |
| int sandbox_load_other_fdt(void **fdtp, int *sizep) |
| { |
| const char *orig; |
| int ret, size; |
| void *fdt = *fdtp; |
| |
| ret = state_load_other_fdt(&orig, &size); |
| if (ret) { |
| log_err("Cannot read other FDT\n"); |
| return log_msg_ret("ld", ret); |
| } |
| |
| if (!*fdtp) { |
| fdt = os_malloc(size); |
| if (!fdt) |
| return log_msg_ret("mem", -ENOMEM); |
| *sizep = size; |
| } |
| |
| memcpy(fdt, orig, *sizep); |
| *fdtp = fdt; |
| |
| return 0; |
| } |