blob: c23ddc12b456979aa57c9e6ca5fcaf7bb4296b4e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2013 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <clock_legacy.h>
#include <command.h>
#include <cpu_func.h>
#include <init.h>
#include <net.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/crm_regs.h>
#include <asm/mach-imx/sys_proto.h>
#include <env.h>
#include <netdev.h>
#ifdef CONFIG_FSL_ESDHC_IMX
#include <fsl_esdhc_imx.h>
#endif
#ifdef CONFIG_FSL_ESDHC_IMX
DECLARE_GLOBAL_DATA_PTR;
#endif
static char soc_type[] = "xx0";
#ifdef CONFIG_MXC_OCOTP
void enable_ocotp_clk(unsigned char enable)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 reg;
reg = readl(&ccm->ccgr6);
if (enable)
reg |= CCM_CCGR6_OCOTP_CTRL_MASK;
else
reg &= ~CCM_CCGR6_OCOTP_CTRL_MASK;
writel(reg, &ccm->ccgr6);
}
#endif
static u32 get_mcu_main_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_ccsr, ccm_cacrr, armclk_div;
u32 sysclk_sel, pll_pfd_sel = 0;
u32 freq = 0;
ccm_ccsr = readl(&ccm->ccsr);
sysclk_sel = ccm_ccsr & CCM_CCSR_SYS_CLK_SEL_MASK;
sysclk_sel >>= CCM_CCSR_SYS_CLK_SEL_OFFSET;
ccm_cacrr = readl(&ccm->cacrr);
armclk_div = ccm_cacrr & CCM_CACRR_ARM_CLK_DIV_MASK;
armclk_div >>= CCM_CACRR_ARM_CLK_DIV_OFFSET;
armclk_div += 1;
switch (sysclk_sel) {
case 0:
freq = FASE_CLK_FREQ;
break;
case 1:
freq = SLOW_CLK_FREQ;
break;
case 2:
pll_pfd_sel = ccm_ccsr & CCM_CCSR_PLL2_PFD_CLK_SEL_MASK;
pll_pfd_sel >>= CCM_CCSR_PLL2_PFD_CLK_SEL_OFFSET;
if (pll_pfd_sel == 0)
freq = PLL2_MAIN_FREQ;
else if (pll_pfd_sel == 1)
freq = PLL2_PFD1_FREQ;
else if (pll_pfd_sel == 2)
freq = PLL2_PFD2_FREQ;
else if (pll_pfd_sel == 3)
freq = PLL2_PFD3_FREQ;
else if (pll_pfd_sel == 4)
freq = PLL2_PFD4_FREQ;
break;
case 3:
freq = PLL2_MAIN_FREQ;
break;
case 4:
pll_pfd_sel = ccm_ccsr & CCM_CCSR_PLL1_PFD_CLK_SEL_MASK;
pll_pfd_sel >>= CCM_CCSR_PLL1_PFD_CLK_SEL_OFFSET;
if (pll_pfd_sel == 0)
freq = PLL1_MAIN_FREQ;
else if (pll_pfd_sel == 1)
freq = PLL1_PFD1_FREQ;
else if (pll_pfd_sel == 2)
freq = PLL1_PFD2_FREQ;
else if (pll_pfd_sel == 3)
freq = PLL1_PFD3_FREQ;
else if (pll_pfd_sel == 4)
freq = PLL1_PFD4_FREQ;
break;
case 5:
freq = PLL3_MAIN_FREQ;
break;
default:
printf("unsupported system clock select\n");
}
return freq / armclk_div;
}
static u32 get_bus_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cacrr, busclk_div;
ccm_cacrr = readl(&ccm->cacrr);
busclk_div = ccm_cacrr & CCM_CACRR_BUS_CLK_DIV_MASK;
busclk_div >>= CCM_CACRR_BUS_CLK_DIV_OFFSET;
busclk_div += 1;
return get_mcu_main_clk() / busclk_div;
}
static u32 get_ipg_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cacrr, ipgclk_div;
ccm_cacrr = readl(&ccm->cacrr);
ipgclk_div = ccm_cacrr & CCM_CACRR_IPG_CLK_DIV_MASK;
ipgclk_div >>= CCM_CACRR_IPG_CLK_DIV_OFFSET;
ipgclk_div += 1;
return get_bus_clk() / ipgclk_div;
}
static u32 get_uart_clk(void)
{
return get_ipg_clk();
}
static u32 get_sdhc_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cscmr1, ccm_cscdr2, sdhc_clk_sel, sdhc_clk_div;
u32 freq = 0;
ccm_cscmr1 = readl(&ccm->cscmr1);
sdhc_clk_sel = ccm_cscmr1 & CCM_CSCMR1_ESDHC1_CLK_SEL_MASK;
sdhc_clk_sel >>= CCM_CSCMR1_ESDHC1_CLK_SEL_OFFSET;
ccm_cscdr2 = readl(&ccm->cscdr2);
sdhc_clk_div = ccm_cscdr2 & CCM_CSCDR2_ESDHC1_CLK_DIV_MASK;
sdhc_clk_div >>= CCM_CSCDR2_ESDHC1_CLK_DIV_OFFSET;
sdhc_clk_div += 1;
switch (sdhc_clk_sel) {
case 0:
freq = PLL3_MAIN_FREQ;
break;
case 1:
freq = PLL3_PFD3_FREQ;
break;
case 2:
freq = PLL1_PFD3_FREQ;
break;
case 3:
freq = get_bus_clk();
break;
}
return freq / sdhc_clk_div;
}
u32 get_fec_clk(void)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
u32 ccm_cscmr2, rmii_clk_sel;
u32 freq = 0;
ccm_cscmr2 = readl(&ccm->cscmr2);
rmii_clk_sel = ccm_cscmr2 & CCM_CSCMR2_RMII_CLK_SEL_MASK;
rmii_clk_sel >>= CCM_CSCMR2_RMII_CLK_SEL_OFFSET;
switch (rmii_clk_sel) {
case 0:
freq = ENET_EXTERNAL_CLK;
break;
case 1:
freq = AUDIO_EXTERNAL_CLK;
break;
case 2:
freq = PLL5_MAIN_FREQ;
break;
case 3:
freq = PLL5_MAIN_FREQ / 2;
break;
}
return freq;
}
static u32 get_i2c_clk(void)
{
return get_ipg_clk();
}
static u32 get_dspi_clk(void)
{
return get_ipg_clk();
}
u32 get_lpuart_clk(void)
{
return get_uart_clk();
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return get_mcu_main_clk();
case MXC_BUS_CLK:
return get_bus_clk();
case MXC_IPG_CLK:
return get_ipg_clk();
case MXC_UART_CLK:
return get_uart_clk();
case MXC_ESDHC_CLK:
return get_sdhc_clk();
case MXC_FEC_CLK:
return get_fec_clk();
case MXC_I2C_CLK:
return get_i2c_clk();
case MXC_DSPI_CLK:
return get_dspi_clk();
default:
break;
}
return -1;
}
/* Dump some core clocks */
int do_vf610_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
char *const argv[])
{
printf("\n");
printf("cpu clock : %8d MHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000000);
printf("bus clock : %8d MHz\n", mxc_get_clock(MXC_BUS_CLK) / 1000000);
printf("ipg clock : %8d MHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000000);
return 0;
}
U_BOOT_CMD(
clocks, CONFIG_SYS_MAXARGS, 1, do_vf610_showclocks,
"display clocks",
""
);
#ifdef CONFIG_FEC_MXC
__weak void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[4];
struct fuse_bank4_regs *fuse =
(struct fuse_bank4_regs *)bank->fuse_regs;
u32 value = readl(&fuse->mac_addr0);
mac[0] = (value >> 8);
mac[1] = value;
value = readl(&fuse->mac_addr1);
mac[2] = value >> 24;
mac[3] = value >> 16;
mac[4] = value >> 8;
mac[5] = value;
}
#endif
u32 get_cpu_rev(void)
{
return MXC_CPU_VF610 << 12;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
static char *get_reset_cause(void)
{
u32 cause;
struct src *src_regs = (struct src *)SRC_BASE_ADDR;
cause = readl(&src_regs->srsr);
writel(cause, &src_regs->srsr);
if (cause & SRC_SRSR_POR_RST)
return "POWER ON RESET";
else if (cause & SRC_SRSR_WDOG_A5)
return "WDOG A5";
else if (cause & SRC_SRSR_WDOG_M4)
return "WDOG M4";
else if (cause & SRC_SRSR_JTAG_RST)
return "JTAG HIGH-Z";
else if (cause & SRC_SRSR_SW_RST)
return "SW RESET";
else if (cause & SRC_SRSR_RESETB)
return "EXTERNAL RESET";
else
return "unknown reset";
}
int print_cpuinfo(void)
{
printf("CPU: Freescale Vybrid VF%s at %d MHz\n",
soc_type, mxc_get_clock(MXC_ARM_CLK) / 1000000);
printf("Reset cause: %s\n", get_reset_cause());
return 0;
}
#endif
int arch_cpu_init(void)
{
struct mscm *mscm = (struct mscm *)MSCM_BASE_ADDR;
soc_type[0] = mscm->cpxcount ? '6' : '5'; /*Dual Core => VF6x0 */
soc_type[1] = mscm->cpxcfg1 ? '1' : '0'; /* L2 Cache => VFx10 */
return 0;
}
#ifdef CONFIG_ARCH_MISC_INIT
int arch_misc_init(void)
{
char soc[6];
strcpy(soc, "vf");
strcat(soc, soc_type);
env_set("soc", soc);
return 0;
}
#endif
int cpu_eth_init(struct bd_info *bis)
{
int rc = -ENODEV;
#if defined(CONFIG_FEC_MXC)
rc = fecmxc_initialize(bis);
#endif
return rc;
}
#ifdef CONFIG_FSL_ESDHC_IMX
int cpu_mmc_init(struct bd_info *bis)
{
return fsl_esdhc_mmc_init(bis);
}
#endif
int get_clocks(void)
{
#ifdef CONFIG_FSL_ESDHC_IMX
gd->arch.sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
#endif
return 0;
}
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
void enable_caches(void)
{
#if defined(CONFIG_SYS_ARM_CACHE_WRITETHROUGH)
enum dcache_option option = DCACHE_WRITETHROUGH;
#else
enum dcache_option option = DCACHE_WRITEBACK;
#endif
dcache_enable();
icache_enable();
/* Enable caching on OCRAM */
mmu_set_region_dcache_behaviour(IRAM_BASE_ADDR, IRAM_SIZE, option);
}
#endif
#ifdef CONFIG_SYS_I2C_MXC
/* i2c_num can be from 0 - 3 */
int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
{
struct ccm_reg *ccm = (struct ccm_reg *)CCM_BASE_ADDR;
switch (i2c_num) {
case 0:
clrsetbits_le32(&ccm->ccgr4, CCM_CCGR4_I2C0_CTRL_MASK,
CCM_CCGR4_I2C0_CTRL_MASK);
case 2:
clrsetbits_le32(&ccm->ccgr10, CCM_CCGR10_I2C2_CTRL_MASK,
CCM_CCGR10_I2C2_CTRL_MASK);
break;
default:
return -EINVAL;
}
return 0;
}
#endif