| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * LPC32xx SLC NAND flash controller driver |
| * |
| * (C) Copyright 2015-2018 Vladimir Zapolskiy <vz@mleia.com> |
| * Copyright (c) 2015 Tyco Fire Protection Products. |
| * |
| * Hardware ECC support original source code |
| * Copyright (C) 2008 by NXP Semiconductors |
| * Author: Kevin Wells |
| */ |
| |
| #include <config.h> |
| #include <log.h> |
| #include <nand.h> |
| #include <linux/bug.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/config.h> |
| #include <asm/arch/clk.h> |
| #include <asm/arch/sys_proto.h> |
| #include <asm/arch/dma.h> |
| #include <asm/arch/cpu.h> |
| #include <linux/printk.h> |
| |
| struct lpc32xx_nand_slc_regs { |
| u32 data; |
| u32 addr; |
| u32 cmd; |
| u32 stop; |
| u32 ctrl; |
| u32 cfg; |
| u32 stat; |
| u32 int_stat; |
| u32 ien; |
| u32 isr; |
| u32 icr; |
| u32 tac; |
| u32 tc; |
| u32 ecc; |
| u32 dma_data; |
| }; |
| |
| /* CFG register */ |
| #define CFG_CE_LOW (1 << 5) |
| #define CFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ |
| #define CFG_ECC_EN (1 << 3) /* ECC enable bit */ |
| #define CFG_DMA_BURST (1 << 2) /* DMA burst bit */ |
| #define CFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ |
| |
| /* CTRL register */ |
| #define CTRL_SW_RESET (1 << 2) |
| #define CTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ |
| #define CTRL_DMA_START (1 << 0) /* Start DMA channel bit */ |
| |
| /* STAT register */ |
| #define STAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ |
| #define STAT_NAND_READY (1 << 0) |
| |
| /* INT_STAT register */ |
| #define INT_STAT_TC (1 << 1) |
| #define INT_STAT_RDY (1 << 0) |
| |
| /* TAC register bits, be aware of overflows */ |
| #define TAC_W_RDY(n) (max_t(uint32_t, (n), 0xF) << 28) |
| #define TAC_W_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 24) |
| #define TAC_W_HOLD(n) (max_t(uint32_t, (n), 0xF) << 20) |
| #define TAC_W_SETUP(n) (max_t(uint32_t, (n), 0xF) << 16) |
| #define TAC_R_RDY(n) (max_t(uint32_t, (n), 0xF) << 12) |
| #define TAC_R_WIDTH(n) (max_t(uint32_t, (n), 0xF) << 8) |
| #define TAC_R_HOLD(n) (max_t(uint32_t, (n), 0xF) << 4) |
| #define TAC_R_SETUP(n) (max_t(uint32_t, (n), 0xF) << 0) |
| |
| /* NAND ECC Layout for small page NAND devices |
| * Note: For large page devices, the default layouts are used. */ |
| static struct nand_ecclayout lpc32xx_nand_oob_16 = { |
| .eccbytes = 6, |
| .eccpos = { 10, 11, 12, 13, 14, 15, }, |
| .oobfree = { |
| { .offset = 0, .length = 4, }, |
| { .offset = 6, .length = 4, }, |
| } |
| }; |
| |
| #if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_XPL_BUILD) |
| #define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / CFG_SYS_NAND_ECCSIZE) |
| |
| /* |
| * DMA Descriptors |
| * For Large Block: 17 descriptors = ((16 Data and ECC Read) + 1 Spare Area) |
| * For Small Block: 5 descriptors = ((4 Data and ECC Read) + 1 Spare Area) |
| */ |
| static struct lpc32xx_dmac_ll dmalist[ECCSTEPS * 2 + 1]; |
| static u32 ecc_buffer[8]; /* MAX ECC size */ |
| static unsigned int dmachan = (unsigned int)-1; /* Invalid channel */ |
| |
| /* |
| * Helper macro for the DMA client (i.e. NAND SLC): |
| * - to write the next DMA linked list item address |
| * (see arch/include/asm/arch-lpc32xx/dma.h). |
| * - to assign the DMA data register to DMA source or destination address. |
| * - to assign the ECC register to DMA source or destination address. |
| */ |
| #define lpc32xx_dmac_next_lli(x) ((u32)x) |
| #define lpc32xx_dmac_set_dma_data() ((u32)&lpc32xx_nand_slc_regs->dma_data) |
| #define lpc32xx_dmac_set_ecc() ((u32)&lpc32xx_nand_slc_regs->ecc) |
| #endif |
| |
| static struct lpc32xx_nand_slc_regs __iomem *lpc32xx_nand_slc_regs |
| = (struct lpc32xx_nand_slc_regs __iomem *)SLC_NAND_BASE; |
| |
| static void lpc32xx_nand_init(void) |
| { |
| uint32_t hclk = get_hclk_clk_rate(); |
| |
| /* Reset SLC NAND controller */ |
| writel(CTRL_SW_RESET, &lpc32xx_nand_slc_regs->ctrl); |
| |
| /* 8-bit bus, no DMA, no ECC, ordinary CE signal */ |
| writel(0, &lpc32xx_nand_slc_regs->cfg); |
| |
| /* Interrupts disabled and cleared */ |
| writel(0, &lpc32xx_nand_slc_regs->ien); |
| writel(INT_STAT_TC | INT_STAT_RDY, |
| &lpc32xx_nand_slc_regs->icr); |
| |
| /* Configure NAND flash timings */ |
| writel(TAC_W_RDY(CFG_LPC32XX_NAND_SLC_WDR_CLKS) | |
| TAC_W_WIDTH(hclk / CFG_LPC32XX_NAND_SLC_WWIDTH) | |
| TAC_W_HOLD(hclk / CFG_LPC32XX_NAND_SLC_WHOLD) | |
| TAC_W_SETUP(hclk / CFG_LPC32XX_NAND_SLC_WSETUP) | |
| TAC_R_RDY(CFG_LPC32XX_NAND_SLC_RDR_CLKS) | |
| TAC_R_WIDTH(hclk / CFG_LPC32XX_NAND_SLC_RWIDTH) | |
| TAC_R_HOLD(hclk / CFG_LPC32XX_NAND_SLC_RHOLD) | |
| TAC_R_SETUP(hclk / CFG_LPC32XX_NAND_SLC_RSETUP), |
| &lpc32xx_nand_slc_regs->tac); |
| } |
| |
| static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, |
| int cmd, unsigned int ctrl) |
| { |
| debug("ctrl: 0x%08x, cmd: 0x%08x\n", ctrl, cmd); |
| |
| if (ctrl & NAND_NCE) |
| setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW); |
| else |
| clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_CE_LOW); |
| |
| if (cmd == NAND_CMD_NONE) |
| return; |
| |
| if (ctrl & NAND_CLE) |
| writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->cmd); |
| else if (ctrl & NAND_ALE) |
| writel(cmd & 0xFF, &lpc32xx_nand_slc_regs->addr); |
| } |
| |
| static int lpc32xx_nand_dev_ready(struct mtd_info *mtd) |
| { |
| return readl(&lpc32xx_nand_slc_regs->stat) & STAT_NAND_READY; |
| } |
| |
| #if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_XPL_BUILD) |
| /* |
| * Prepares DMA descriptors for NAND RD/WR operations |
| * If the size is < 256 Bytes then it is assumed to be |
| * an OOB transfer |
| */ |
| static void lpc32xx_nand_dma_configure(struct nand_chip *chip, |
| const u8 *buffer, int size, |
| int read) |
| { |
| u32 i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst; |
| struct lpc32xx_dmac_ll *dmalist_cur; |
| struct lpc32xx_dmac_ll *dmalist_cur_ecc; |
| |
| /* |
| * CTRL descriptor entry for reading ECC |
| * Copy Multiple times to sync DMA with Flash Controller |
| */ |
| ecc_ctrl = 0x5 | |
| DMAC_CHAN_SRC_BURST_1 | |
| DMAC_CHAN_DEST_BURST_1 | |
| DMAC_CHAN_SRC_WIDTH_32 | |
| DMAC_CHAN_DEST_WIDTH_32 | |
| DMAC_CHAN_DEST_AHB1; |
| |
| /* CTRL descriptor entry for reading/writing Data */ |
| ctrl = (CFG_SYS_NAND_ECCSIZE / 4) | |
| DMAC_CHAN_SRC_BURST_4 | |
| DMAC_CHAN_DEST_BURST_4 | |
| DMAC_CHAN_SRC_WIDTH_32 | |
| DMAC_CHAN_DEST_WIDTH_32 | |
| DMAC_CHAN_DEST_AHB1; |
| |
| /* CTRL descriptor entry for reading/writing Spare Area */ |
| oob_ctrl = (CONFIG_SYS_NAND_OOBSIZE / 4) | |
| DMAC_CHAN_SRC_BURST_4 | |
| DMAC_CHAN_DEST_BURST_4 | |
| DMAC_CHAN_SRC_WIDTH_32 | |
| DMAC_CHAN_DEST_WIDTH_32 | |
| DMAC_CHAN_DEST_AHB1; |
| |
| if (read) { |
| dmasrc = lpc32xx_dmac_set_dma_data(); |
| dmadst = (u32)buffer; |
| ctrl |= DMAC_CHAN_DEST_AUTOINC; |
| } else { |
| dmadst = lpc32xx_dmac_set_dma_data(); |
| dmasrc = (u32)buffer; |
| ctrl |= DMAC_CHAN_SRC_AUTOINC; |
| } |
| |
| /* |
| * Write Operation Sequence for Small Block NAND |
| * ---------------------------------------------------------- |
| * 1. X'fer 256 bytes of data from Memory to Flash. |
| * 2. Copy generated ECC data from Register to Spare Area |
| * 3. X'fer next 256 bytes of data from Memory to Flash. |
| * 4. Copy generated ECC data from Register to Spare Area. |
| * 5. X'fer 16 byets of Spare area from Memory to Flash. |
| * Read Operation Sequence for Small Block NAND |
| * ---------------------------------------------------------- |
| * 1. X'fer 256 bytes of data from Flash to Memory. |
| * 2. Copy generated ECC data from Register to ECC calc Buffer. |
| * 3. X'fer next 256 bytes of data from Flash to Memory. |
| * 4. Copy generated ECC data from Register to ECC calc Buffer. |
| * 5. X'fer 16 bytes of Spare area from Flash to Memory. |
| * Write Operation Sequence for Large Block NAND |
| * ---------------------------------------------------------- |
| * 1. Steps(1-4) of Write Operations repeate for four times |
| * which generates 16 DMA descriptors to X'fer 2048 bytes of |
| * data & 32 bytes of ECC data. |
| * 2. X'fer 64 bytes of Spare area from Memory to Flash. |
| * Read Operation Sequence for Large Block NAND |
| * ---------------------------------------------------------- |
| * 1. Steps(1-4) of Read Operations repeate for four times |
| * which generates 16 DMA descriptors to X'fer 2048 bytes of |
| * data & 32 bytes of ECC data. |
| * 2. X'fer 64 bytes of Spare area from Flash to Memory. |
| */ |
| |
| for (i = 0; i < size/CFG_SYS_NAND_ECCSIZE; i++) { |
| dmalist_cur = &dmalist[i * 2]; |
| dmalist_cur_ecc = &dmalist[(i * 2) + 1]; |
| |
| dmalist_cur->dma_src = (read ? (dmasrc) : (dmasrc + (i*256))); |
| dmalist_cur->dma_dest = (read ? (dmadst + (i*256)) : dmadst); |
| dmalist_cur->next_lli = lpc32xx_dmac_next_lli(dmalist_cur_ecc); |
| dmalist_cur->next_ctrl = ctrl; |
| |
| dmalist_cur_ecc->dma_src = lpc32xx_dmac_set_ecc(); |
| dmalist_cur_ecc->dma_dest = (u32)&ecc_buffer[i]; |
| dmalist_cur_ecc->next_lli = |
| lpc32xx_dmac_next_lli(&dmalist[(i * 2) + 2]); |
| dmalist_cur_ecc->next_ctrl = ecc_ctrl; |
| } |
| |
| if (i) { /* Data only transfer */ |
| dmalist_cur_ecc = &dmalist[(i * 2) - 1]; |
| dmalist_cur_ecc->next_lli = 0; |
| dmalist_cur_ecc->next_ctrl |= DMAC_CHAN_INT_TC_EN; |
| return; |
| } |
| |
| /* OOB only transfer */ |
| if (read) { |
| dmasrc = lpc32xx_dmac_set_dma_data(); |
| dmadst = (u32)buffer; |
| oob_ctrl |= DMAC_CHAN_DEST_AUTOINC; |
| } else { |
| dmadst = lpc32xx_dmac_set_dma_data(); |
| dmasrc = (u32)buffer; |
| oob_ctrl |= DMAC_CHAN_SRC_AUTOINC; |
| } |
| |
| /* Read/ Write Spare Area Data To/From Flash */ |
| dmalist_cur = &dmalist[i * 2]; |
| dmalist_cur->dma_src = dmasrc; |
| dmalist_cur->dma_dest = dmadst; |
| dmalist_cur->next_lli = 0; |
| dmalist_cur->next_ctrl = (oob_ctrl | DMAC_CHAN_INT_TC_EN); |
| } |
| |
| static void lpc32xx_nand_xfer(struct mtd_info *mtd, const u8 *buf, |
| int len, int read) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| u32 config; |
| int ret; |
| |
| /* DMA Channel Configuration */ |
| config = (read ? DMAC_CHAN_FLOW_D_P2M : DMAC_CHAN_FLOW_D_M2P) | |
| (read ? DMAC_DEST_PERIP(0) : DMAC_DEST_PERIP(DMA_PERID_NAND1)) | |
| (read ? DMAC_SRC_PERIP(DMA_PERID_NAND1) : DMAC_SRC_PERIP(0)) | |
| DMAC_CHAN_ENABLE; |
| |
| /* Prepare DMA descriptors */ |
| lpc32xx_nand_dma_configure(chip, buf, len, read); |
| |
| /* Setup SLC controller and start transfer */ |
| if (read) |
| setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR); |
| else /* NAND_ECC_WRITE */ |
| clrbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_DIR); |
| setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_DMA_BURST); |
| |
| /* Write length for new transfers */ |
| if (!((readl(&lpc32xx_nand_slc_regs->stat) & STAT_DMA_FIFO) | |
| readl(&lpc32xx_nand_slc_regs->tc))) { |
| int tmp = (len != mtd->oobsize) ? mtd->oobsize : 0; |
| writel(len + tmp, &lpc32xx_nand_slc_regs->tc); |
| } |
| |
| setbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START); |
| |
| /* Start DMA transfers */ |
| ret = lpc32xx_dma_start_xfer(dmachan, dmalist, config); |
| if (unlikely(ret < 0)) |
| BUG(); |
| |
| /* Wait for NAND to be ready */ |
| while (!lpc32xx_nand_dev_ready(mtd)) |
| ; |
| |
| /* Wait till DMA transfer is DONE */ |
| if (lpc32xx_dma_wait_status(dmachan)) |
| pr_err("NAND DMA transfer error!\r\n"); |
| |
| /* Stop DMA & HW ECC */ |
| clrbits_le32(&lpc32xx_nand_slc_regs->ctrl, CTRL_DMA_START); |
| clrbits_le32(&lpc32xx_nand_slc_regs->cfg, |
| CFG_DMA_DIR | CFG_DMA_BURST | CFG_ECC_EN | CFG_DMA_ECC); |
| } |
| |
| static u32 slc_ecc_copy_to_buffer(u8 *spare, const u32 *ecc, int count) |
| { |
| int i; |
| for (i = 0; i < (count * CFG_SYS_NAND_ECCBYTES); |
| i += CFG_SYS_NAND_ECCBYTES) { |
| u32 ce = ecc[i / CFG_SYS_NAND_ECCBYTES]; |
| ce = ~(ce << 2) & 0xFFFFFF; |
| spare[i+2] = (u8)(ce & 0xFF); ce >>= 8; |
| spare[i+1] = (u8)(ce & 0xFF); ce >>= 8; |
| spare[i] = (u8)(ce & 0xFF); |
| } |
| return 0; |
| } |
| |
| static int lpc32xx_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, |
| uint8_t *ecc_code) |
| { |
| return slc_ecc_copy_to_buffer(ecc_code, ecc_buffer, ECCSTEPS); |
| } |
| |
| /* |
| * Enables and prepares SLC NAND controller |
| * for doing data transfers with H/W ECC enabled. |
| */ |
| static void lpc32xx_hwecc_enable(struct mtd_info *mtd, int mode) |
| { |
| /* Clear ECC */ |
| writel(CTRL_ECC_CLEAR, &lpc32xx_nand_slc_regs->ctrl); |
| |
| /* Setup SLC controller for H/W ECC operations */ |
| setbits_le32(&lpc32xx_nand_slc_regs->cfg, CFG_ECC_EN | CFG_DMA_ECC); |
| } |
| |
| /* |
| * lpc32xx_correct_data - [NAND Interface] Detect and correct bit error(s) |
| * mtd: MTD block structure |
| * dat: raw data read from the chip |
| * read_ecc: ECC from the chip |
| * calc_ecc: the ECC calculated from raw data |
| * |
| * Detect and correct a 1 bit error for 256 byte block |
| */ |
| int lpc32xx_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| unsigned int i; |
| int ret1, ret2 = 0; |
| u_char *r = read_ecc; |
| u_char *c = calc_ecc; |
| u16 data_offset = 0; |
| |
| for (i = 0 ; i < ECCSTEPS ; i++) { |
| r += CFG_SYS_NAND_ECCBYTES; |
| c += CFG_SYS_NAND_ECCBYTES; |
| data_offset += CFG_SYS_NAND_ECCSIZE; |
| |
| ret1 = nand_correct_data(mtd, dat + data_offset, r, c); |
| if (ret1 < 0) |
| return -EBADMSG; |
| else |
| ret2 += ret1; |
| } |
| |
| return ret2; |
| } |
| |
| static void lpc32xx_dma_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| lpc32xx_nand_xfer(mtd, buf, len, 1); |
| } |
| |
| static void lpc32xx_dma_write_buf(struct mtd_info *mtd, const uint8_t *buf, |
| int len) |
| { |
| lpc32xx_nand_xfer(mtd, buf, len, 0); |
| } |
| |
| /* Reuse the logic from "nand_read_page_hwecc()" */ |
| static int lpc32xx_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int oob_required, int page) |
| { |
| int i; |
| int stat; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| unsigned int max_bitflips = 0; |
| |
| /* |
| * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes |
| * and section 9.7, the NAND SLC & DMA allowed single DMA transaction |
| * of a page size using DMA controller scatter/gather mode through |
| * linked list; the ECC read is done without any software intervention. |
| */ |
| |
| lpc32xx_hwecc_enable(mtd, NAND_ECC_READ); |
| lpc32xx_dma_read_buf(mtd, p, chip->ecc.size * chip->ecc.steps); |
| lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]); |
| lpc32xx_dma_read_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| ecc_code[i] = chip->oob_poi[eccpos[i]]; |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[0], &ecc_calc[0]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else { |
| mtd->ecc_stats.corrected += stat; |
| max_bitflips = max_t(unsigned int, max_bitflips, stat); |
| } |
| |
| return max_bitflips; |
| } |
| |
| /* Reuse the logic from "nand_write_page_hwecc()" */ |
| static int lpc32xx_write_page_hwecc(struct mtd_info *mtd, |
| struct nand_chip *chip, |
| const uint8_t *buf, int oob_required, |
| int page) |
| { |
| int i; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| const uint8_t *p = buf; |
| uint32_t *eccpos = chip->ecc.layout->eccpos; |
| |
| /* |
| * As per the "LPC32x0 and LPC32x0/01 User manual" table 173 notes |
| * and section 9.7, the NAND SLC & DMA allowed single DMA transaction |
| * of a page size using DMA controller scatter/gather mode through |
| * linked list; the ECC read is done without any software intervention. |
| */ |
| |
| lpc32xx_hwecc_enable(mtd, NAND_ECC_WRITE); |
| lpc32xx_dma_write_buf(mtd, p, chip->ecc.size * chip->ecc.steps); |
| lpc32xx_ecc_calculate(mtd, p, &ecc_calc[0]); |
| |
| for (i = 0; i < chip->ecc.total; i++) |
| chip->oob_poi[eccpos[i]] = ecc_calc[i]; |
| |
| lpc32xx_dma_write_buf(mtd, chip->oob_poi, mtd->oobsize); |
| |
| return 0; |
| } |
| #else |
| static void lpc32xx_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) |
| { |
| while (len-- > 0) |
| *buf++ = readl(&lpc32xx_nand_slc_regs->data); |
| } |
| |
| static void lpc32xx_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) |
| { |
| while (len-- > 0) |
| writel(*buf++, &lpc32xx_nand_slc_regs->data); |
| } |
| #endif |
| |
| static uint8_t lpc32xx_read_byte(struct mtd_info *mtd) |
| { |
| return readl(&lpc32xx_nand_slc_regs->data); |
| } |
| |
| static void lpc32xx_write_byte(struct mtd_info *mtd, uint8_t byte) |
| { |
| writel(byte, &lpc32xx_nand_slc_regs->data); |
| } |
| |
| /* |
| * LPC32xx has only one SLC NAND controller, don't utilize |
| * CONFIG_SYS_NAND_SELF_INIT to be able to reuse this function |
| * both in SPL NAND and U-Boot images. |
| */ |
| int board_nand_init(struct nand_chip *lpc32xx_chip) |
| { |
| #if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_XPL_BUILD) |
| int ret; |
| |
| /* Acquire a channel for our use */ |
| ret = lpc32xx_dma_get_channel(); |
| if (unlikely(ret < 0)) { |
| pr_info("Unable to get free DMA channel for NAND transfers\n"); |
| return -1; |
| } |
| dmachan = (unsigned int)ret; |
| #endif |
| |
| lpc32xx_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; |
| lpc32xx_chip->dev_ready = lpc32xx_nand_dev_ready; |
| |
| /* |
| * The implementation of these functions is quite common, but |
| * they MUST be defined, because access to data register |
| * is strictly 32-bit aligned. |
| */ |
| lpc32xx_chip->read_byte = lpc32xx_read_byte; |
| lpc32xx_chip->write_byte = lpc32xx_write_byte; |
| |
| #if defined(CONFIG_DMA_LPC32XX) && !defined(CONFIG_XPL_BUILD) |
| /* Hardware ECC calculation is supported when DMA driver is selected */ |
| lpc32xx_chip->ecc.mode = NAND_ECC_HW; |
| |
| lpc32xx_chip->read_buf = lpc32xx_dma_read_buf; |
| lpc32xx_chip->write_buf = lpc32xx_dma_write_buf; |
| |
| lpc32xx_chip->ecc.calculate = lpc32xx_ecc_calculate; |
| lpc32xx_chip->ecc.correct = lpc32xx_correct_data; |
| lpc32xx_chip->ecc.hwctl = lpc32xx_hwecc_enable; |
| lpc32xx_chip->chip_delay = 2000; |
| |
| lpc32xx_chip->ecc.read_page = lpc32xx_read_page_hwecc; |
| lpc32xx_chip->ecc.write_page = lpc32xx_write_page_hwecc; |
| lpc32xx_chip->options |= NAND_NO_SUBPAGE_WRITE; |
| #else |
| /* |
| * Hardware ECC calculation is not supported by the driver, |
| * because it requires DMA support, see LPC32x0 User Manual, |
| * note after SLC_ECC register description (UM10326, p.198) |
| */ |
| lpc32xx_chip->ecc.mode = NAND_ECC_SOFT; |
| |
| /* |
| * The implementation of these functions is quite common, but |
| * they MUST be defined, because access to data register |
| * is strictly 32-bit aligned. |
| */ |
| lpc32xx_chip->read_buf = lpc32xx_read_buf; |
| lpc32xx_chip->write_buf = lpc32xx_write_buf; |
| #endif |
| |
| /* |
| * These values are predefined |
| * for both small and large page NAND flash devices. |
| */ |
| lpc32xx_chip->ecc.size = CFG_SYS_NAND_ECCSIZE; |
| lpc32xx_chip->ecc.bytes = CFG_SYS_NAND_ECCBYTES; |
| lpc32xx_chip->ecc.strength = 1; |
| |
| if (CONFIG_SYS_NAND_PAGE_SIZE != NAND_LARGE_BLOCK_PAGE_SIZE) |
| lpc32xx_chip->ecc.layout = &lpc32xx_nand_oob_16; |
| |
| #if defined(CONFIG_SYS_NAND_USE_FLASH_BBT) |
| lpc32xx_chip->bbt_options |= NAND_BBT_USE_FLASH; |
| #endif |
| |
| /* Initialize NAND interface */ |
| lpc32xx_nand_init(); |
| |
| return 0; |
| } |