blob: 2497e3e729374dd1cda847b5488f88328836b936 [file] [log] [blame]
/*
*
* Common functions for OMAP4 based boards
*
* (C) Copyright 2010
* Texas Instruments, <www.ti.com>
*
* Author :
* Aneesh V <aneesh@ti.com>
* Steve Sakoman <steve@sakoman.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/armv7.h>
#include <asm/arch/cpu.h>
#include <asm/arch/sys_proto.h>
#include <asm/sizes.h>
#include <asm/arch/emif.h>
#include <asm/arch/gpio.h>
#include "omap4_mux_data.h"
DECLARE_GLOBAL_DATA_PTR;
u32 *const omap4_revision = (u32 *)OMAP4_SRAM_SCRATCH_OMAP4_REV;
static const struct gpio_bank gpio_bank_44xx[6] = {
{ (void *)OMAP44XX_GPIO1_BASE, METHOD_GPIO_24XX },
{ (void *)OMAP44XX_GPIO2_BASE, METHOD_GPIO_24XX },
{ (void *)OMAP44XX_GPIO3_BASE, METHOD_GPIO_24XX },
{ (void *)OMAP44XX_GPIO4_BASE, METHOD_GPIO_24XX },
{ (void *)OMAP44XX_GPIO5_BASE, METHOD_GPIO_24XX },
{ (void *)OMAP44XX_GPIO6_BASE, METHOD_GPIO_24XX },
};
const struct gpio_bank *const omap_gpio_bank = gpio_bank_44xx;
#ifdef CONFIG_SPL_BUILD
/*
* We use static variables because global data is not ready yet.
* Initialized data is available in SPL right from the beginning.
* We would not typically need to save these parameters in regular
* U-Boot. This is needed only in SPL at the moment.
*/
u32 omap4_boot_device = BOOT_DEVICE_MMC1;
u32 omap4_boot_mode = MMCSD_MODE_FAT;
u32 omap_boot_device(void)
{
return omap4_boot_device;
}
u32 omap_boot_mode(void)
{
return omap4_boot_mode;
}
/*
* Some tuning of IOs for optimal power and performance
*/
static void do_io_settings(void)
{
u32 lpddr2io;
struct control_lpddr2io_regs *lpddr2io_regs =
(struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE;
struct omap4_sys_ctrl_regs *const ctrl =
(struct omap4_sys_ctrl_regs *)SYSCTRL_GENERAL_CORE_BASE;
u32 omap4_rev = omap_revision();
if (omap4_rev == OMAP4430_ES1_0)
lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN;
else if (omap4_rev == OMAP4430_ES2_0)
lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER;
else
lpddr2io = CONTROL_LPDDR2IO_SLEW_315PS_DRV12_PULL_DOWN;
/* EMIF1 */
writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0);
writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1);
/* No pull for GR10 as per hw team's recommendation */
writel(lpddr2io & ~LPDDR2IO_GR10_WD_MASK,
&lpddr2io_regs->control_lpddr2io1_2);
writel(CONTROL_LPDDR2IO_3_VAL, &lpddr2io_regs->control_lpddr2io1_3);
/* EMIF2 */
writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0);
writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1);
/* No pull for GR10 as per hw team's recommendation */
writel(lpddr2io & ~LPDDR2IO_GR10_WD_MASK,
&lpddr2io_regs->control_lpddr2io2_2);
writel(CONTROL_LPDDR2IO_3_VAL, &lpddr2io_regs->control_lpddr2io2_3);
/*
* Some of these settings (TRIM values) come from eFuse and are
* in turn programmed in the eFuse at manufacturing time after
* calibration of the device. Do the software over-ride only if
* the device is not correctly trimmed
*/
if (!(readl(&ctrl->control_std_fuse_opp_bgap) & 0xFFFF)) {
writel(LDOSRAM_VOLT_CTRL_OVERRIDE,
&ctrl->control_ldosram_iva_voltage_ctrl);
writel(LDOSRAM_VOLT_CTRL_OVERRIDE,
&ctrl->control_ldosram_mpu_voltage_ctrl);
writel(LDOSRAM_VOLT_CTRL_OVERRIDE,
&ctrl->control_ldosram_core_voltage_ctrl);
}
if (!readl(&ctrl->control_efuse_1))
writel(CONTROL_EFUSE_1_OVERRIDE, &ctrl->control_efuse_1);
if (!readl(&ctrl->control_efuse_2))
writel(CONTROL_EFUSE_2_OVERRIDE, &ctrl->control_efuse_2);
}
#endif
void do_set_mux(u32 base, struct pad_conf_entry const *array, int size)
{
int i;
struct pad_conf_entry *pad = (struct pad_conf_entry *) array;
for (i = 0; i < size; i++, pad++)
writew(pad->val, base + pad->offset);
}
static void set_muxconf_regs_essential(void)
{
do_set_mux(CONTROL_PADCONF_CORE, core_padconf_array_essential,
sizeof(core_padconf_array_essential) /
sizeof(struct pad_conf_entry));
do_set_mux(CONTROL_PADCONF_WKUP, wkup_padconf_array_essential,
sizeof(wkup_padconf_array_essential) /
sizeof(struct pad_conf_entry));
if (omap_revision() >= OMAP4460_ES1_0)
do_set_mux(CONTROL_PADCONF_WKUP,
wkup_padconf_array_essential_4460,
sizeof(wkup_padconf_array_essential_4460) /
sizeof(struct pad_conf_entry));
}
static void set_mux_conf_regs(void)
{
switch (omap4_hw_init_context()) {
case OMAP_INIT_CONTEXT_SPL:
set_muxconf_regs_essential();
break;
case OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL:
set_muxconf_regs_non_essential();
break;
case OMAP_INIT_CONTEXT_UBOOT_FROM_NOR:
case OMAP_INIT_CONTEXT_UBOOT_AFTER_CH:
set_muxconf_regs_essential();
set_muxconf_regs_non_essential();
break;
}
}
static u32 cortex_a9_rev(void)
{
unsigned int rev;
/* Read Main ID Register (MIDR) */
asm ("mrc p15, 0, %0, c0, c0, 0" : "=r" (rev));
return rev;
}
static void init_omap4_revision(void)
{
/*
* For some of the ES2/ES1 boards ID_CODE is not reliable:
* Also, ES1 and ES2 have different ARM revisions
* So use ARM revision for identification
*/
unsigned int arm_rev = cortex_a9_rev();
switch (arm_rev) {
case MIDR_CORTEX_A9_R0P1:
*omap4_revision = OMAP4430_ES1_0;
break;
case MIDR_CORTEX_A9_R1P2:
switch (readl(CONTROL_ID_CODE)) {
case OMAP4430_CONTROL_ID_CODE_ES2_0:
*omap4_revision = OMAP4430_ES2_0;
break;
case OMAP4430_CONTROL_ID_CODE_ES2_1:
*omap4_revision = OMAP4430_ES2_1;
break;
case OMAP4430_CONTROL_ID_CODE_ES2_2:
*omap4_revision = OMAP4430_ES2_2;
break;
default:
*omap4_revision = OMAP4430_ES2_0;
break;
}
break;
case MIDR_CORTEX_A9_R1P3:
*omap4_revision = OMAP4430_ES2_3;
break;
case MIDR_CORTEX_A9_R2P10:
switch (readl(CONTROL_ID_CODE)) {
case OMAP4460_CONTROL_ID_CODE_ES1_0:
*omap4_revision = OMAP4460_ES1_0;
break;
case OMAP4460_CONTROL_ID_CODE_ES1_1:
*omap4_revision = OMAP4460_ES1_1;
break;
default:
*omap4_revision = OMAP4460_ES1_0;
break;
}
break;
default:
*omap4_revision = OMAP4430_SILICON_ID_INVALID;
break;
}
}
void omap_rev_string(char *omap4_rev_string)
{
u32 omap4_rev = omap_revision();
u32 omap4_variant = (omap4_rev & 0xFFFF0000) >> 16;
u32 major_rev = (omap4_rev & 0x00000F00) >> 8;
u32 minor_rev = (omap4_rev & 0x000000F0) >> 4;
sprintf(omap4_rev_string, "OMAP%x ES%x.%x", omap4_variant, major_rev,
minor_rev);
}
/*
* Routine: s_init
* Description: Does early system init of watchdog, muxing, andclocks
* Watchdog disable is done always. For the rest what gets done
* depends on the boot mode in which this function is executed
* 1. s_init of SPL running from SRAM
* 2. s_init of U-Boot running from FLASH
* 3. s_init of U-Boot loaded to SDRAM by SPL
* 4. s_init of U-Boot loaded to SDRAM by ROM code using the
* Configuration Header feature
* Please have a look at the respective functions to see what gets
* done in each of these cases
* This function is called with SRAM stack.
*/
void s_init(void)
{
init_omap4_revision();
watchdog_init();
set_mux_conf_regs();
#ifdef CONFIG_SPL_BUILD
setup_clocks_for_console();
preloader_console_init();
do_io_settings();
#endif
prcm_init();
#ifdef CONFIG_SPL_BUILD
/* For regular u-boot sdram_init() is called from dram_init() */
sdram_init();
#endif
}
/*
* Routine: wait_for_command_complete
* Description: Wait for posting to finish on watchdog
*/
void wait_for_command_complete(struct watchdog *wd_base)
{
int pending = 1;
do {
pending = readl(&wd_base->wwps);
} while (pending);
}
/*
* Routine: watchdog_init
* Description: Shut down watch dogs
*/
void watchdog_init(void)
{
struct watchdog *wd2_base = (struct watchdog *)WDT2_BASE;
writel(WD_UNLOCK1, &wd2_base->wspr);
wait_for_command_complete(wd2_base);
writel(WD_UNLOCK2, &wd2_base->wspr);
}
/*
* This function finds the SDRAM size available in the system
* based on DMM section configurations
* This is needed because the size of memory installed may be
* different on different versions of the board
*/
u32 omap4_sdram_size(void)
{
u32 section, i, total_size = 0, size, addr;
for (i = 0; i < 4; i++) {
section = __raw_readl(OMAP44XX_DMM_LISA_MAP_BASE + i*4);
addr = section & OMAP44XX_SYS_ADDR_MASK;
/* See if the address is valid */
if ((addr >= OMAP44XX_DRAM_ADDR_SPACE_START) &&
(addr < OMAP44XX_DRAM_ADDR_SPACE_END)) {
size = ((section & OMAP44XX_SYS_SIZE_MASK) >>
OMAP44XX_SYS_SIZE_SHIFT);
size = 1 << size;
size *= SZ_16M;
total_size += size;
}
}
return total_size;
}
/*
* Routine: dram_init
* Description: sets uboots idea of sdram size
*/
int dram_init(void)
{
sdram_init();
gd->ram_size = omap4_sdram_size();
return 0;
}
/*
* Print board information
*/
int checkboard(void)
{
puts(sysinfo.board_string);
return 0;
}
/*
* This function is called by start_armboot. You can reliably use static
* data. Any boot-time function that require static data should be
* called from here
*/
int arch_cpu_init(void)
{
return 0;
}
#ifndef CONFIG_SYS_L2CACHE_OFF
void v7_outer_cache_enable(void)
{
set_pl310_ctrl_reg(1);
}
void v7_outer_cache_disable(void)
{
set_pl310_ctrl_reg(0);
}
#endif
#ifndef CONFIG_SYS_DCACHE_OFF
void enable_caches(void)
{
/* Enable D-cache. I-cache is already enabled in start.S */
dcache_enable();
}
#endif