| // SPDX-License-Identifier: GPL-2.0+ |
| #include <fs_internal.h> |
| #include <log.h> |
| #include <uuid.h> |
| #include <memalign.h> |
| #include "kernel-shared/btrfs_tree.h" |
| #include "common/rbtree-utils.h" |
| #include "disk-io.h" |
| #include "ctree.h" |
| #include "btrfs.h" |
| #include "volumes.h" |
| #include "extent-io.h" |
| #include "crypto/hash.h" |
| |
| /* specified errno for check_tree_block */ |
| #define BTRFS_BAD_BYTENR (-1) |
| #define BTRFS_BAD_FSID (-2) |
| #define BTRFS_BAD_LEVEL (-3) |
| #define BTRFS_BAD_NRITEMS (-4) |
| |
| /* Calculate max possible nritems for a leaf/node */ |
| static u32 max_nritems(u8 level, u32 nodesize) |
| { |
| |
| if (level == 0) |
| return ((nodesize - sizeof(struct btrfs_header)) / |
| sizeof(struct btrfs_item)); |
| return ((nodesize - sizeof(struct btrfs_header)) / |
| sizeof(struct btrfs_key_ptr)); |
| } |
| |
| static int check_tree_block(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *buf) |
| { |
| |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u32 nodesize = fs_info->nodesize; |
| bool fsid_match = false; |
| int ret = BTRFS_BAD_FSID; |
| |
| if (buf->start != btrfs_header_bytenr(buf)) |
| return BTRFS_BAD_BYTENR; |
| if (btrfs_header_level(buf) >= BTRFS_MAX_LEVEL) |
| return BTRFS_BAD_LEVEL; |
| if (btrfs_header_nritems(buf) > max_nritems(btrfs_header_level(buf), |
| nodesize)) |
| return BTRFS_BAD_NRITEMS; |
| |
| /* Only leaf can be empty */ |
| if (btrfs_header_nritems(buf) == 0 && |
| btrfs_header_level(buf) != 0) |
| return BTRFS_BAD_NRITEMS; |
| |
| while (fs_devices) { |
| /* |
| * Checking the incompat flag is only valid for the current |
| * fs. For seed devices it's forbidden to have their uuid |
| * changed so reading ->fsid in this case is fine |
| */ |
| if (fs_devices == fs_info->fs_devices && |
| btrfs_fs_incompat(fs_info, METADATA_UUID)) |
| fsid_match = !memcmp_extent_buffer(buf, |
| fs_devices->metadata_uuid, |
| btrfs_header_fsid(), |
| BTRFS_FSID_SIZE); |
| else |
| fsid_match = !memcmp_extent_buffer(buf, |
| fs_devices->fsid, |
| btrfs_header_fsid(), |
| BTRFS_FSID_SIZE); |
| |
| |
| if (fsid_match) { |
| ret = 0; |
| break; |
| } |
| fs_devices = fs_devices->seed; |
| } |
| return ret; |
| } |
| |
| static void print_tree_block_error(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *eb, |
| int err) |
| { |
| char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'}; |
| char found_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'}; |
| u8 buf[BTRFS_UUID_SIZE]; |
| |
| if (!err) |
| return; |
| |
| fprintf(stderr, "bad tree block %llu, ", eb->start); |
| switch (err) { |
| case BTRFS_BAD_FSID: |
| read_extent_buffer(eb, buf, btrfs_header_fsid(), |
| BTRFS_UUID_SIZE); |
| uuid_unparse(buf, found_uuid); |
| uuid_unparse(fs_info->fs_devices->metadata_uuid, fs_uuid); |
| fprintf(stderr, "fsid mismatch, want=%s, have=%s\n", |
| fs_uuid, found_uuid); |
| break; |
| case BTRFS_BAD_BYTENR: |
| fprintf(stderr, "bytenr mismatch, want=%llu, have=%llu\n", |
| eb->start, btrfs_header_bytenr(eb)); |
| break; |
| case BTRFS_BAD_LEVEL: |
| fprintf(stderr, "bad level, %u > %d\n", |
| btrfs_header_level(eb), BTRFS_MAX_LEVEL); |
| break; |
| case BTRFS_BAD_NRITEMS: |
| fprintf(stderr, "invalid nr_items: %u\n", |
| btrfs_header_nritems(eb)); |
| break; |
| } |
| } |
| |
| int btrfs_csum_data(u16 csum_type, const u8 *data, u8 *out, size_t len) |
| { |
| memset(out, 0, BTRFS_CSUM_SIZE); |
| |
| switch (csum_type) { |
| case BTRFS_CSUM_TYPE_CRC32: |
| return hash_crc32c(data, len, out); |
| case BTRFS_CSUM_TYPE_XXHASH: |
| return hash_xxhash(data, len, out); |
| case BTRFS_CSUM_TYPE_SHA256: |
| return hash_sha256(data, len, out); |
| case BTRFS_CSUM_TYPE_BLAKE2: |
| return hash_blake2(data, len, out); |
| default: |
| printf("Unknown csum type %d\n", csum_type); |
| return -EINVAL; |
| } |
| } |
| |
| /* |
| * Check if the super is valid: |
| * - nodesize/sectorsize - minimum, maximum, alignment |
| * - tree block starts - alignment |
| * - number of devices - something sane |
| * - sys array size - maximum |
| */ |
| static int btrfs_check_super(struct btrfs_super_block *sb) |
| { |
| u8 result[BTRFS_CSUM_SIZE]; |
| u16 csum_type; |
| int csum_size; |
| u8 *metadata_uuid; |
| |
| if (btrfs_super_magic(sb) != BTRFS_MAGIC) |
| return -EIO; |
| |
| csum_type = btrfs_super_csum_type(sb); |
| if (csum_type >= btrfs_super_num_csums()) { |
| error("unsupported checksum algorithm %u", csum_type); |
| return -EIO; |
| } |
| csum_size = btrfs_super_csum_size(sb); |
| |
| btrfs_csum_data(csum_type, (u8 *)sb + BTRFS_CSUM_SIZE, |
| result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); |
| |
| if (memcmp(result, sb->csum, csum_size)) { |
| error("superblock checksum mismatch"); |
| return -EIO; |
| } |
| if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| error("tree_root level too big: %d >= %d", |
| btrfs_super_root_level(sb), BTRFS_MAX_LEVEL); |
| goto error_out; |
| } |
| if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| error("chunk_root level too big: %d >= %d", |
| btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL); |
| goto error_out; |
| } |
| if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) { |
| error("log_root level too big: %d >= %d", |
| btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL); |
| goto error_out; |
| } |
| |
| if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) { |
| error("tree_root block unaligned: %llu", btrfs_super_root(sb)); |
| goto error_out; |
| } |
| if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) { |
| error("chunk_root block unaligned: %llu", |
| btrfs_super_chunk_root(sb)); |
| goto error_out; |
| } |
| if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) { |
| error("log_root block unaligned: %llu", |
| btrfs_super_log_root(sb)); |
| goto error_out; |
| } |
| if (btrfs_super_nodesize(sb) < 4096) { |
| error("nodesize too small: %u < 4096", |
| btrfs_super_nodesize(sb)); |
| goto error_out; |
| } |
| if (!IS_ALIGNED(btrfs_super_nodesize(sb), 4096)) { |
| error("nodesize unaligned: %u", btrfs_super_nodesize(sb)); |
| goto error_out; |
| } |
| if (btrfs_super_sectorsize(sb) < 4096) { |
| error("sectorsize too small: %u < 4096", |
| btrfs_super_sectorsize(sb)); |
| goto error_out; |
| } |
| if (!IS_ALIGNED(btrfs_super_sectorsize(sb), 4096)) { |
| error("sectorsize unaligned: %u", btrfs_super_sectorsize(sb)); |
| goto error_out; |
| } |
| if (btrfs_super_total_bytes(sb) == 0) { |
| error("invalid total_bytes 0"); |
| goto error_out; |
| } |
| if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) { |
| error("invalid bytes_used %llu", btrfs_super_bytes_used(sb)); |
| goto error_out; |
| } |
| if ((btrfs_super_stripesize(sb) != 4096) |
| && (btrfs_super_stripesize(sb) != btrfs_super_sectorsize(sb))) { |
| error("invalid stripesize %u", btrfs_super_stripesize(sb)); |
| goto error_out; |
| } |
| |
| if (btrfs_super_incompat_flags(sb) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID) |
| metadata_uuid = sb->metadata_uuid; |
| else |
| metadata_uuid = sb->fsid; |
| |
| if (memcmp(metadata_uuid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) { |
| char fsid[BTRFS_UUID_UNPARSED_SIZE]; |
| char dev_fsid[BTRFS_UUID_UNPARSED_SIZE]; |
| |
| uuid_unparse(sb->metadata_uuid, fsid); |
| uuid_unparse(sb->dev_item.fsid, dev_fsid); |
| error("dev_item UUID does not match fsid: %s != %s", |
| dev_fsid, fsid); |
| goto error_out; |
| } |
| |
| /* |
| * Hint to catch really bogus numbers, bitflips or so |
| */ |
| if (btrfs_super_num_devices(sb) > (1UL << 31)) { |
| error("suspicious number of devices: %llu", |
| btrfs_super_num_devices(sb)); |
| } |
| |
| if (btrfs_super_num_devices(sb) == 0) { |
| error("number of devices is 0"); |
| goto error_out; |
| } |
| |
| /* |
| * Obvious sys_chunk_array corruptions, it must hold at least one key |
| * and one chunk |
| */ |
| if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { |
| error("system chunk array too big %u > %u", |
| btrfs_super_sys_array_size(sb), |
| BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); |
| goto error_out; |
| } |
| if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key) |
| + sizeof(struct btrfs_chunk)) { |
| error("system chunk array too small %u < %zu", |
| btrfs_super_sys_array_size(sb), |
| sizeof(struct btrfs_disk_key) + |
| sizeof(struct btrfs_chunk)); |
| goto error_out; |
| } |
| |
| return 0; |
| |
| error_out: |
| error("superblock checksum matches but it has invalid members"); |
| return -EIO; |
| } |
| |
| /* |
| * btrfs_read_dev_super - read a valid primary superblock from a block device |
| * @desc,@part: file descriptor of the device |
| * @sb: buffer where the superblock is going to be read in |
| * |
| * Unlike the btrfs-progs/kernel version, here we ony care about the first |
| * super block, thus it's much simpler. |
| */ |
| int btrfs_read_dev_super(struct blk_desc *desc, struct disk_partition *part, |
| struct btrfs_super_block *sb) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER(char, tmp, BTRFS_SUPER_INFO_SIZE); |
| struct btrfs_super_block *buf = (struct btrfs_super_block *)tmp; |
| int ret; |
| |
| ret = __btrfs_devread(desc, part, tmp, BTRFS_SUPER_INFO_SIZE, |
| BTRFS_SUPER_INFO_OFFSET); |
| if (ret < BTRFS_SUPER_INFO_SIZE) |
| return -EIO; |
| |
| if (btrfs_super_bytenr(buf) != BTRFS_SUPER_INFO_OFFSET) |
| return -EIO; |
| |
| if (btrfs_check_super(buf)) |
| return -EIO; |
| |
| memcpy(sb, buf, BTRFS_SUPER_INFO_SIZE); |
| return 0; |
| } |
| |
| static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, |
| int verify, int silent, u16 csum_type) |
| { |
| u8 result[BTRFS_CSUM_SIZE]; |
| u32 len; |
| |
| len = buf->len - BTRFS_CSUM_SIZE; |
| btrfs_csum_data(csum_type, (u8 *)buf->data + BTRFS_CSUM_SIZE, |
| result, len); |
| |
| if (verify) { |
| if (memcmp_extent_buffer(buf, result, 0, csum_size)) { |
| /* FIXME: format */ |
| if (!silent) |
| printk("checksum verify failed on %llu found %08X wanted %08X\n", |
| (unsigned long long)buf->start, |
| result[0], |
| buf->data[0]); |
| return 1; |
| } |
| } else { |
| write_extent_buffer(buf, result, 0, csum_size); |
| } |
| return 0; |
| } |
| |
| int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify, |
| u16 csum_type) |
| { |
| return __csum_tree_block_size(buf, csum_size, verify, 0, csum_type); |
| } |
| |
| static int csum_tree_block(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *buf, int verify) |
| { |
| u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| u16 csum_type = btrfs_super_csum_type(fs_info->super_copy); |
| |
| return csum_tree_block_size(buf, csum_size, verify, csum_type); |
| } |
| |
| struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info, |
| u64 bytenr, u32 blocksize) |
| { |
| return find_extent_buffer(&fs_info->extent_cache, |
| bytenr, blocksize); |
| } |
| |
| struct extent_buffer* btrfs_find_create_tree_block( |
| struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| return alloc_extent_buffer(fs_info, bytenr, fs_info->nodesize); |
| } |
| |
| static int verify_parent_transid(struct extent_io_tree *io_tree, |
| struct extent_buffer *eb, u64 parent_transid, |
| int ignore) |
| { |
| int ret; |
| |
| if (!parent_transid || btrfs_header_generation(eb) == parent_transid) |
| return 0; |
| |
| if (extent_buffer_uptodate(eb) && |
| btrfs_header_generation(eb) == parent_transid) { |
| ret = 0; |
| goto out; |
| } |
| printk("parent transid verify failed on %llu wanted %llu found %llu\n", |
| (unsigned long long)eb->start, |
| (unsigned long long)parent_transid, |
| (unsigned long long)btrfs_header_generation(eb)); |
| if (ignore) { |
| eb->flags |= EXTENT_BAD_TRANSID; |
| printk("Ignoring transid failure\n"); |
| return 0; |
| } |
| |
| ret = 1; |
| out: |
| clear_extent_buffer_uptodate(eb); |
| return ret; |
| |
| } |
| |
| int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror) |
| { |
| unsigned long offset = 0; |
| struct btrfs_multi_bio *multi = NULL; |
| struct btrfs_device *device; |
| int ret = 0; |
| u64 read_len; |
| unsigned long bytes_left = eb->len; |
| |
| while (bytes_left) { |
| read_len = bytes_left; |
| device = NULL; |
| |
| ret = btrfs_map_block(info, READ, eb->start + offset, |
| &read_len, &multi, mirror, NULL); |
| if (ret) { |
| printk("Couldn't map the block %Lu\n", eb->start + offset); |
| kfree(multi); |
| return -EIO; |
| } |
| device = multi->stripes[0].dev; |
| |
| if (!device->desc || !device->part) { |
| kfree(multi); |
| return -EIO; |
| } |
| |
| if (read_len > bytes_left) |
| read_len = bytes_left; |
| |
| ret = read_extent_from_disk(device->desc, device->part, |
| multi->stripes[0].physical, eb, |
| offset, read_len); |
| kfree(multi); |
| multi = NULL; |
| |
| if (ret) |
| return -EIO; |
| offset += read_len; |
| bytes_left -= read_len; |
| } |
| return 0; |
| } |
| |
| struct extent_buffer* read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 parent_transid) |
| { |
| int ret; |
| struct extent_buffer *eb; |
| u64 best_transid = 0; |
| u32 sectorsize = fs_info->sectorsize; |
| int mirror_num = 1; |
| int good_mirror = 0; |
| int candidate_mirror = 0; |
| int num_copies; |
| int ignore = 0; |
| |
| /* |
| * Don't even try to create tree block for unaligned tree block |
| * bytenr. |
| * Such unaligned tree block will free overlapping extent buffer, |
| * causing use-after-free bugs for fuzzed images. |
| */ |
| if (bytenr < sectorsize || !IS_ALIGNED(bytenr, sectorsize)) { |
| error("tree block bytenr %llu is not aligned to sectorsize %u", |
| bytenr, sectorsize); |
| return ERR_PTR(-EIO); |
| } |
| |
| eb = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (!eb) |
| return ERR_PTR(-ENOMEM); |
| |
| if (btrfs_buffer_uptodate(eb, parent_transid)) |
| return eb; |
| |
| num_copies = btrfs_num_copies(fs_info, eb->start, eb->len); |
| while (1) { |
| ret = read_whole_eb(fs_info, eb, mirror_num); |
| if (ret == 0 && csum_tree_block(fs_info, eb, 1) == 0 && |
| check_tree_block(fs_info, eb) == 0 && |
| verify_parent_transid(&fs_info->extent_cache, eb, |
| parent_transid, ignore) == 0) { |
| /* |
| * check_tree_block() is less strict to allow btrfs |
| * check to get raw eb with bad key order and fix it. |
| * But we still need to try to get a good copy if |
| * possible, or bad key order can go into tools like |
| * btrfs ins dump-tree. |
| */ |
| if (btrfs_header_level(eb)) |
| ret = btrfs_check_node(fs_info, NULL, eb); |
| else |
| ret = btrfs_check_leaf(fs_info, NULL, eb); |
| if (!ret || candidate_mirror == mirror_num) { |
| btrfs_set_buffer_uptodate(eb); |
| return eb; |
| } |
| if (candidate_mirror <= 0) |
| candidate_mirror = mirror_num; |
| } |
| if (ignore) { |
| if (candidate_mirror > 0) { |
| mirror_num = candidate_mirror; |
| continue; |
| } |
| if (check_tree_block(fs_info, eb)) |
| print_tree_block_error(fs_info, eb, |
| check_tree_block(fs_info, eb)); |
| else |
| fprintf(stderr, "Csum didn't match\n"); |
| ret = -EIO; |
| break; |
| } |
| if (num_copies == 1) { |
| ignore = 1; |
| continue; |
| } |
| if (btrfs_header_generation(eb) > best_transid) { |
| best_transid = btrfs_header_generation(eb); |
| good_mirror = mirror_num; |
| } |
| mirror_num++; |
| if (mirror_num > num_copies) { |
| if (candidate_mirror > 0) |
| mirror_num = candidate_mirror; |
| else |
| mirror_num = good_mirror; |
| ignore = 1; |
| continue; |
| } |
| } |
| /* |
| * We failed to read this tree block, it be should deleted right now |
| * to avoid stale cache populate the cache. |
| */ |
| free_extent_buffer(eb); |
| return ERR_PTR(ret); |
| } |
| |
| int read_extent_data(struct btrfs_fs_info *fs_info, char *data, u64 logical, |
| u64 *len, int mirror) |
| { |
| u64 orig_len = *len; |
| u64 cur = logical; |
| struct btrfs_multi_bio *multi = NULL; |
| struct btrfs_device *device; |
| int ret = 0; |
| |
| while (cur < logical + orig_len) { |
| u64 cur_len = logical + orig_len - cur; |
| |
| ret = btrfs_map_block(fs_info, READ, cur, &cur_len, &multi, |
| mirror, NULL); |
| if (ret) { |
| error("Couldn't map the block %llu", cur); |
| goto err; |
| } |
| device = multi->stripes[0].dev; |
| if (!device->desc || !device->part) { |
| error("devid %llu is missing", device->devid); |
| ret = -EIO; |
| goto err; |
| } |
| ret = __btrfs_devread(device->desc, device->part, |
| data + (cur - logical), cur_len, |
| multi->stripes[0].physical); |
| if (ret != cur_len) { |
| error("read failed on devid %llu physical %llu", |
| device->devid, multi->stripes[0].physical); |
| ret = -EIO; |
| goto err; |
| } |
| cur += cur_len; |
| ret = 0; |
| } |
| err: |
| kfree(multi); |
| return ret; |
| } |
| |
| void btrfs_setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, |
| u64 objectid) |
| { |
| root->node = NULL; |
| root->track_dirty = 0; |
| |
| root->fs_info = fs_info; |
| root->objectid = objectid; |
| root->last_trans = 0; |
| root->last_inode_alloc = 0; |
| |
| memset(&root->root_key, 0, sizeof(root->root_key)); |
| memset(&root->root_item, 0, sizeof(root->root_item)); |
| root->root_key.objectid = objectid; |
| } |
| |
| static int find_and_setup_root(struct btrfs_root *tree_root, |
| struct btrfs_fs_info *fs_info, |
| u64 objectid, struct btrfs_root *root) |
| { |
| int ret; |
| u64 generation; |
| |
| btrfs_setup_root(root, fs_info, objectid); |
| ret = btrfs_find_last_root(tree_root, objectid, |
| &root->root_item, &root->root_key); |
| if (ret) |
| return ret; |
| |
| generation = btrfs_root_generation(&root->root_item); |
| root->node = read_tree_block(fs_info, |
| btrfs_root_bytenr(&root->root_item), generation); |
| if (!extent_buffer_uptodate(root->node)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| int btrfs_free_fs_root(struct btrfs_root *root) |
| { |
| if (root->node) |
| free_extent_buffer(root->node); |
| kfree(root); |
| return 0; |
| } |
| |
| static void __free_fs_root(struct rb_node *node) |
| { |
| struct btrfs_root *root; |
| |
| root = container_of(node, struct btrfs_root, rb_node); |
| btrfs_free_fs_root(root); |
| } |
| |
| FREE_RB_BASED_TREE(fs_roots, __free_fs_root); |
| |
| struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *location) |
| { |
| struct btrfs_root *root; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_path *path; |
| struct extent_buffer *l; |
| u64 generation; |
| int ret = 0; |
| |
| root = calloc(1, sizeof(*root)); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| if (location->offset == (u64)-1) { |
| ret = find_and_setup_root(tree_root, fs_info, |
| location->objectid, root); |
| if (ret) { |
| free(root); |
| return ERR_PTR(ret); |
| } |
| goto insert; |
| } |
| |
| btrfs_setup_root(root, fs_info, |
| location->objectid); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| free(root); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); |
| if (ret != 0) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto out; |
| } |
| l = path->nodes[0]; |
| read_extent_buffer(l, &root->root_item, |
| btrfs_item_ptr_offset(l, path->slots[0]), |
| sizeof(root->root_item)); |
| memcpy(&root->root_key, location, sizeof(*location)); |
| |
| /* If this root is already an orphan, no need to read */ |
| if (btrfs_root_refs(&root->root_item) == 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| if (ret) { |
| free(root); |
| return ERR_PTR(ret); |
| } |
| generation = btrfs_root_generation(&root->root_item); |
| root->node = read_tree_block(fs_info, |
| btrfs_root_bytenr(&root->root_item), generation); |
| if (!extent_buffer_uptodate(root->node)) { |
| free(root); |
| return ERR_PTR(-EIO); |
| } |
| insert: |
| root->ref_cows = 1; |
| return root; |
| } |
| |
| static int btrfs_fs_roots_compare_objectids(struct rb_node *node, |
| void *data) |
| { |
| u64 objectid = *((u64 *)data); |
| struct btrfs_root *root; |
| |
| root = rb_entry(node, struct btrfs_root, rb_node); |
| if (objectid > root->objectid) |
| return 1; |
| else if (objectid < root->objectid) |
| return -1; |
| else |
| return 0; |
| } |
| |
| int btrfs_fs_roots_compare_roots(struct rb_node *node1, struct rb_node *node2) |
| { |
| struct btrfs_root *root; |
| |
| root = rb_entry(node2, struct btrfs_root, rb_node); |
| return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid); |
| } |
| |
| struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *location) |
| { |
| struct btrfs_root *root; |
| struct rb_node *node; |
| int ret; |
| u64 objectid = location->objectid; |
| |
| if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) |
| return fs_info->tree_root; |
| if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) |
| return fs_info->chunk_root; |
| if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) |
| return fs_info->csum_root; |
| BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID); |
| |
| node = rb_search(&fs_info->fs_root_tree, (void *)&objectid, |
| btrfs_fs_roots_compare_objectids, NULL); |
| if (node) |
| return container_of(node, struct btrfs_root, rb_node); |
| |
| root = btrfs_read_fs_root_no_cache(fs_info, location); |
| if (IS_ERR(root)) |
| return root; |
| |
| ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node, |
| btrfs_fs_roots_compare_roots); |
| BUG_ON(ret); |
| return root; |
| } |
| |
| void btrfs_free_fs_info(struct btrfs_fs_info *fs_info) |
| { |
| free(fs_info->tree_root); |
| free(fs_info->chunk_root); |
| free(fs_info->csum_root); |
| free(fs_info->super_copy); |
| free(fs_info); |
| } |
| |
| struct btrfs_fs_info *btrfs_new_fs_info(void) |
| { |
| struct btrfs_fs_info *fs_info; |
| |
| fs_info = calloc(1, sizeof(struct btrfs_fs_info)); |
| if (!fs_info) |
| return NULL; |
| |
| fs_info->tree_root = calloc(1, sizeof(struct btrfs_root)); |
| fs_info->chunk_root = calloc(1, sizeof(struct btrfs_root)); |
| fs_info->csum_root = calloc(1, sizeof(struct btrfs_root)); |
| fs_info->super_copy = calloc(1, BTRFS_SUPER_INFO_SIZE); |
| |
| if (!fs_info->tree_root || !fs_info->chunk_root || |
| !fs_info->csum_root || !fs_info->super_copy) |
| goto free_all; |
| |
| extent_io_tree_init(&fs_info->extent_cache); |
| |
| fs_info->fs_root_tree = RB_ROOT; |
| cache_tree_init(&fs_info->mapping_tree.cache_tree); |
| |
| return fs_info; |
| free_all: |
| btrfs_free_fs_info(fs_info); |
| return NULL; |
| } |
| |
| static int setup_root_or_create_block(struct btrfs_fs_info *fs_info, |
| struct btrfs_root *info_root, |
| u64 objectid, char *str) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| int ret; |
| |
| ret = find_and_setup_root(root, fs_info, objectid, info_root); |
| if (ret) { |
| error("could not setup %s tree", str); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int get_default_subvolume(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *key_ret) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_dir_item *dir_item; |
| struct btrfs_path path; |
| int ret = 0; |
| |
| btrfs_init_path(&path); |
| |
| dir_item = btrfs_lookup_dir_item(NULL, root, &path, |
| BTRFS_ROOT_TREE_DIR_OBJECTID, |
| "default", 7, 0); |
| if (IS_ERR(dir_item)) { |
| ret = PTR_ERR(dir_item); |
| goto out; |
| } |
| |
| btrfs_dir_item_key_to_cpu(path.nodes[0], dir_item, key_ret); |
| out: |
| btrfs_release_path(&path); |
| return ret; |
| } |
| |
| int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_super_block *sb = fs_info->super_copy; |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| u64 root_tree_bytenr; |
| u64 generation; |
| int ret; |
| |
| root = fs_info->tree_root; |
| btrfs_setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); |
| generation = btrfs_super_generation(sb); |
| |
| root_tree_bytenr = btrfs_super_root(sb); |
| |
| root->node = read_tree_block(fs_info, root_tree_bytenr, generation); |
| if (!extent_buffer_uptodate(root->node)) { |
| fprintf(stderr, "Couldn't read tree root\n"); |
| return -EIO; |
| } |
| |
| ret = setup_root_or_create_block(fs_info, fs_info->csum_root, |
| BTRFS_CSUM_TREE_OBJECTID, "csum"); |
| if (ret) |
| return ret; |
| fs_info->csum_root->track_dirty = 1; |
| |
| fs_info->last_trans_committed = generation; |
| |
| ret = get_default_subvolume(fs_info, &key); |
| if (ret) { |
| /* |
| * The default dir item isn't there. Linux kernel behaviour is |
| * to silently use the top-level subvolume in this case. |
| */ |
| key.objectid = BTRFS_FS_TREE_OBJECTID; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| } |
| |
| fs_info->fs_root = btrfs_read_fs_root(fs_info, &key); |
| |
| if (IS_ERR(fs_info->fs_root)) |
| return -EIO; |
| return 0; |
| } |
| |
| void btrfs_release_all_roots(struct btrfs_fs_info *fs_info) |
| { |
| if (fs_info->csum_root) |
| free_extent_buffer(fs_info->csum_root->node); |
| if (fs_info->tree_root) |
| free_extent_buffer(fs_info->tree_root->node); |
| if (fs_info->chunk_root) |
| free_extent_buffer(fs_info->chunk_root->node); |
| } |
| |
| static void free_map_lookup(struct cache_extent *ce) |
| { |
| struct map_lookup *map; |
| |
| map = container_of(ce, struct map_lookup, ce); |
| kfree(map); |
| } |
| |
| FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup); |
| |
| void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info) |
| { |
| free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree); |
| extent_io_tree_cleanup(&fs_info->extent_cache); |
| } |
| |
| static int btrfs_scan_fs_devices(struct blk_desc *desc, |
| struct disk_partition *part, |
| struct btrfs_fs_devices **fs_devices) |
| { |
| u64 total_devs; |
| int ret; |
| |
| if (round_up(BTRFS_SUPER_INFO_SIZE + BTRFS_SUPER_INFO_OFFSET, |
| desc->blksz) > (part->size << desc->log2blksz)) { |
| log_debug("superblock end %u is larger than device size " LBAFU, |
| BTRFS_SUPER_INFO_SIZE + BTRFS_SUPER_INFO_OFFSET, |
| part->size << desc->log2blksz); |
| return -EINVAL; |
| } |
| |
| ret = btrfs_scan_one_device(desc, part, fs_devices, &total_devs); |
| if (ret) { |
| /* |
| * Avoid showing this when probing for a possible Btrfs |
| * |
| * fprintf(stderr, "No valid Btrfs found\n"); |
| */ |
| return ret; |
| } |
| return 0; |
| } |
| |
| int btrfs_check_fs_compatibility(struct btrfs_super_block *sb) |
| { |
| u64 features; |
| |
| features = btrfs_super_incompat_flags(sb) & |
| ~BTRFS_FEATURE_INCOMPAT_SUPP; |
| if (features) { |
| printk("couldn't open because of unsupported " |
| "option features (%llx).\n", |
| (unsigned long long)features); |
| return -ENOTSUPP; |
| } |
| |
| features = btrfs_super_incompat_flags(sb); |
| if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) { |
| features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; |
| btrfs_set_super_incompat_flags(sb, features); |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_super_block *sb = fs_info->super_copy; |
| u64 chunk_root_bytenr; |
| u64 generation; |
| int ret; |
| |
| btrfs_setup_root(fs_info->chunk_root, fs_info, |
| BTRFS_CHUNK_TREE_OBJECTID); |
| |
| ret = btrfs_read_sys_array(fs_info); |
| if (ret) |
| return ret; |
| |
| generation = btrfs_super_chunk_root_generation(sb); |
| chunk_root_bytenr = btrfs_super_chunk_root(sb); |
| |
| fs_info->chunk_root->node = read_tree_block(fs_info, |
| chunk_root_bytenr, |
| generation); |
| if (!extent_buffer_uptodate(fs_info->chunk_root->node)) { |
| error("cannot read chunk root"); |
| return -EIO; |
| } |
| |
| ret = btrfs_read_chunk_tree(fs_info); |
| if (ret) { |
| fprintf(stderr, "Couldn't read chunk tree\n"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| struct btrfs_fs_info *open_ctree_fs_info(struct blk_desc *desc, |
| struct disk_partition *part) |
| { |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_super_block *disk_super; |
| struct btrfs_fs_devices *fs_devices = NULL; |
| struct extent_buffer *eb; |
| int ret; |
| |
| fs_info = btrfs_new_fs_info(); |
| if (!fs_info) { |
| fprintf(stderr, "Failed to allocate memory for fs_info\n"); |
| return NULL; |
| } |
| |
| ret = btrfs_scan_fs_devices(desc, part, &fs_devices); |
| if (ret) |
| goto out; |
| |
| fs_info->fs_devices = fs_devices; |
| |
| ret = btrfs_open_devices(fs_devices); |
| if (ret) |
| goto out; |
| |
| disk_super = fs_info->super_copy; |
| ret = btrfs_read_dev_super(desc, part, disk_super); |
| if (ret) { |
| debug("No valid btrfs found\n"); |
| goto out_devices; |
| } |
| |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID) { |
| fprintf(stderr, "ERROR: Filesystem UUID change in progress\n"); |
| goto out_devices; |
| } |
| |
| ASSERT(!memcmp(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE)); |
| if (btrfs_fs_incompat(fs_info, METADATA_UUID)) |
| ASSERT(!memcmp(disk_super->metadata_uuid, |
| fs_devices->metadata_uuid, BTRFS_FSID_SIZE)); |
| |
| fs_info->sectorsize = btrfs_super_sectorsize(disk_super); |
| fs_info->nodesize = btrfs_super_nodesize(disk_super); |
| fs_info->stripesize = btrfs_super_stripesize(disk_super); |
| |
| ret = btrfs_check_fs_compatibility(fs_info->super_copy); |
| if (ret) |
| goto out_devices; |
| |
| ret = btrfs_setup_chunk_tree_and_device_map(fs_info); |
| if (ret) |
| goto out_chunk; |
| |
| /* Chunk tree root is unable to read, return directly */ |
| if (!fs_info->chunk_root) |
| return fs_info; |
| |
| eb = fs_info->chunk_root->node; |
| read_extent_buffer(eb, fs_info->chunk_tree_uuid, |
| btrfs_header_chunk_tree_uuid(eb), |
| BTRFS_UUID_SIZE); |
| |
| ret = btrfs_setup_all_roots(fs_info); |
| if (ret) |
| goto out_chunk; |
| |
| return fs_info; |
| |
| out_chunk: |
| btrfs_release_all_roots(fs_info); |
| btrfs_cleanup_all_caches(fs_info); |
| out_devices: |
| btrfs_close_devices(fs_devices); |
| out: |
| btrfs_free_fs_info(fs_info); |
| return NULL; |
| } |
| |
| int close_ctree_fs_info(struct btrfs_fs_info *fs_info) |
| { |
| int ret; |
| |
| free_fs_roots_tree(&fs_info->fs_root_tree); |
| |
| btrfs_release_all_roots(fs_info); |
| ret = btrfs_close_devices(fs_info->fs_devices); |
| btrfs_cleanup_all_caches(fs_info); |
| btrfs_free_fs_info(fs_info); |
| return ret; |
| } |
| |
| int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) |
| { |
| int ret; |
| |
| ret = extent_buffer_uptodate(buf); |
| if (!ret) |
| return ret; |
| |
| ret = verify_parent_transid(&buf->fs_info->extent_cache, buf, |
| parent_transid, 1); |
| return !ret; |
| } |
| |
| int btrfs_set_buffer_uptodate(struct extent_buffer *eb) |
| { |
| return set_extent_buffer_uptodate(eb); |
| } |