blob: d19a79d16007b4dc4a9801ea10970860b4e6e48d [file] [log] [blame]
/*
* Driver for Marvell PPv2 network controller for Armada 375 SoC.
*
* Copyright (C) 2014 Marvell
*
* Marcin Wojtas <mw@semihalf.com>
*
* U-Boot version:
* Copyright (C) 2016-2017 Stefan Roese <sr@denx.de>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <cpu_func.h>
#include <dm.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <dm/device-internal.h>
#include <dm/device_compat.h>
#include <dm/devres.h>
#include <dm/lists.h>
#include <net.h>
#include <netdev.h>
#include <config.h>
#include <malloc.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <phy.h>
#include <miiphy.h>
#include <watchdog.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <linux/compat.h>
#include <linux/libfdt.h>
#include <linux/mbus.h>
#include <asm-generic/gpio.h>
#include <fdt_support.h>
#include <linux/mdio.h>
DECLARE_GLOBAL_DATA_PTR;
#define __verify_pcpu_ptr(ptr) \
do { \
const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \
(void)__vpp_verify; \
} while (0)
#define VERIFY_PERCPU_PTR(__p) \
({ \
__verify_pcpu_ptr(__p); \
(typeof(*(__p)) __kernel __force *)(__p); \
})
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
#define smp_processor_id() 0
#define num_present_cpus() 1
#define for_each_present_cpu(cpu) \
for ((cpu) = 0; (cpu) < 1; (cpu)++)
#define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE)
/* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */
#define WRAP (2 + ETH_HLEN + 4 + 32)
#define MTU 1500
#define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN))
/* RX Fifo Registers */
#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
#define MVPP2_RX_FIFO_INIT_REG 0x64
/* RX DMA Top Registers */
#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
#define MVPP2_POOL_BUF_SIZE_OFFSET 5
#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
#define MVPP2_RXQ_POOL_SHORT_OFFS 20
#define MVPP21_RXQ_POOL_SHORT_MASK 0x700000
#define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000
#define MVPP2_RXQ_POOL_LONG_OFFS 24
#define MVPP21_RXQ_POOL_LONG_MASK 0x7000000
#define MVPP22_RXQ_POOL_LONG_MASK 0xf000000
#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
#define MVPP2_RXQ_DISABLE_MASK BIT(31)
/* Parser Registers */
#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
#define MVPP2_PRS_PORT_LU_MAX 0xf
#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
#define MVPP2_PRS_TCAM_IDX_REG 0x1100
#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
#define MVPP2_PRS_TCAM_INV_MASK BIT(31)
#define MVPP2_PRS_SRAM_IDX_REG 0x1200
#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
#define MVPP2_PRS_TCAM_CTRL_REG 0x1230
#define MVPP2_PRS_TCAM_EN_MASK BIT(0)
/* Classifier Registers */
#define MVPP2_CLS_MODE_REG 0x1800
#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
#define MVPP2_CLS_PORT_WAY_REG 0x1810
#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
#define MVPP2_CLS_LKP_INDEX_REG 0x1814
#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
#define MVPP2_CLS_LKP_TBL_REG 0x1818
#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
#define MVPP2_CLS_FLOW_INDEX_REG 0x1820
#define MVPP2_CLS_FLOW_TBL0_REG 0x1824
#define MVPP2_CLS_FLOW_TBL1_REG 0x1828
#define MVPP2_CLS_FLOW_TBL2_REG 0x182c
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
/* Descriptor Manager Top Registers */
#define MVPP2_RXQ_NUM_REG 0x2040
#define MVPP2_RXQ_DESC_ADDR_REG 0x2044
#define MVPP22_DESC_ADDR_OFFS 8
#define MVPP2_RXQ_DESC_SIZE_REG 0x2048
#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
#define MVPP2_RXQ_NUM_NEW_OFFSET 16
#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
#define MVPP2_RXQ_THRESH_REG 0x204c
#define MVPP2_OCCUPIED_THRESH_OFFSET 0
#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
#define MVPP2_RXQ_INDEX_REG 0x2050
#define MVPP2_TXQ_NUM_REG 0x2080
#define MVPP2_TXQ_DESC_ADDR_REG 0x2084
#define MVPP2_TXQ_DESC_SIZE_REG 0x2088
#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
#define MVPP2_TXQ_THRESH_REG 0x2094
#define MVPP2_TRANSMITTED_THRESH_OFFSET 16
#define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
#define MVPP2_TXQ_INDEX_REG 0x2098
#define MVPP2_TXQ_PREF_BUF_REG 0x209c
#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
#define MVPP2_TXQ_PENDING_REG 0x20a0
#define MVPP2_TXQ_PENDING_MASK 0x3fff
#define MVPP2_TXQ_INT_STATUS_REG 0x20a4
#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
#define MVPP2_TRANSMITTED_COUNT_OFFSET 16
#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
#define MVPP2_TXQ_RSVD_CLR_OFFSET 16
#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
#define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8
#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
/* MBUS bridge registers */
#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
#define MVPP2_BASE_ADDR_ENABLE 0x4060
/* AXI Bridge Registers */
#define MVPP22_AXI_BM_WR_ATTR_REG 0x4100
#define MVPP22_AXI_BM_RD_ATTR_REG 0x4104
#define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110
#define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114
#define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118
#define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c
#define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120
#define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130
#define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150
#define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154
#define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160
#define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164
/* Values for AXI Bridge registers */
#define MVPP22_AXI_ATTR_CACHE_OFFS 0
#define MVPP22_AXI_ATTR_DOMAIN_OFFS 12
#define MVPP22_AXI_CODE_CACHE_OFFS 0
#define MVPP22_AXI_CODE_DOMAIN_OFFS 4
#define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3
#define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7
#define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb
#define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2
#define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3
/* Interrupt Cause and Mask registers */
#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
#define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
#define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7
#define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf
#define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380
#define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404
#define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00
#define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8
#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
/* Buffer Manager registers */
#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
#define MVPP2_BM_POOL_SIZE_MASK 0xfff0
#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
#define MVPP2_BM_START_MASK BIT(0)
#define MVPP2_BM_STOP_MASK BIT(1)
#define MVPP2_BM_STATE_MASK BIT(4)
#define MVPP2_BM_LOW_THRESH_OFFS 8
#define MVPP2_BM_LOW_THRESH_MASK 0x7f00
#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
MVPP2_BM_LOW_THRESH_OFFS)
#define MVPP2_BM_HIGH_THRESH_OFFS 16
#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
MVPP2_BM_HIGH_THRESH_OFFS)
#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
#define MVPP2_BM_BPPE_FULL_MASK BIT(3)
#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
#define MVPP2_BM_VIRT_ALLOC_REG 0x6440
#define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444
#define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff
#define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00
#define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8
#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
#define MVPP2_BM_VIRT_RLS_REG 0x64c0
#define MVPP21_BM_MC_RLS_REG 0x64c4
#define MVPP2_BM_MC_ID_MASK 0xfff
#define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
#define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4
#define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00
#define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8
#define MVPP22_BM_MC_RLS_REG 0x64d4
#define MVPP22_BM_POOL_BASE_HIGH_REG 0x6310
#define MVPP22_BM_POOL_BASE_HIGH_MASK 0xff
/* TX Scheduler registers */
#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
#define MVPP2_TXP_SCHED_ENQ_MASK 0xff
#define MVPP2_TXP_SCHED_DISQ_OFFSET 8
#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
#define MVPP2_TXP_SCHED_MTU_REG 0x801c
#define MVPP2_TXP_MTU_MAX 0x7FFFF
#define MVPP2_TXP_SCHED_REFILL_REG 0x8020
#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
/* TX general registers */
#define MVPP2_TX_SNOOP_REG 0x8800
#define MVPP2_TX_PORT_FLUSH_REG 0x8810
#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
/* LMS registers */
#define MVPP2_SRC_ADDR_MIDDLE 0x24
#define MVPP2_SRC_ADDR_HIGH 0x28
#define MVPP2_PHY_AN_CFG0_REG 0x34
#define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7)
#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
/* Per-port registers */
#define MVPP2_GMAC_CTRL_0_REG 0x0
#define MVPP2_GMAC_PORT_EN_MASK BIT(0)
#define MVPP2_GMAC_PORT_TYPE_MASK BIT(1)
#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
#define MVPP2_GMAC_CTRL_1_REG 0x4
#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1)
#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
#define MVPP2_GMAC_PCS_LB_EN_BIT 6
#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
#define MVPP2_GMAC_SA_LOW_OFFS 7
#define MVPP2_GMAC_CTRL_2_REG 0x8
#define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
#define MVPP2_GMAC_SGMII_MODE_MASK BIT(0)
#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
#define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
#define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5)
#define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
#define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9)
#define MVPP2_GMAC_AUTONEG_CONFIG 0xc
#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
#define MVPP2_GMAC_EN_PCS_AN BIT(2)
#define MVPP2_GMAC_AN_BYPASS_EN BIT(3)
#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
#define MVPP2_GMAC_AN_SPEED_EN BIT(7)
#define MVPP2_GMAC_FC_ADV_EN BIT(9)
#define MVPP2_GMAC_EN_FC_AN BIT(11)
#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
#define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15)
#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
#define MVPP2_GMAC_CTRL_4_REG 0x90
#define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0)
#define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5)
#define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6)
#define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7)
/*
* Per-port XGMAC registers. PPv2.2 only, only for GOP port 0,
* relative to port->base.
*/
/* Port Mac Control0 */
#define MVPP22_XLG_CTRL0_REG 0x100
#define MVPP22_XLG_PORT_EN BIT(0)
#define MVPP22_XLG_MAC_RESETN BIT(1)
#define MVPP22_XLG_RX_FC_EN BIT(7)
#define MVPP22_XLG_MIBCNT_DIS BIT(13)
/* Port Mac Control1 */
#define MVPP22_XLG_CTRL1_REG 0x104
#define MVPP22_XLG_MAX_RX_SIZE_OFFS 0
#define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff
/* Port Interrupt Mask */
#define MVPP22_XLG_INTERRUPT_MASK_REG 0x118
#define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1)
/* Port Mac Control3 */
#define MVPP22_XLG_CTRL3_REG 0x11c
#define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13)
#define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13)
/* Port Mac Control4 */
#define MVPP22_XLG_CTRL4_REG 0x184
#define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5)
#define MVPP22_XLG_FORWARD_PFC_EN BIT(6)
#define MVPP22_XLG_MODE_DMA_1G BIT(12)
#define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14)
/* XPCS registers */
/* Global Configuration 0 */
#define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0
#define MVPP22_XPCS_PCSRESET BIT(0)
#define MVPP22_XPCS_PCSMODE_OFFS 3
#define MVPP22_XPCS_PCSMODE_MASK (0x3 << \
MVPP22_XPCS_PCSMODE_OFFS)
#define MVPP22_XPCS_LANEACTIVE_OFFS 5
#define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \
MVPP22_XPCS_LANEACTIVE_OFFS)
/* MPCS registers */
#define PCS40G_COMMON_CONTROL 0x14
#define FORWARD_ERROR_CORRECTION_MASK BIT(10)
#define PCS_CLOCK_RESET 0x14c
#define TX_SD_CLK_RESET_MASK BIT(0)
#define RX_SD_CLK_RESET_MASK BIT(1)
#define MAC_CLK_RESET_MASK BIT(2)
#define CLK_DIVISION_RATIO_OFFS 4
#define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS)
#define CLK_DIV_PHASE_SET_MASK BIT(11)
/* System Soft Reset 1 */
#define GOP_SOFT_RESET_1_REG 0x108
#define NETC_GOP_SOFT_RESET_OFFS 6
#define NETC_GOP_SOFT_RESET_MASK (0x1 << \
NETC_GOP_SOFT_RESET_OFFS)
/* Ports Control 0 */
#define NETCOMP_PORTS_CONTROL_0_REG 0x110
#define NETC_BUS_WIDTH_SELECT_OFFS 1
#define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \
NETC_BUS_WIDTH_SELECT_OFFS)
#define NETC_GIG_RX_DATA_SAMPLE_OFFS 29
#define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \
NETC_GIG_RX_DATA_SAMPLE_OFFS)
#define NETC_CLK_DIV_PHASE_OFFS 31
#define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS)
/* Ports Control 1 */
#define NETCOMP_PORTS_CONTROL_1_REG 0x114
#define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p)
#define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \
NETC_PORTS_ACTIVE_OFFSET(p))
#define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p)
#define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \
NETC_PORT_GIG_RF_RESET_OFFS(p))
#define NETCOMP_CONTROL_0_REG 0x120
#define NETC_GBE_PORT0_SGMII_MODE_OFFS 0
#define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \
NETC_GBE_PORT0_SGMII_MODE_OFFS)
#define NETC_GBE_PORT1_SGMII_MODE_OFFS 1
#define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \
NETC_GBE_PORT1_SGMII_MODE_OFFS)
#define NETC_GBE_PORT1_MII_MODE_OFFS 2
#define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \
NETC_GBE_PORT1_MII_MODE_OFFS)
#define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04)
#define MVPP22_SMI_POLLING_EN BIT(10)
#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
/* Descriptor ring Macros */
#define MVPP2_QUEUE_NEXT_DESC(q, index) \
(((index) < (q)->last_desc) ? ((index) + 1) : 0)
/* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */
#define MVPP22_SMI 0x1200
/* Additional PPv2.2 offsets */
#define MVPP22_MPCS 0x007000
#define MVPP22_XPCS 0x007400
#define MVPP22_PORT_BASE 0x007e00
#define MVPP22_PORT_OFFSET 0x001000
#define MVPP22_RFU1 0x318000
/* Maximum number of ports */
#define MVPP22_GOP_MAC_NUM 4
/* Sets the field located at the specified in data */
#define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41
#define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5
#define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb
/* Net Complex */
enum mv_netc_topology {
MV_NETC_GE_MAC2_SGMII = BIT(0),
MV_NETC_GE_MAC2_RGMII = BIT(1),
MV_NETC_GE_MAC3_SGMII = BIT(2),
MV_NETC_GE_MAC3_RGMII = BIT(3),
};
enum mv_netc_phase {
MV_NETC_FIRST_PHASE,
MV_NETC_SECOND_PHASE,
};
enum mv_netc_sgmii_xmi_mode {
MV_NETC_GBE_SGMII,
MV_NETC_GBE_XMII,
};
enum mv_netc_mii_mode {
MV_NETC_GBE_RGMII,
MV_NETC_GBE_MII,
};
enum mv_netc_lanes {
MV_NETC_LANE_23,
MV_NETC_LANE_45,
};
/* Various constants */
/* Coalescing */
#define MVPP2_TXDONE_COAL_PKTS_THRESH 15
#define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL
#define MVPP2_RX_COAL_PKTS 32
#define MVPP2_RX_COAL_USEC 100
/* The two bytes Marvell header. Either contains a special value used
* by Marvell switches when a specific hardware mode is enabled (not
* supported by this driver) or is filled automatically by zeroes on
* the RX side. Those two bytes being at the front of the Ethernet
* header, they allow to have the IP header aligned on a 4 bytes
* boundary automatically: the hardware skips those two bytes on its
* own.
*/
#define MVPP2_MH_SIZE 2
#define MVPP2_ETH_TYPE_LEN 2
#define MVPP2_PPPOE_HDR_SIZE 8
#define MVPP2_VLAN_TAG_LEN 4
/* Lbtd 802.3 type */
#define MVPP2_IP_LBDT_TYPE 0xfffa
#define MVPP2_CPU_D_CACHE_LINE_SIZE 32
#define MVPP2_TX_CSUM_MAX_SIZE 9800
/* Timeout constants */
#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
#define MVPP2_TX_MTU_MAX 0x7ffff
/* Maximum number of T-CONTs of PON port */
#define MVPP2_MAX_TCONT 16
/* Maximum number of supported ports */
#define MVPP2_MAX_PORTS 4
/* Maximum number of TXQs used by single port */
#define MVPP2_MAX_TXQ 8
/* Default number of TXQs in use */
#define MVPP2_DEFAULT_TXQ 1
/* Default number of RXQs in use */
#define MVPP2_DEFAULT_RXQ 1
#define CFG_MV_ETH_RXQ 8 /* increment by 8 */
/* Max number of Rx descriptors */
#define MVPP2_MAX_RXD 16
/* Max number of Tx descriptors */
#define MVPP2_MAX_TXD 16
/* Amount of Tx descriptors that can be reserved at once by CPU */
#define MVPP2_CPU_DESC_CHUNK 16
/* Max number of Tx descriptors in each aggregated queue */
#define MVPP2_AGGR_TXQ_SIZE 16
/* Descriptor aligned size */
#define MVPP2_DESC_ALIGNED_SIZE 32
/* Descriptor alignment mask */
#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
/* RX FIFO constants */
#define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000
#define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80
#define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000
#define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000
#define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000
#define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200
#define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80
#define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40
#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
/* TX general registers */
#define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2))
#define MVPP22_TX_FIFO_SIZE_MASK 0xf
/* TX FIFO constants */
#define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa
#define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3
/* RX buffer constants */
#define MVPP2_SKB_SHINFO_SIZE \
0
#define MVPP2_RX_PKT_SIZE(mtu) \
ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
/* IPv6 max L3 address size */
#define MVPP2_MAX_L3_ADDR_SIZE 16
/* Port flags */
#define MVPP2_F_LOOPBACK BIT(0)
/* Marvell tag types */
enum mvpp2_tag_type {
MVPP2_TAG_TYPE_NONE = 0,
MVPP2_TAG_TYPE_MH = 1,
MVPP2_TAG_TYPE_DSA = 2,
MVPP2_TAG_TYPE_EDSA = 3,
MVPP2_TAG_TYPE_VLAN = 4,
MVPP2_TAG_TYPE_LAST = 5
};
/* Parser constants */
#define MVPP2_PRS_TCAM_SRAM_SIZE 256
#define MVPP2_PRS_TCAM_WORDS 6
#define MVPP2_PRS_SRAM_WORDS 4
#define MVPP2_PRS_FLOW_ID_SIZE 64
#define MVPP2_PRS_FLOW_ID_MASK 0x3f
#define MVPP2_PRS_TCAM_ENTRY_INVALID 1
#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
#define MVPP2_PRS_IPV4_HEAD 0x40
#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
#define MVPP2_PRS_IPV4_MC 0xe0
#define MVPP2_PRS_IPV4_MC_MASK 0xf0
#define MVPP2_PRS_IPV4_BC_MASK 0xff
#define MVPP2_PRS_IPV4_IHL 0x5
#define MVPP2_PRS_IPV4_IHL_MASK 0xf
#define MVPP2_PRS_IPV6_MC 0xff
#define MVPP2_PRS_IPV6_MC_MASK 0xff
#define MVPP2_PRS_IPV6_HOP_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK 0xff
#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
#define MVPP2_PRS_DBL_VLANS_MAX 100
/* Tcam structure:
* - lookup ID - 4 bits
* - port ID - 1 byte
* - additional information - 1 byte
* - header data - 8 bytes
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
*/
#define MVPP2_PRS_AI_BITS 8
#define MVPP2_PRS_PORT_MASK 0xff
#define MVPP2_PRS_LU_MASK 0xf
#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
(((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
(((offs) * 2) - ((offs) % 2) + 2)
#define MVPP2_PRS_TCAM_AI_BYTE 16
#define MVPP2_PRS_TCAM_PORT_BYTE 17
#define MVPP2_PRS_TCAM_LU_BYTE 20
#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
#define MVPP2_PRS_TCAM_INV_WORD 5
/* Tcam entries ID */
#define MVPP2_PE_DROP_ALL 0
#define MVPP2_PE_FIRST_FREE_TID 1
#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
/* Sram structure
* The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
*/
#define MVPP2_PRS_SRAM_RI_OFFS 0
#define MVPP2_PRS_SRAM_RI_WORD 0
#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
#define MVPP2_PRS_SRAM_SHIFT_OFFS 64
#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
#define MVPP2_PRS_SRAM_UDF_OFFS 73
#define MVPP2_PRS_SRAM_UDF_BITS 8
#define MVPP2_PRS_SRAM_UDF_MASK 0xff
#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
#define MVPP2_PRS_SRAM_AI_OFFS 90
#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
#define MVPP2_PRS_SRAM_AI_MASK 0xff
#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
#define MVPP2_PRS_SRAM_LU_DONE_BIT 110
#define MVPP2_PRS_SRAM_LU_GEN_BIT 111
/* Sram result info bits assignment */
#define MVPP2_PRS_RI_MAC_ME_MASK 0x1
#define MVPP2_PRS_RI_DSA_MASK 0x2
#define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_VLAN_NONE 0x0
#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
#define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10))
#define MVPP2_PRS_RI_L2_UCAST 0x0
#define MVPP2_PRS_RI_L2_MCAST BIT(9)
#define MVPP2_PRS_RI_L2_BCAST BIT(10)
#define MVPP2_PRS_RI_PPPOE_MASK 0x800
#define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_UN 0x0
#define MVPP2_PRS_RI_L3_IP4 BIT(12)
#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
#define MVPP2_PRS_RI_L3_IP6 BIT(14)
#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
#define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_L3_UCAST 0x0
#define MVPP2_PRS_RI_L3_MCAST BIT(15)
#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
#define MVPP2_PRS_RI_UDF3_MASK 0x300000
#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
#define MVPP2_PRS_RI_L4_TCP BIT(22)
#define MVPP2_PRS_RI_L4_UDP BIT(23)
#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
#define MVPP2_PRS_RI_UDF7_MASK 0x60000000
#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
#define MVPP2_PRS_RI_DROP_MASK 0x80000000
/* Sram additional info bits assignment */
#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
#define MVPP2_PRS_SINGLE_VLAN_AI 0
#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
/* DSA/EDSA type */
#define MVPP2_PRS_TAGGED true
#define MVPP2_PRS_UNTAGGED false
#define MVPP2_PRS_EDSA true
#define MVPP2_PRS_DSA false
/* MAC entries, shadow udf */
enum mvpp2_prs_udf {
MVPP2_PRS_UDF_MAC_DEF,
MVPP2_PRS_UDF_MAC_RANGE,
MVPP2_PRS_UDF_L2_DEF,
MVPP2_PRS_UDF_L2_DEF_COPY,
MVPP2_PRS_UDF_L2_USER,
};
/* Lookup ID */
enum mvpp2_prs_lookup {
MVPP2_PRS_LU_MH,
MVPP2_PRS_LU_MAC,
MVPP2_PRS_LU_DSA,
MVPP2_PRS_LU_VLAN,
MVPP2_PRS_LU_L2,
MVPP2_PRS_LU_PPPOE,
MVPP2_PRS_LU_IP4,
MVPP2_PRS_LU_IP6,
MVPP2_PRS_LU_FLOWS,
MVPP2_PRS_LU_LAST,
};
/* L3 cast enum */
enum mvpp2_prs_l3_cast {
MVPP2_PRS_L3_UNI_CAST,
MVPP2_PRS_L3_MULTI_CAST,
MVPP2_PRS_L3_BROAD_CAST
};
/* Classifier constants */
#define MVPP2_CLS_FLOWS_TBL_SIZE 512
#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
#define MVPP2_CLS_LKP_TBL_SIZE 64
/* BM constants */
#define MVPP2_BM_POOLS_NUM 1
#define MVPP2_BM_LONG_BUF_NUM 16
#define MVPP2_BM_SHORT_BUF_NUM 16
#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
#define MVPP2_BM_POOL_PTR_ALIGN 128
#define MVPP2_BM_SWF_LONG_POOL(port) 0
/* BM cookie (32 bits) definition */
#define MVPP2_BM_COOKIE_POOL_OFFS 8
#define MVPP2_BM_COOKIE_CPU_OFFS 24
/* BM short pool packet size
* These value assure that for SWF the total number
* of bytes allocated for each buffer will be 512
*/
#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
enum mvpp2_bm_type {
MVPP2_BM_FREE,
MVPP2_BM_SWF_LONG,
MVPP2_BM_SWF_SHORT
};
/* Definitions */
/* Shared Packet Processor resources */
struct mvpp2 {
/* Shared registers' base addresses */
void __iomem *base;
void __iomem *lms_base;
void __iomem *iface_base;
void __iomem *mpcs_base;
void __iomem *xpcs_base;
void __iomem *rfu1_base;
u32 netc_config;
/* List of pointers to port structures */
struct mvpp2_port **port_list;
/* Aggregated TXQs */
struct mvpp2_tx_queue *aggr_txqs;
/* BM pools */
struct mvpp2_bm_pool *bm_pools;
/* PRS shadow table */
struct mvpp2_prs_shadow *prs_shadow;
/* PRS auxiliary table for double vlan entries control */
bool *prs_double_vlans;
/* Tclk value */
u32 tclk;
/* HW version */
enum { MVPP21, MVPP22 } hw_version;
/* Maximum number of RXQs per port */
unsigned int max_port_rxqs;
int probe_done;
u8 num_ports;
};
struct mvpp2_pcpu_stats {
u64 rx_packets;
u64 rx_bytes;
u64 tx_packets;
u64 tx_bytes;
};
struct mvpp2_port {
u8 id;
/* Index of the port from the "group of ports" complex point
* of view
*/
int gop_id;
int irq;
struct mvpp2 *priv;
/* Per-port registers' base address */
void __iomem *base;
struct mvpp2_rx_queue **rxqs;
struct mvpp2_tx_queue **txqs;
int pkt_size;
u32 pending_cause_rx;
/* Per-CPU port control */
struct mvpp2_port_pcpu __percpu *pcpu;
/* Flags */
unsigned long flags;
u16 tx_ring_size;
u16 rx_ring_size;
struct mvpp2_pcpu_stats __percpu *stats;
struct phy_device *phy_dev;
phy_interface_t phy_interface;
int phyaddr;
struct udevice *mdio_dev;
struct mii_dev *bus;
#if CONFIG_IS_ENABLED(DM_GPIO)
struct gpio_desc phy_reset_gpio;
struct gpio_desc phy_tx_disable_gpio;
#endif
int init;
unsigned int link;
unsigned int duplex;
unsigned int speed;
struct mvpp2_bm_pool *pool_long;
struct mvpp2_bm_pool *pool_short;
/* Index of first port's physical RXQ */
u8 first_rxq;
u8 dev_addr[ETH_ALEN];
};
/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
* layout of the transmit and reception DMA descriptors, and their
* layout is therefore defined by the hardware design
*/
#define MVPP2_TXD_L3_OFF_SHIFT 0
#define MVPP2_TXD_IP_HLEN_SHIFT 8
#define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
#define MVPP2_TXD_L4_CSUM_NOT BIT(14)
#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
#define MVPP2_TXD_PADDING_DISABLE BIT(23)
#define MVPP2_TXD_L4_UDP BIT(24)
#define MVPP2_TXD_L3_IP6 BIT(26)
#define MVPP2_TXD_L_DESC BIT(28)
#define MVPP2_TXD_F_DESC BIT(29)
#define MVPP2_RXD_ERR_SUMMARY BIT(15)
#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
#define MVPP2_RXD_ERR_CRC 0x0
#define MVPP2_RXD_ERR_OVERRUN BIT(13)
#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
#define MVPP2_RXD_BM_POOL_ID_OFFS 16
#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
#define MVPP2_RXD_HWF_SYNC BIT(21)
#define MVPP2_RXD_L4_CSUM_OK BIT(22)
#define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
#define MVPP2_RXD_L4_TCP BIT(25)
#define MVPP2_RXD_L4_UDP BIT(26)
#define MVPP2_RXD_L3_IP4 BIT(28)
#define MVPP2_RXD_L3_IP6 BIT(30)
#define MVPP2_RXD_BUF_HDR BIT(31)
/* HW TX descriptor for PPv2.1 */
struct mvpp21_tx_desc {
u32 command; /* Options used by HW for packet transmitting.*/
u8 packet_offset; /* the offset from the buffer beginning */
u8 phys_txq; /* destination queue ID */
u16 data_size; /* data size of transmitted packet in bytes */
u32 buf_dma_addr; /* physical addr of transmitted buffer */
u32 buf_cookie; /* cookie for access to TX buffer in tx path */
u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
u32 reserved2; /* reserved (for future use) */
};
/* HW RX descriptor for PPv2.1 */
struct mvpp21_rx_desc {
u32 status; /* info about received packet */
u16 reserved1; /* parser_info (for future use, PnC) */
u16 data_size; /* size of received packet in bytes */
u32 buf_dma_addr; /* physical address of the buffer */
u32 buf_cookie; /* cookie for access to RX buffer in rx path */
u16 reserved2; /* gem_port_id (for future use, PON) */
u16 reserved3; /* csum_l4 (for future use, PnC) */
u8 reserved4; /* bm_qset (for future use, BM) */
u8 reserved5;
u16 reserved6; /* classify_info (for future use, PnC) */
u32 reserved7; /* flow_id (for future use, PnC) */
u32 reserved8;
};
/* HW TX descriptor for PPv2.2 */
struct mvpp22_tx_desc {
u32 command;
u8 packet_offset;
u8 phys_txq;
u16 data_size;
u64 reserved1;
u64 buf_dma_addr_ptp;
u64 buf_cookie_misc;
};
/* HW RX descriptor for PPv2.2 */
struct mvpp22_rx_desc {
u32 status;
u16 reserved1;
u16 data_size;
u32 reserved2;
u32 reserved3;
u64 buf_dma_addr_key_hash;
u64 buf_cookie_misc;
};
/* Opaque type used by the driver to manipulate the HW TX and RX
* descriptors
*/
struct mvpp2_tx_desc {
union {
struct mvpp21_tx_desc pp21;
struct mvpp22_tx_desc pp22;
};
};
struct mvpp2_rx_desc {
union {
struct mvpp21_rx_desc pp21;
struct mvpp22_rx_desc pp22;
};
};
/* Per-CPU Tx queue control */
struct mvpp2_txq_pcpu {
int cpu;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the
* descriptor ring
*/
int count;
/* Number of Tx DMA descriptors reserved for each CPU */
int reserved_num;
/* Index of last TX DMA descriptor that was inserted */
int txq_put_index;
/* Index of the TX DMA descriptor to be cleaned up */
int txq_get_index;
};
struct mvpp2_tx_queue {
/* Physical number of this Tx queue */
u8 id;
/* Logical number of this Tx queue */
u8 log_id;
/* Number of Tx DMA descriptors in the descriptor ring */
int size;
/* Number of currently used Tx DMA descriptor in the descriptor ring */
int count;
/* Per-CPU control of physical Tx queues */
struct mvpp2_txq_pcpu __percpu *pcpu;
u32 done_pkts_coal;
/* Virtual address of thex Tx DMA descriptors array */
struct mvpp2_tx_desc *descs;
/* DMA address of the Tx DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last Tx DMA descriptor */
int last_desc;
/* Index of the next Tx DMA descriptor to process */
int next_desc_to_proc;
};
struct mvpp2_rx_queue {
/* RX queue number, in the range 0-31 for physical RXQs */
u8 id;
/* Num of rx descriptors in the rx descriptor ring */
int size;
u32 pkts_coal;
u32 time_coal;
/* Virtual address of the RX DMA descriptors array */
struct mvpp2_rx_desc *descs;
/* DMA address of the RX DMA descriptors array */
dma_addr_t descs_dma;
/* Index of the last RX DMA descriptor */
int last_desc;
/* Index of the next RX DMA descriptor to process */
int next_desc_to_proc;
/* ID of port to which physical RXQ is mapped */
int port;
/* Port's logic RXQ number to which physical RXQ is mapped */
int logic_rxq;
};
union mvpp2_prs_tcam_entry {
u32 word[MVPP2_PRS_TCAM_WORDS];
u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
};
union mvpp2_prs_sram_entry {
u32 word[MVPP2_PRS_SRAM_WORDS];
u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
};
struct mvpp2_prs_entry {
u32 index;
union mvpp2_prs_tcam_entry tcam;
union mvpp2_prs_sram_entry sram;
};
struct mvpp2_prs_shadow {
bool valid;
bool finish;
/* Lookup ID */
int lu;
/* User defined offset */
int udf;
/* Result info */
u32 ri;
u32 ri_mask;
};
struct mvpp2_cls_flow_entry {
u32 index;
u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
};
struct mvpp2_cls_lookup_entry {
u32 lkpid;
u32 way;
u32 data;
};
struct mvpp2_bm_pool {
/* Pool number in the range 0-7 */
int id;
enum mvpp2_bm_type type;
/* Buffer Pointers Pool External (BPPE) size */
int size;
/* Number of buffers for this pool */
int buf_num;
/* Pool buffer size */
int buf_size;
/* Packet size */
int pkt_size;
/* BPPE virtual base address */
unsigned long *virt_addr;
/* BPPE DMA base address */
dma_addr_t dma_addr;
/* Ports using BM pool */
u32 port_map;
};
/* Static declaractions */
/* Number of RXQs used by single port */
static int rxq_number = MVPP2_DEFAULT_RXQ;
/* Number of TXQs used by single port */
static int txq_number = MVPP2_DEFAULT_TXQ;
static int base_id;
#define MVPP2_DRIVER_NAME "mvpp2"
#define MVPP2_DRIVER_VERSION "1.0"
/*
* U-Boot internal data, mostly uncached buffers for descriptors and data
*/
struct buffer_location {
struct mvpp2_tx_desc *aggr_tx_descs;
struct mvpp2_tx_desc *tx_descs;
struct mvpp2_rx_desc *rx_descs;
unsigned long *bm_pool[MVPP2_BM_POOLS_NUM];
unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM];
int first_rxq;
};
/*
* All 4 interfaces use the same global buffer, since only one interface
* can be enabled at once
*/
static struct buffer_location buffer_loc;
static int buffer_loc_init;
/*
* Page table entries are set to 1MB, or multiples of 1MB
* (not < 1MB). driver uses less bd's so use 1MB bdspace.
*/
#define BD_SPACE (1 << 20)
/* Utility/helper methods */
static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->base + offset);
}
static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->base + offset);
}
static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
dma_addr_t dma_addr)
{
if (port->priv->hw_version == MVPP21) {
tx_desc->pp21.buf_dma_addr = dma_addr;
} else {
u64 val = (u64)dma_addr;
tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0);
tx_desc->pp22.buf_dma_addr_ptp |= val;
}
}
static void mvpp2_txdesc_size_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
size_t size)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.data_size = size;
else
tx_desc->pp22.data_size = size;
}
static void mvpp2_txdesc_txq_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int txq)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.phys_txq = txq;
else
tx_desc->pp22.phys_txq = txq;
}
static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int command)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.command = command;
else
tx_desc->pp22.command = command;
}
static void mvpp2_txdesc_offset_set(struct mvpp2_port *port,
struct mvpp2_tx_desc *tx_desc,
unsigned int offset)
{
if (port->priv->hw_version == MVPP21)
tx_desc->pp21.packet_offset = offset;
else
tx_desc->pp22.packet_offset = offset;
}
static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_dma_addr;
else
return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0);
}
static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.buf_cookie;
else
return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0);
}
static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.data_size;
else
return rx_desc->pp22.data_size;
}
static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
if (port->priv->hw_version == MVPP21)
return rx_desc->pp21.status;
else
return rx_desc->pp22.status;
}
static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
{
txq_pcpu->txq_get_index++;
if (txq_pcpu->txq_get_index == txq_pcpu->size)
txq_pcpu->txq_get_index = 0;
}
/* Get number of physical egress port */
static inline int mvpp2_egress_port(struct mvpp2_port *port)
{
return MVPP2_MAX_TCONT + port->id;
}
/* Get number of physical TXQ */
static inline int mvpp2_txq_phys(int port, int txq)
{
return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
}
/* Parser configuration routines */
/* Update parser tcam and sram hw entries */
static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Clear entry invalidation bit */
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
return 0;
}
/* Read tcam entry from hw */
static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
{
int i;
if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
return -EINVAL;
/* Write tcam index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
return MVPP2_PRS_TCAM_ENTRY_INVALID;
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
/* Write sram index - indirect access */
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
return 0;
}
/* Invalidate tcam hw entry */
static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
{
/* Write index - indirect access */
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
MVPP2_PRS_TCAM_INV_MASK);
}
/* Enable shadow table entry and set its lookup ID */
static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
{
priv->prs_shadow[index].valid = true;
priv->prs_shadow[index].lu = lu;
}
/* Update ri fields in shadow table entry */
static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
unsigned int ri, unsigned int ri_mask)
{
priv->prs_shadow[index].ri_mask = ri_mask;
priv->prs_shadow[index].ri = ri;
}
/* Update lookup field in tcam sw entry */
static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
}
/* Update mask for single port in tcam sw entry */
static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
unsigned int port, bool add)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
if (add)
pe->tcam.byte[enable_off] &= ~(1 << port);
else
pe->tcam.byte[enable_off] |= 1 << port;
}
/* Update port map in tcam sw entry */
static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
unsigned int ports)
{
unsigned char port_mask = MVPP2_PRS_PORT_MASK;
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
pe->tcam.byte[enable_off] &= ~port_mask;
pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
}
/* Obtain port map from tcam sw entry */
static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
{
int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
}
/* Set byte of data and its enable bits in tcam sw entry */
static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char byte,
unsigned char enable)
{
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
}
/* Get byte of data and its enable bits from tcam sw entry */
static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
unsigned int offs, unsigned char *byte,
unsigned char *enable)
{
*byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
*enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
}
/* Set ethertype in tcam sw entry */
static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
unsigned short ethertype)
{
mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
}
/* Set bits in sram sw entry */
static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
}
/* Clear bits in sram sw entry */
static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
int val)
{
pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
}
/* Update ri bits in sram sw entry */
static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
}
}
/* Update ai bits in sram sw entry */
static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
unsigned int bits, unsigned int mask)
{
unsigned int i;
int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
if (!(mask & BIT(i)))
continue;
if (bits & BIT(i))
mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
else
mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
}
}
/* Read ai bits from sram sw entry */
static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
{
u8 bits;
int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
int ai_en_off = ai_off + 1;
int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
bits = (pe->sram.byte[ai_off] >> ai_shift) |
(pe->sram.byte[ai_en_off] << (8 - ai_shift));
return bits;
}
/* In sram sw entry set lookup ID field of the tcam key to be used in the next
* lookup interation
*/
static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
unsigned int lu)
{
int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
mvpp2_prs_sram_bits_clear(pe, sram_next_off,
MVPP2_PRS_SRAM_NEXT_LU_MASK);
mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
}
/* In the sram sw entry set sign and value of the next lookup offset
* and the offset value generated to the classifier
*/
static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
unsigned int op)
{
/* Set sign */
if (shift < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
shift = 0 - shift;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
}
/* Set value */
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
(unsigned char)shift;
/* Reset and set operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* In the sram sw entry set sign and value of the user defined offset
* generated to the classifier
*/
static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
unsigned int type, int offset,
unsigned int op)
{
/* Set sign */
if (offset < 0) {
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
offset = 0 - offset;
} else {
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
}
/* Set value */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
MVPP2_PRS_SRAM_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
MVPP2_PRS_SRAM_UDF_BITS)] |=
(offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
/* Set offset type */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
MVPP2_PRS_SRAM_UDF_TYPE_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
/* Set offset operation */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
(8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
(op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
/* Set base offset as current */
mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
}
/* Find parser flow entry */
static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
/* Go through the all entires with MVPP2_PRS_LU_FLOWS */
for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
u8 bits;
if (!priv->prs_shadow[tid].valid ||
priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
bits = mvpp2_prs_sram_ai_get(pe);
/* Sram store classification lookup ID in AI bits [5:0] */
if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
return pe;
}
kfree(pe);
return NULL;
}
/* Return first free tcam index, seeking from start to end */
static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
unsigned char end)
{
int tid;
if (start > end)
swap(start, end);
if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
for (tid = start; tid <= end; tid++) {
if (!priv->prs_shadow[tid].valid)
return tid;
}
return -EINVAL;
}
/* Enable/disable dropping all mac da's */
static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_DROP_ALL;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_DROP_ALL;
/* Non-promiscuous mode for all ports - DROP unknown packets */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set port to promiscuous mode */
static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
{
struct mvpp2_prs_entry pe;
/* Promiscuous mode - Accept unknown packets */
if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
/* Entry exist - update port only */
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = MVPP2_PE_MAC_PROMISCUOUS;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Accept multicast */
static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
bool add)
{
struct mvpp2_prs_entry pe;
unsigned char da_mc;
/* Ethernet multicast address first byte is
* 0x01 for IPv4 and 0x33 for IPv6
*/
da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
if (priv->prs_shadow[index].valid) {
/* Entry exist - update port only */
pe.index = index;
mvpp2_prs_hw_read(priv, &pe);
} else {
/* Entry doesn't exist - create new */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
pe.index = index;
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
/* Set result info bits */
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
MVPP2_PRS_RI_L2_CAST_MASK);
/* Update tcam entry data first byte */
mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Update shadow table */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(&pe, port, add);
mvpp2_prs_hw_write(priv, &pe);
}
/* Parser per-port initialization */
static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
int lu_max, int offset)
{
u32 val;
/* Set lookup ID */
val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
val &= ~MVPP2_PRS_PORT_LU_MASK(port);
val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
/* Set maximum number of loops for packet received from port */
val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
/* Set initial offset for packet header extraction for the first
* searching loop
*/
val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
}
/* Default flow entries initialization for all ports */
static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(&pe, 0);
/* Set flow ID*/
mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_hw_write(priv, &pe);
}
}
/* Set default entry for Marvell Header field */
static void mvpp2_prs_mh_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
pe.index = MVPP2_PE_MH_DEFAULT;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
mvpp2_prs_hw_write(priv, &pe);
}
/* Set default entires (place holder) for promiscuous, non-promiscuous and
* multicast MAC addresses
*/
static void mvpp2_prs_mac_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
/* Non-promiscuous mode for all ports - DROP unknown packets */
pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
MVPP2_PRS_RI_DROP_MASK);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, &pe);
/* place holders only - no ports */
mvpp2_prs_mac_drop_all_set(priv, 0, false);
mvpp2_prs_mac_promisc_set(priv, 0, false);
mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
}
/* Match basic ethertypes */
static int mvpp2_prs_etype_init(struct mvpp2 *priv)
{
struct mvpp2_prs_entry pe;
int tid;
/* Ethertype: PPPoE */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES);
mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
MVPP2_PRS_RI_PPPOE_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: ARP */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_ARP);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: LBTD */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
MVPP2_PRS_RI_UDF3_RX_SPECIAL,
MVPP2_PRS_RI_CPU_CODE_MASK |
MVPP2_PRS_RI_UDF3_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_IP);
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
MVPP2_PRS_IPV4_HEAD_MASK |
MVPP2_PRS_IPV4_IHL_MASK);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Skip eth_type + 4 bytes of IP header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv4 with options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
pe.index = tid;
/* Clear tcam data before updating */
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_IPV4_HEAD,
MVPP2_PRS_IPV4_HEAD_MASK);
/* Clear ri before updating */
pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Ethertype: IPv6 without options */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
MVPP2_PE_LAST_FREE_TID);
if (tid < 0)
return tid;
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = tid;
mvpp2_prs_match_etype(&pe, 0, PROT_IPV6);
/* Skip DIP of IPV6 header */
mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
MVPP2_MAX_L3_ADDR_SIZE,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = false;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
/* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
pe.index = MVPP2_PE_ETH_TYPE_UN;
/* Unmask all ports */
mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
/* Generate flow in the next iteration*/
mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
/* Set L3 offset even it's unknown L3 */
mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
MVPP2_ETH_TYPE_LEN,
MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
/* Update shadow table and hw entry */
mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
priv->prs_shadow[pe.index].finish = true;
mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
MVPP2_PRS_RI_L3_PROTO_MASK);
mvpp2_prs_hw_write(priv, &pe);
return 0;
}
/* Parser default initialization */
static int mvpp2_prs_default_init(struct udevice *dev,
struct mvpp2 *priv)
{
int err, index, i;
/* Enable tcam table */
mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
/* Clear all tcam and sram entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
}
/* Invalidate all tcam entries */
for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
mvpp2_prs_hw_inv(priv, index);
priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE,
sizeof(struct mvpp2_prs_shadow),
GFP_KERNEL);
if (!priv->prs_shadow)
return -ENOMEM;
/* Always start from lookup = 0 */
for (index = 0; index < MVPP2_MAX_PORTS; index++)
mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
MVPP2_PRS_PORT_LU_MAX, 0);
mvpp2_prs_def_flow_init(priv);
mvpp2_prs_mh_init(priv);
mvpp2_prs_mac_init(priv);
err = mvpp2_prs_etype_init(priv);
if (err)
return err;
return 0;
}
/* Compare MAC DA with tcam entry data */
static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
const u8 *da, unsigned char *mask)
{
unsigned char tcam_byte, tcam_mask;
int index;
for (index = 0; index < ETH_ALEN; index++) {
mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
if (tcam_mask != mask[index])
return false;
if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
return false;
}
return true;
}
/* Find tcam entry with matched pair <MAC DA, port> */
static struct mvpp2_prs_entry *
mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
unsigned char *mask, int udf_type)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return NULL;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
/* Go through the all entires with MVPP2_PRS_LU_MAC */
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
unsigned int entry_pmap;
if (!priv->prs_shadow[tid].valid ||
(priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
(priv->prs_shadow[tid].udf != udf_type))
continue;
pe->index = tid;
mvpp2_prs_hw_read(priv, pe);
entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
entry_pmap == pmap)
return pe;
}
kfree(pe);
return NULL;
}
/* Update parser's mac da entry */
static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
const u8 *da, bool add)
{
struct mvpp2_prs_entry *pe;
unsigned int pmap, len, ri;
unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int tid;
/* Scan TCAM and see if entry with this <MAC DA, port> already exist */
pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
MVPP2_PRS_UDF_MAC_DEF);
/* No such entry */
if (!pe) {
if (!add)
return 0;
/* Create new TCAM entry */
/* Find first range mac entry*/
for (tid = MVPP2_PE_FIRST_FREE_TID;
tid <= MVPP2_PE_LAST_FREE_TID; tid++)
if (priv->prs_shadow[tid].valid &&
(priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
(priv->prs_shadow[tid].udf ==
MVPP2_PRS_UDF_MAC_RANGE))
break;
/* Go through the all entries from first to last */
tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
tid - 1);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -1;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
pe->index = tid;
/* Mask all ports */
mvpp2_prs_tcam_port_map_set(pe, 0);
}
/* Update port mask */
mvpp2_prs_tcam_port_set(pe, port, add);
/* Invalidate the entry if no ports are left enabled */
pmap = mvpp2_prs_tcam_port_map_get(pe);
if (pmap == 0) {
if (add) {
kfree(pe);
return -1;
}
mvpp2_prs_hw_inv(priv, pe->index);
priv->prs_shadow[pe->index].valid = false;
kfree(pe);
return 0;
}
/* Continue - set next lookup */
mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
/* Set match on DA */
len = ETH_ALEN;
while (len--)
mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
/* Set result info bits */
ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
MVPP2_PRS_RI_MAC_ME_MASK);
/* Shift to ethertype */
mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
/* Update shadow table and hw entry */
priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
mvpp2_prs_hw_write(priv, pe);
kfree(pe);
return 0;
}
static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da)
{
int err;
/* Remove old parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr,
false);
if (err)
return err;
/* Add new parser entry */
err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
if (err)
return err;
/* Set addr in the device */
memcpy(port->dev_addr, da, ETH_ALEN);
return 0;
}
/* Set prs flow for the port */
static int mvpp2_prs_def_flow(struct mvpp2_port *port)
{
struct mvpp2_prs_entry *pe;
int tid;
pe = mvpp2_prs_flow_find(port->priv, port->id);
/* Such entry not exist */
if (!pe) {
/* Go through the all entires from last to first */
tid = mvpp2_prs_tcam_first_free(port->priv,
MVPP2_PE_LAST_FREE_TID,
MVPP2_PE_FIRST_FREE_TID);
if (tid < 0)
return tid;
pe = kzalloc(sizeof(*pe), GFP_KERNEL);
if (!pe)
return -ENOMEM;
mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
pe->index = tid;
/* Set flow ID*/
mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
/* Update shadow table */
mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
}
mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
mvpp2_prs_hw_write(port->priv, pe);
kfree(pe);
return 0;
}
/* Classifier configuration routines */
/* Update classification flow table registers */
static void mvpp2_cls_flow_write(struct mvpp2 *priv,
struct mvpp2_cls_flow_entry *fe)
{
mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
}
/* Update classification lookup table register */
static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
struct mvpp2_cls_lookup_entry *le)
{
u32 val;
val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
}
/* Classifier default initialization */
static void mvpp2_cls_init(struct mvpp2 *priv)
{
struct mvpp2_cls_lookup_entry le;
struct mvpp2_cls_flow_entry fe;
int index;
/* Enable classifier */
mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
/* Clear classifier flow table */
memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
fe.index = index;
mvpp2_cls_flow_write(priv, &fe);
}
/* Clear classifier lookup table */
le.data = 0;
for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
le.lkpid = index;
le.way = 0;
mvpp2_cls_lookup_write(priv, &le);
le.way = 1;
mvpp2_cls_lookup_write(priv, &le);
}
}
static void mvpp2_cls_port_config(struct mvpp2_port *port)
{
struct mvpp2_cls_lookup_entry le;
u32 val;
/* Set way for the port */
val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
/* Pick the entry to be accessed in lookup ID decoding table
* according to the way and lkpid.
*/
le.lkpid = port->id;
le.way = 0;
le.data = 0;
/* Set initial CPU queue for receiving packets */
le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
le.data |= port->first_rxq;
/* Disable classification engines */
le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
/* Update lookup ID table entry */
mvpp2_cls_lookup_write(port->priv, &le);
}
/* Set CPU queue number for oversize packets */
static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
{
u32 val;
mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
(port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
}
/* Buffer Manager configuration routines */
/* Create pool */
static int mvpp2_bm_pool_create(struct udevice *dev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool, int size)
{
u32 val;
/* Number of buffer pointers must be a multiple of 16, as per
* hardware constraints
*/
if (!IS_ALIGNED(size, 16))
return -EINVAL;
bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id];
bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id];
if (!bm_pool->virt_addr)
return -ENOMEM;
if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr,
MVPP2_BM_POOL_PTR_ALIGN)) {
dev_err(dev, "BM pool %d is not %d bytes aligned\n",
bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
return -ENOMEM;
}
mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
lower_32_bits(bm_pool->dma_addr));
if (priv->hw_version == MVPP22)
mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG,
(upper_32_bits(bm_pool->dma_addr) &
MVPP22_BM_POOL_BASE_HIGH_MASK));
mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_START_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
bm_pool->type = MVPP2_BM_FREE;
bm_pool->size = size;
bm_pool->pkt_size = 0;
bm_pool->buf_num = 0;
return 0;
}
/* Set pool buffer size */
static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool,
int buf_size)
{
u32 val;
bm_pool->buf_size = buf_size;
val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
}
/* Free all buffers from the pool */
static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
int i;
for (i = 0; i < bm_pool->buf_num; i++) {
/* Allocate buffer back from the buffer manager */
mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
}
bm_pool->buf_num = 0;
}
/* Cleanup pool */
static int mvpp2_bm_pool_destroy(struct udevice *dev,
struct mvpp2 *priv,
struct mvpp2_bm_pool *bm_pool)
{
u32 val;
mvpp2_bm_bufs_free(dev, priv, bm_pool);
if (bm_pool->buf_num) {
dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id);
return 0;
}
val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
val |= MVPP2_BM_STOP_MASK;
mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
return 0;
}
static int mvpp2_bm_pools_init(struct udevice *dev,
struct mvpp2 *priv)
{
int i, err, size;
struct mvpp2_bm_pool *bm_pool;
/* Create all pools with maximum size */
size = MVPP2_BM_POOL_SIZE_MAX;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
bm_pool = &priv->bm_pools[i];
bm_pool->id = i;
err = mvpp2_bm_pool_create(dev, priv, bm_pool, size);
if (err)
goto err_unroll_pools;
mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE);
}
return 0;
err_unroll_pools:
dev_err(dev, "failed to create BM pool %d, size %d\n", i, size);
for (i = i - 1; i >= 0; i--)
mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
return err;
}
static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv)
{
int i, err;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
/* Mask BM all interrupts */
mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
/* Clear BM cause register */
mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
}
/* Allocate and initialize BM pools */
priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM,
sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
if (!priv->bm_pools)
return -ENOMEM;
err = mvpp2_bm_pools_init(dev, priv);
if (err < 0)
return err;
return 0;
}
/* Attach long pool to rxq */
static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
int lrxq, int long_pool)
{
u32 val, mask;
int prxq;
/* Get queue physical ID */
prxq = port->rxqs[lrxq]->id;
if (port->priv->hw_version == MVPP21)
mask = MVPP21_RXQ_POOL_LONG_MASK;
else
mask = MVPP22_RXQ_POOL_LONG_MASK;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~mask;
val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Set pool number in a BM cookie */
static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
{
u32 bm;
bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
return bm;
}
/* Get pool number from a BM cookie */
static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie)
{
return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
}
/* Release buffer to BM */
static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
dma_addr_t buf_dma_addr,
unsigned long buf_phys_addr)
{
if (port->priv->hw_version == MVPP22) {
u32 val = 0;
if (sizeof(dma_addr_t) == 8)
val |= upper_32_bits(buf_dma_addr) &
MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK;
if (sizeof(phys_addr_t) == 8)
val |= (upper_32_bits(buf_phys_addr)
<< MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) &
MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK;
mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val);
}
/* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply
* returned in the "cookie" field of the RX
* descriptor. Instead of storing the virtual address, we
* store the physical address
*/
mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr);
mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr);
}
/* Refill BM pool */
static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
dma_addr_t dma_addr,
phys_addr_t phys_addr)
{
int pool = mvpp2_bm_cookie_pool_get(bm);
mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr);
}
/* Allocate buffers for the pool */
static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool, int buf_num)
{
int i;
if (buf_num < 0 ||
(buf_num + bm_pool->buf_num > bm_pool->size)) {
dev_err(port->phy_dev->dev,
"cannot allocate %d buffers for pool %d\n", buf_num,
bm_pool->id);
return 0;
}
for (i = 0; i < buf_num; i++) {
mvpp2_bm_pool_put(port, bm_pool->id,
(dma_addr_t)buffer_loc.rx_buffer[i],
(unsigned long)buffer_loc.rx_buffer[i]);
}
/* Update BM driver with number of buffers added to pool */
bm_pool->buf_num += i;
return i;
}
/* Notify the driver that BM pool is being used as specific type and return the
* pool pointer on success
*/
static struct mvpp2_bm_pool *
mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
int pkt_size)
{
struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
int num;
if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
dev_err(port->phy_dev->dev, "mixing pool types is forbidden\n");
return NULL;
}
if (new_pool->type == MVPP2_BM_FREE)
new_pool->type = type;
/* Allocate buffers in case BM pool is used as long pool, but packet
* size doesn't match MTU or BM pool hasn't being used yet
*/
if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
(new_pool->pkt_size == 0)) {
int pkts_num;
/* Set default buffer number or free all the buffers in case
* the pool is not empty
*/
pkts_num = new_pool->buf_num;
if (pkts_num == 0)
pkts_num = type == MVPP2_BM_SWF_LONG ?
MVPP2_BM_LONG_BUF_NUM :
MVPP2_BM_SHORT_BUF_NUM;
else
mvpp2_bm_bufs_free(NULL,
port->priv, new_pool);
new_pool->pkt_size = pkt_size;
/* Allocate buffers for this pool */
num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
if (num != pkts_num) {
dev_err(port->phy_dev->dev,
"pool %d: %d of %d allocated\n", new_pool->id,
num, pkts_num);
return NULL;
}
}
return new_pool;
}
/* Initialize pools for swf */
static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
{
int rxq;
if (!port->pool_long) {
port->pool_long =
mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
MVPP2_BM_SWF_LONG,
port->pkt_size);
if (!port->pool_long)
return -ENOMEM;
port->pool_long->port_map |= (1 << port->id);
for (rxq = 0; rxq < rxq_number; rxq++)
mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
}
return 0;
}
/* Port configuration routines */
static void mvpp2_port_mii_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_SGMII:
val |= MVPP2_GMAC_INBAND_AN_MASK;
break;
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
val &= ~MVPP2_GMAC_INBAND_AN_MASK;
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
val |= MVPP2_GMAC_PORT_RGMII_MASK;
default:
val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
}
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
}
static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= MVPP2_GMAC_FC_ADV_EN;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void mvpp2_port_enable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val |= MVPP2_GMAC_PORT_EN_MASK;
val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
static void mvpp2_port_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~(MVPP2_GMAC_PORT_EN_MASK);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
/* Configure loopback port */
static void mvpp2_port_loopback_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
if (port->speed == 1000)
val |= MVPP2_GMAC_GMII_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
if (port->phy_interface == PHY_INTERFACE_MODE_SGMII ||
port->phy_interface == PHY_INTERFACE_MODE_1000BASEX ||
port->phy_interface == PHY_INTERFACE_MODE_2500BASEX)
val |= MVPP2_GMAC_PCS_LB_EN_MASK;
else
val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
}
static void mvpp2_port_reset(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
MVPP2_GMAC_PORT_RESET_MASK)
continue;
}
/* Change maximum receive size of the port */
static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
MVPP2_GMAC_MAX_RX_SIZE_OFFS);
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
}
/* PPv2.2 GoP/GMAC config */
/* Set the MAC to reset or exit from reset */
static int gop_gmac_reset(struct mvpp2_port *port, int reset)
{
u32 val;
/* read - modify - write */
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (reset)
val |= MVPP2_GMAC_PORT_RESET_MASK;
else
val &= ~MVPP2_GMAC_PORT_RESET_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
/*
* gop_gpcs_mode_cfg
*
* Configure port to working with Gig PCS or don't.
*/
static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (en)
val |= MVPP2_GMAC_PCS_ENABLE_MASK;
else
val &= ~MVPP2_GMAC_PCS_ENABLE_MASK;
/* enable / disable PCS on this port */
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (en)
val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
else
val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK;
/* enable / disable PCS on this port */
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static void gop_gmac_sgmii_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to SGMII mode */
val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure AN */
val = MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_EN_FC_AN |
MVPP2_GMAC_AN_DUPLEX_EN |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_2500basex_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/*
* Configure GIG MAC to 2500Base-X mode connected to a fiber
* transceiver
*/
val |= MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* In 2500BaseX mode, we can't negotiate speed
* and we do not want InBand autoneg
* bypass enabled (link interrupt storm risk
* otherwise).
*/
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_1000basex_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_SGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
/* configure QSGMII bypass according to mode */
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to 1000BASEX mode */
val |= MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* In 1000BaseX mode, we can't negotiate speed (it's
* only 1000), and we do not want InBand autoneg
* bypass enabled (link interrupt storm risk
* otherwise).
*/
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_EN_PCS_AN |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
static void gop_gmac_rgmii_cfg(struct mvpp2_port *port)
{
u32 val, thresh;
/*
* Configure minimal level of the Tx FIFO before the lower part
* starts to read a packet
*/
thresh = MVPP2_RGMII_TX_FIFO_MIN_TH;
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
/* Disable bypass of sync module */
val = readl(port->base + MVPP2_GMAC_CTRL_4_REG);
val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK;
/* configure DP clock select according to mode */
val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK;
val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK;
val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_4_REG);
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure GIG MAC to SGMII mode */
val &= ~MVPP2_GMAC_PORT_TYPE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* configure AN 0xb8e8 */
val = MVPP2_GMAC_AN_BYPASS_EN |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_EN_FC_AN |
MVPP2_GMAC_AN_DUPLEX_EN |
MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
}
/* Set the internal mux's to the required MAC in the GOP */
static int gop_gmac_mode_cfg(struct mvpp2_port *port)
{
u32 val;
/* Set TX FIFO thresholds */
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_SGMII:
gop_gmac_sgmii_cfg(port);
break;
case PHY_INTERFACE_MODE_1000BASEX:
gop_gmac_1000basex_cfg(port);
break;
case PHY_INTERFACE_MODE_2500BASEX:
gop_gmac_2500basex_cfg(port);
break;
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
gop_gmac_rgmii_cfg(port);
break;
default:
return -1;
}
/* Jumbo frame support - 0x1400*2= 0x2800 bytes */
val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS;
writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
/* PeriodicXonEn disable */
val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
return 0;
}
static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port)
{
u32 val;
/* relevant only for MAC0 (XLG0 and GMAC0) */
if (port->gop_id > 0)
return;
/* configure 1Gig MAC mode */
val = readl(port->base + MVPP22_XLG_CTRL3_REG);
val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC;
writel(val, port->base + MVPP22_XLG_CTRL3_REG);
}
static int gop_gpcs_reset(struct mvpp2_port *port, int reset)
{
u32 val;
val = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
if (reset)
val &= ~MVPP2_GMAC_SGMII_MODE_MASK;
else
val |= MVPP2_GMAC_SGMII_MODE_MASK;
writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
return 0;
}
static int gop_mpcs_mode(struct mvpp2_port *port)
{
u32 val;
/* configure PCS40G COMMON CONTROL */
val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS40G_COMMON_CONTROL);
val &= ~FORWARD_ERROR_CORRECTION_MASK;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS40G_COMMON_CONTROL);
/* configure PCS CLOCK RESET */
val = readl(port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
val &= ~CLK_DIVISION_RATIO_MASK;
val |= 1 << CLK_DIVISION_RATIO_OFFS;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
val &= ~CLK_DIV_PHASE_SET_MASK;
val |= MAC_CLK_RESET_MASK;
val |= RX_SD_CLK_RESET_MASK;
val |= TX_SD_CLK_RESET_MASK;
writel(val, port->priv->mpcs_base + port->gop_id * MVPP22_PORT_OFFSET +
PCS_CLOCK_RESET);
return 0;
}
/* Set the internal mux's to the required MAC in the GOP */
static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes)
{
u32 val;
/* configure 10G MAC mode */
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
val |= MVPP22_XLG_RX_FC_EN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
val = readl(port->base + MVPP22_XLG_CTRL3_REG);
val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK;
val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC;
writel(val, port->base + MVPP22_XLG_CTRL3_REG);
/* read - modify - write */
val = readl(port->base + MVPP22_XLG_CTRL4_REG);
val &= ~MVPP22_XLG_MODE_DMA_1G;
val |= MVPP22_XLG_FORWARD_PFC_EN;
val |= MVPP22_XLG_FORWARD_802_3X_FC_EN;
val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK;
writel(val, port->base + MVPP22_XLG_CTRL4_REG);
/* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */
val = readl(port->base + MVPP22_XLG_CTRL1_REG);
val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK;
val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS;
writel(val, port->base + MVPP22_XLG_CTRL1_REG);
/* unmask link change interrupt */
val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE;
val |= 1; /* unmask summary bit */
writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG);
return 0;
}
/* Set the MAC to reset or exit from reset */
static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset)
{
u32 val;
/* read - modify - write */
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
if (reset)
val &= ~MVPP22_XLG_MAC_RESETN;
else
val |= MVPP22_XLG_MAC_RESETN;
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
return 0;
}
/*
* gop_port_init
*
* Init physical port. Configures the port mode and all it's elements
* accordingly.
* Does not verify that the selected mode/port number is valid at the
* core level.
*/
static int gop_port_init(struct mvpp2_port *port)
{
int mac_num = port->gop_id;
int num_of_act_lanes;
if (mac_num >= MVPP22_GOP_MAC_NUM) {
log_err("illegal port number %d", mac_num);
return -1;
}
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
gop_gmac_reset(port, 1);
/* configure PCS */
gop_gpcs_mode_cfg(port, 0);
gop_bypass_clk_cfg(port, 1);
/* configure MAC */
gop_gmac_mode_cfg(port);
/* pcs unreset */
gop_gpcs_reset(port, 0);
/* mac unreset */
gop_gmac_reset(port, 0);
break;
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
/* configure PCS */
gop_gpcs_mode_cfg(port, 1);
/* configure MAC */
gop_gmac_mode_cfg(port);
/* select proper Mac mode */
gop_xlg_2_gig_mac_cfg(port);
/* pcs unreset */
gop_gpcs_reset(port, 0);
/* mac unreset */
gop_gmac_reset(port, 0);
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_XAUI:
num_of_act_lanes = 2;
mac_num = 0;
/* configure PCS */
gop_mpcs_mode(port);
/* configure MAC */
gop_xlg_mac_mode_cfg(port, num_of_act_lanes);
/* mac unreset */
gop_xlg_mac_reset(port, 0);
break;
default:
log_err("Requested port mode (%d) not supported\n",
port->phy_interface);
return -1;
}
return 0;
}
static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable)
{
u32 val;
val = readl(port->base + MVPP22_XLG_CTRL0_REG);
if (enable) {
/* Enable port and MIB counters update */
val |= MVPP22_XLG_PORT_EN;
val &= ~MVPP22_XLG_MIBCNT_DIS;
} else {
/* Disable port */
val &= ~MVPP22_XLG_PORT_EN;
}
writel(val, port->base + MVPP22_XLG_CTRL0_REG);
}
static void gop_port_enable(struct mvpp2_port *port, int enable)
{
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
if (enable)
mvpp2_port_enable(port);
else
mvpp2_port_disable(port);
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_5GBASER:
case PHY_INTERFACE_MODE_XAUI:
gop_xlg_mac_port_enable(port, enable);
break;
default:
log_err("%s: Wrong port mode (%d)\n", __func__,
port->phy_interface);
return;
}
}
/* RFU1 functions */
static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset)
{
return readl(priv->rfu1_base + offset);
}
static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data)
{
writel(data, priv->rfu1_base + offset);
}
static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type)
{
u32 val = 0;
if (gop_id == 2) {
if (phy_type == PHY_INTERFACE_MODE_SGMII ||
phy_type == PHY_INTERFACE_MODE_1000BASEX ||
phy_type == PHY_INTERFACE_MODE_2500BASEX)
val |= MV_NETC_GE_MAC2_SGMII;
else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
phy_type == PHY_INTERFACE_MODE_RGMII_ID)
val |= MV_NETC_GE_MAC2_RGMII;
}
if (gop_id == 3) {
if (phy_type == PHY_INTERFACE_MODE_SGMII ||
phy_type == PHY_INTERFACE_MODE_1000BASEX ||
phy_type == PHY_INTERFACE_MODE_2500BASEX)
val |= MV_NETC_GE_MAC3_SGMII;
else if (phy_type == PHY_INTERFACE_MODE_RGMII ||
phy_type == PHY_INTERFACE_MODE_RGMII_ID)
val |= MV_NETC_GE_MAC3_RGMII;
}
return val;
}
static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id));
val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id);
val &= NETC_PORTS_ACTIVE_MASK(gop_id);
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
}
static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
reg &= ~NETC_GBE_PORT1_MII_MODE_MASK;
val <<= NETC_GBE_PORT1_MII_MODE_OFFS;
val &= NETC_GBE_PORT1_MII_MODE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
}
static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG);
reg &= ~NETC_GOP_SOFT_RESET_MASK;
val <<= NETC_GOP_SOFT_RESET_OFFS;
val &= NETC_GOP_SOFT_RESET_MASK;
reg |= val;
gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg);
}
static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_CLK_DIV_PHASE_MASK;
val <<= NETC_CLK_DIV_PHASE_OFFS;
val &= NETC_CLK_DIV_PHASE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG);
reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id));
val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id);
val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id);
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg);
}
static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id,
u32 val)
{
u32 reg, mask, offset;
if (gop_id == 2) {
mask = NETC_GBE_PORT0_SGMII_MODE_MASK;
offset = NETC_GBE_PORT0_SGMII_MODE_OFFS;
} else {
mask = NETC_GBE_PORT1_SGMII_MODE_MASK;
offset = NETC_GBE_PORT1_SGMII_MODE_OFFS;
}
reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG);
reg &= ~mask;
val <<= offset;
val &= mask;
reg |= val;
gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg);
}
static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_BUS_WIDTH_SELECT_MASK;
val <<= NETC_BUS_WIDTH_SELECT_OFFS;
val &= NETC_BUS_WIDTH_SELECT_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val)
{
u32 reg;
reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG);
reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK;
val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS;
val &= NETC_GIG_RX_DATA_SAMPLE_MASK;
reg |= val;
gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg);
}
static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id,
enum mv_netc_phase phase)
{
switch (phase) {
case MV_NETC_FIRST_PHASE:
/* Set Bus Width to HB mode = 1 */
gop_netc_bus_width_select(priv, 1);
/* Select RGMII mode */
gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII);
break;
case MV_NETC_SECOND_PHASE:
/* De-assert the relevant port HB reset */
gop_netc_port_rf_reset(priv, gop_id, 1);
break;
}
}
static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id,
enum mv_netc_phase phase)
{
switch (phase) {
case MV_NETC_FIRST_PHASE:
/* Set Bus Width to HB mode = 1 */
gop_netc_bus_width_select(priv, 1);
/* Select SGMII mode */
if (gop_id >= 1) {
gop_netc_gbe_sgmii_mode_select(priv, gop_id,
MV_NETC_GBE_SGMII);
}
/* Configure the sample stages */
gop_netc_sample_stages_timing(priv, 0);
/* Configure the ComPhy Selector */
/* gop_netc_com_phy_selector_config(netComplex); */
break;
case MV_NETC_SECOND_PHASE:
/* De-assert the relevant port HB reset */
gop_netc_port_rf_reset(priv, gop_id, 1);
break;
}
}
static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase)
{
u32 c = priv->netc_config;
if (c & MV_NETC_GE_MAC2_SGMII)
gop_netc_mac_to_sgmii(priv, 2, phase);
else if (c & MV_NETC_GE_MAC2_RGMII)
gop_netc_mac_to_xgmii(priv, 2, phase);
if (c & MV_NETC_GE_MAC3_SGMII) {
gop_netc_mac_to_sgmii(priv, 3, phase);
} else {
gop_netc_mac_to_xgmii(priv, 3, phase);
if (c & MV_NETC_GE_MAC3_RGMII)
gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII);
else
gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII);
}
/* Activate gop ports 0, 2, 3 */
gop_netc_active_port(priv, 0, 1);
gop_netc_active_port(priv, 2, 1);
gop_netc_active_port(priv, 3, 1);
if (phase == MV_NETC_SECOND_PHASE) {
/* Enable the GOP internal clock logic */
gop_netc_gop_clock_logic_set(priv, 1);
/* De-assert GOP unit reset */
gop_netc_gop_reset(priv, 1);
}
return 0;
}
/* Set defaults to the MVPP2 port */
static void mvpp2_defaults_set(struct mvpp2_port *port)
{
int tx_port_num, val, queue, ptxq, lrxq;
if (port->priv->hw_version == MVPP21) {
/* Configure port to loopback if needed */
if (port->flags & MVPP2_F_LOOPBACK)
mvpp2_port_loopback_set(port);
/* Update TX FIFO MIN Threshold */
val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
/* Min. TX threshold must be less than minimal packet length */
val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
}
/* Disable Legacy WRR, Disable EJP, Release from reset */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
/* Close bandwidth for all queues */
for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
ptxq = mvpp2_txq_phys(port->id, queue);
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
}
/* Set refill period to 1 usec, refill tokens
* and bucket size to maximum
*/
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8);
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
val = MVPP2_TXP_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
/* Set MaximumLowLatencyPacketSize value to 256 */
mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
/* Enable Rx cache snoop */
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_SNOOP_PKT_SIZE_MASK |
MVPP2_SNOOP_BUF_HDR_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable/disable receiving packets */
static void mvpp2_ingress_enable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val &= ~MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
static void mvpp2_ingress_disable(struct mvpp2_port *port)
{
u32 val;
int lrxq, queue;
for (lrxq = 0; lrxq < rxq_number; lrxq++) {
queue = port->rxqs[lrxq]->id;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
val |= MVPP2_RXQ_DISABLE_MASK;
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
}
}
/* Enable transmit via physical egress queue
* - HW starts take descriptors from DRAM
*/
static void mvpp2_egress_enable(struct mvpp2_port *port)
{
u32 qmap;
int queue;
int tx_port_num = mvpp2_egress_port(port);
/* Enable all initialized TXs. */
qmap = 0;
for (queue = 0; queue < txq_number; queue++) {
struct mvpp2_tx_queue *txq = port->txqs[queue];
if (txq->descs != NULL)
qmap |= (1 << queue);
}
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
}
/* Disable transmit via physical egress queue
* - HW doesn't take descriptors from DRAM
*/
static void mvpp2_egress_disable(struct mvpp2_port *port)
{
u32 reg_data;
int delay;
int tx_port_num = mvpp2_egress_port(port);
/* Issue stop command for active channels only */
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
MVPP2_TXP_SCHED_ENQ_MASK;
if (reg_data != 0)
mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
(reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
/* Wait for all Tx activity to terminate. */
delay = 0;
do {
if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
dev_warn(port->phy_dev->dev,
"Tx stop timed out, status=0x%08x\n",
reg_data);
break;
}
mdelay(1);
delay++;
/* Check port TX Command register that all
* Tx queues are stopped
*/
reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
} while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
}
/* Rx descriptors helper methods */
/* Get number of Rx descriptors occupied by received packets */
static inline int
mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
{
u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
return val & MVPP2_RXQ_OCCUPIED_MASK;
}
/* Update Rx queue status with the number of occupied and available
* Rx descriptor slots.
*/
static inline void
mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
int used_count, int free_count)
{
/* Decrement the number of used descriptors and increment count
* increment the number of free descriptors.
*/
u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
}
/* Get pointer to next RX descriptor to be processed by SW */
static inline struct mvpp2_rx_desc *
mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
{
int rx_desc = rxq->next_desc_to_proc;
rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
prefetch(rxq->descs + rxq->next_desc_to_proc);
return rxq->descs + rx_desc;
}
/* Set rx queue offset */
static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
int prxq, int offset)
{
u32 val;
/* Convert offset from bytes to units of 32 bytes */
offset = offset >> 5;
val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
/* Offset is in */
val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
MVPP2_RXQ_PACKET_OFFSET_MASK);
mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
}
/* Obtain BM cookie information from descriptor */
static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
int cpu = smp_processor_id();
int pool;
pool = (mvpp2_rxdesc_status_get(port, rx_desc) &
MVPP2_RXD_BM_POOL_ID_MASK) >>
MVPP2_RXD_BM_POOL_ID_OFFS;
return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
}
/* Tx descriptors helper methods */
/* Get number of Tx descriptors waiting to be transmitted by HW */
static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
return val & MVPP2_TXQ_PENDING_MASK;
}
/* Get pointer to next Tx descriptor to be processed (send) by HW */
static struct mvpp2_tx_desc *
mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
{
int tx_desc = txq->next_desc_to_proc;
txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
return txq->descs + tx_desc;
}
/* Update HW with number of aggregated Tx descriptors to be sent */
static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
{
/* aggregated access - relevant TXQ number is written in TX desc */
mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
}
/* Get number of sent descriptors and decrement counter.
* The number of sent descriptors is returned.
* Per-CPU access
*/
static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
/* Reading status reg resets transmitted descriptor counter */
val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
MVPP2_TRANSMITTED_COUNT_OFFSET;
}
static void mvpp2_txq_sent_counter_clear(void *arg)
{
struct mvpp2_port *port = arg;
int queue;
for (queue = 0; queue < txq_number; queue++) {
int id = port->txqs[queue]->id;
mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
}
}
/* Set max sizes for Tx queues */
static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
{
u32 val, size, mtu;
int txq, tx_port_num;
mtu = port->pkt_size * 8;
if (mtu > MVPP2_TXP_MTU_MAX)
mtu = MVPP2_TXP_MTU_MAX;
/* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
mtu = 3 * mtu;
/* Indirect access to registers */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
/* Set MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
val &= ~MVPP2_TXP_MTU_MAX;
val |= mtu;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
/* TXP token size and all TXQs token size must be larger that MTU */
val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
}
for (txq = 0; txq < txq_number; txq++) {
val = mvpp2_read(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
if (size < mtu) {
size = mtu;
val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
val |= size;
mvpp2_write(port->priv,
MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
val);
}
}
}
/* Free Tx queue skbuffs */
static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq,
struct mvpp2_txq_pcpu *txq_pcpu, int num)
{
int i;
for (i = 0; i < num; i++)
mvpp2_txq_inc_get(txq_pcpu);
}
static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->rxqs[queue];
}
static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
u32 cause)
{
int queue = fls(cause) - 1;
return port->txqs[queue];
}
/* Rx/Tx queue initialization/cleanup methods */
/* Allocate and initialize descriptors for aggr TXQ */
static int mvpp2_aggr_txq_init(struct udevice *dev,
struct mvpp2_tx_queue *aggr_txq,
int desc_num, int cpu,
struct mvpp2 *priv)
{
u32 txq_dma;
/* Allocate memory for TX descriptors */
aggr_txq->descs = buffer_loc.aggr_tx_descs;
aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs;
if (!aggr_txq->descs)
return -ENOMEM;
/* Make sure descriptor address is cache line size aligned */
BUG_ON(aggr_txq->descs !=
PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
aggr_txq->last_desc = aggr_txq->size - 1;
/* Aggr TXQ no reset WA */
aggr_txq->next_desc_to_proc = mvpp2_read(priv,
MVPP2_AGGR_TXQ_INDEX_REG(cpu));
/* Set Tx descriptors queue starting address indirect
* access
*/
if (priv->hw_version == MVPP21)
txq_dma = aggr_txq->descs_dma;
else
txq_dma = aggr_txq->descs_dma >>
MVPP22_AGGR_TXQ_DESC_ADDR_OFFS;
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma);
mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
return 0;
}
/* Create a specified Rx queue */
static int mvpp2_rxq_init(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
u32 rxq_dma;
rxq->size = port->rx_ring_size;
/* Allocate memory for RX descriptors */
rxq->descs = buffer_loc.rx_descs;
rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs;
if (!rxq->descs)
return -ENOMEM;
BUG_ON(rxq->descs !=
PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
rxq->last_desc = rxq->size - 1;
/* Zero occupied and non-occupied counters - direct access */
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
/* Set Rx descriptors queue starting address - indirect access */
mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
if (port->priv->hw_version == MVPP21)
rxq_dma = rxq->descs_dma;
else
rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS;
mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
/* Set Offset */
mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
/* Add number of descriptors ready for receiving packets */
mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
return 0;
}
/* Push packets received by the RXQ to BM pool */
static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
int rx_received, i;
rx_received = mvpp2_rxq_received(port, rxq->id);
if (!rx_received)
return;
for (i = 0; i < rx_received; i++) {
struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
u32 bm = mvpp2_bm_cookie_build(port, rx_desc);
mvpp2_pool_refill(port, bm,
mvpp2_rxdesc_dma_addr_get(port, rx_desc),
mvpp2_rxdesc_cookie_get(port, rx_desc));
}
mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
}
/* Cleanup Rx queue */
static void mvpp2_rxq_deinit(struct mvpp2_port *port,
struct mvpp2_rx_queue *rxq)
{
mvpp2_rxq_drop_pkts(port, rxq);
rxq->descs = NULL;
rxq->last_desc = 0;
rxq->next_desc_to_proc = 0;
rxq->descs_dma = 0;
/* Clear Rx descriptors queue starting address and size;
* free descriptor number
*/
mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
}
/* Create and initialize a Tx queue */
static int mvpp2_txq_init(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
u32 val;
int cpu, desc, desc_per_txq, tx_port_num;
struct mvpp2_txq_pcpu *txq_pcpu;
txq->size = port->tx_ring_size;
/* Allocate memory for Tx descriptors */
txq->descs = buffer_loc.tx_descs;
txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs;
if (!txq->descs)
return -ENOMEM;
/* Make sure descriptor address is cache line size aligned */
BUG_ON(txq->descs !=
PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
txq->last_desc = txq->size - 1;
/* Set Tx descriptors queue starting address - indirect access */
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
MVPP2_TXQ_DESC_SIZE_MASK);
mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
val &= ~MVPP2_TXQ_PENDING_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
/* Calculate base address in prefetch buffer. We reserve 16 descriptors
* for each existing TXQ.
* TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
* GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
*/
desc_per_txq = 16;
desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
(txq->log_id * desc_per_txq);
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
MVPP2_PREF_BUF_THRESH(desc_per_txq / 2));
/* WRR / EJP configuration - indirect access */
tx_port_num = mvpp2_egress_port(port);
mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
val = MVPP2_TXQ_TOKEN_SIZE_MAX;
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
val);
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->size = txq->size;
}
return 0;
}
/* Free allocated TXQ resources */
static void mvpp2_txq_deinit(struct mvpp2_port *port,
struct mvpp2_tx_queue *txq)
{
txq->descs = NULL;
txq->last_desc = 0;
txq->next_desc_to_proc = 0;
txq->descs_dma = 0;
/* Set minimum bandwidth for disabled TXQs */
mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
/* Set Tx descriptors queue starting address and size */
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
}
/* Cleanup Tx ports */
static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
{
struct mvpp2_txq_pcpu *txq_pcpu;
int delay, pending, cpu;
u32 val;
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
val |= MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
/* The napi queue has been stopped so wait for all packets
* to be transmitted.
*/
delay = 0;
do {
if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
dev_warn(port->phy_dev->dev,
"port %d: cleaning queue %d timed out\n",
port->id, txq->log_id);
break;
}
mdelay(1);
delay++;
pending = mvpp2_txq_pend_desc_num_get(port, txq);
} while (pending);
val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
/* Release all packets */
mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
/* Reset queue */
txq_pcpu->count = 0;
txq_pcpu->txq_put_index = 0;
txq_pcpu->txq_get_index = 0;
}
}
/* Cleanup all Tx queues */
static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue;
u32 val;
val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
/* Reset Tx ports and delete Tx queues */
val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
for (queue = 0; queue < txq_number; queue++) {
txq = port->txqs[queue];
mvpp2_txq_clean(port, txq);
mvpp2_txq_deinit(port, txq);
}
mvpp2_txq_sent_counter_clear(port);
val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
}
/* Cleanup all Rx queues */
static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
{
int queue;
for (queue = 0; queue < rxq_number; queue++)
mvpp2_rxq_deinit(port, port->rxqs[queue]);
}
/* Init all Rx queues for port */
static int mvpp2_setup_rxqs(struct mvpp2_port *port)
{
int queue, err;
for (queue = 0; queue < rxq_number; queue++) {
err = mvpp2_rxq_init(port, port->rxqs[queue]);
if (err)
goto err_cleanup;
}
return 0;
err_cleanup:
mvpp2_cleanup_rxqs(port);
return err;
}
/* Init all tx queues for port */
static int mvpp2_setup_txqs(struct mvpp2_port *port)
{
struct mvpp2_tx_queue *txq;
int queue, err;
for (queue = 0; queue < txq_number; queue++) {
txq = port->txqs[queue];
err = mvpp2_txq_init(port, txq);
if (err)
goto err_cleanup;
}
mvpp2_txq_sent_counter_clear(port);
return 0;
err_cleanup:
mvpp2_cleanup_txqs(port);
return err;
}
/* Adjust link */
static void mvpp2_link_event(struct mvpp2_port *port)
{
struct phy_device *phydev = port->phy_dev;
int status_change = 0;
u32 val;
if (phydev->link) {
if ((port->speed != phydev->speed) ||
(port->duplex != phydev->duplex)) {
u32 val;
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
MVPP2_GMAC_CONFIG_GMII_SPEED |
MVPP2_GMAC_CONFIG_FULL_DUPLEX |
MVPP2_GMAC_AN_SPEED_EN |
MVPP2_GMAC_AN_DUPLEX_EN);
if (phydev->duplex)
val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
if (phydev->speed == SPEED_1000 ||
phydev->speed == 2500)
val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
else if (phydev->speed == SPEED_100)
val |= MVPP2_GMAC_CONFIG_MII_SPEED;
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
port->duplex = phydev->duplex;
port->speed = phydev->speed;
}
}
if (phydev->link != port->link) {
if (!phydev->link) {
port->duplex = -1;
port->speed = 0;
}
port->link = phydev->link;
status_change = 1;
}
if (status_change) {
if (phydev->link) {
val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
val |= (MVPP2_GMAC_FORCE_LINK_PASS |
MVPP2_GMAC_FORCE_LINK_DOWN);
writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
} else {
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
}
}
}
/* Main RX/TX processing routines */
/* Display more error info */
static void mvpp2_rx_error(struct mvpp2_port *port,
struct mvpp2_rx_desc *rx_desc)
{
u32 status = mvpp2_rxdesc_status_get(port, rx_desc);
size_t sz = mvpp2_rxdesc_size_get(port, rx_desc);
switch (status & MVPP2_RXD_ERR_CODE_MASK) {
case MVPP2_RXD_ERR_CRC:
dev_err(port->phy_dev->dev,
"bad rx status %08x (crc error), size=%zu\n", status,
sz);
break;
case MVPP2_RXD_ERR_OVERRUN:
dev_err(port->phy_dev->dev,
"bad rx status %08x (overrun error), size=%zu\n",
status, sz);
break;
case MVPP2_RXD_ERR_RESOURCE:
dev_err(port->phy_dev->dev,
"bad rx status %08x (resource error), size=%zu\n",
status, sz);
break;
}
}
/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
static int mvpp2_rx_refill(struct mvpp2_port *port,
struct mvpp2_bm_pool *bm_pool,
u32 bm, dma_addr_t dma_addr)
{
mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr);
return 0;
}
/* Set hw internals when starting port */
static void mvpp2_start_dev(struct mvpp2_port *port)
{
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
mvpp2_gmac_max_rx_size_set(port);
default:
break;
}
mvpp2_txp_max_tx_size_set(port);
if (port->priv->hw_version == MVPP21)
mvpp2_port_enable(port);
else
gop_port_enable(port, 1);
}
/* Set hw internals when stopping port */
static void mvpp2_stop_dev(struct mvpp2_port *port)
{
/* Stop new packets from arriving to RXQs */
mvpp2_ingress_disable(port);
mvpp2_egress_disable(port);
if (port->priv->hw_version == MVPP21)
mvpp2_port_disable(port);
else
gop_port_enable(port, 0);
}
static void mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port)
{
struct phy_device *phy_dev;
if (!port->init || port->link == 0) {
phy_dev = dm_mdio_phy_connect(port->mdio_dev, port->phyaddr,
dev, port->phy_interface);
/*
* If the phy doesn't match with any existing u-boot drivers the
* phy framework will connect it to generic one which
* uid == 0xffffffff. In this case act as if the phy wouldn't be
* declared in dts. Otherwise in case of 3310 (for which the
* driver doesn't exist) the link will not be correctly
* detected. Removing phy entry from dts in case of 3310 is not
* an option because it is required for the phy_fw_down
* procedure.
*/
if (phy_dev &&
phy_dev->drv->uid == 0xffffffff) {/* Generic phy */
dev_warn(port->phy_dev->dev,
"Marking phy as invalid, link will not be checked\n");
/* set phy_addr to invalid value */
port->phyaddr = PHY_MAX_ADDR;
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
return;
}
port->phy_dev = phy_dev;
if (!phy_dev) {
dev_err(port->phy_dev->dev, "cannot connect to phy\n");
return;
}
phy_dev->supported &= PHY_GBIT_FEATURES;
phy_dev->advertising = phy_dev->supported;
port->phy_dev = phy_dev;
port->link = 0;
port->duplex = 0;
port->speed = 0;
phy_config(phy_dev);
phy_startup(phy_dev);
if (!phy_dev->link)
printf("%s: No link\n", phy_dev->dev->name);
else
port->init = 1;
} else {
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
}
}
static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port)
{
unsigned char mac_bcast[ETH_ALEN] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int err;
err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
if (err) {
dev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
return err;
}
err = mvpp2_prs_mac_da_accept(port->priv, port->id,
port->dev_addr, true);
if (err) {
dev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
return err;
}
err = mvpp2_prs_def_flow(port);
if (err) {
dev_err(dev, "mvpp2_prs_def_flow failed\n");
return err;
}
/* Allocate the Rx/Tx queues */
err = mvpp2_setup_rxqs(port);
if (err) {
dev_err(port->phy_dev->dev, "cannot allocate Rx queues\n");
return err;
}
err = mvpp2_setup_txqs(port);
if (err) {
dev_err(port->phy_dev->dev, "cannot allocate Tx queues\n");
return err;
}
if (port->phyaddr < PHY_MAX_ADDR) {
mvpp2_phy_connect(dev, port);
mvpp2_link_event(port);
} else {
mvpp2_egress_enable(port);
mvpp2_ingress_enable(port);
}
mvpp2_start_dev(port);
return 0;
}
/* No Device ops here in U-Boot */
/* Driver initialization */
static void mvpp2_port_power_up(struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
/* On PPv2.2 the GoP / interface configuration has already been done */
if (priv->hw_version == MVPP21)
mvpp2_port_mii_set(port);
mvpp2_port_periodic_xon_disable(port);
if (priv->hw_version == MVPP21)
mvpp2_port_fc_adv_enable(port);
mvpp2_port_reset(port);
}
/* Initialize port HW */
static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port)
{
struct mvpp2 *priv = port->priv;
struct mvpp2_txq_pcpu *txq_pcpu;
int queue, cpu, err;
if (port->first_rxq + rxq_number >
MVPP2_MAX_PORTS * priv->max_port_rxqs)
return -EINVAL;
/* Disable port */
mvpp2_egress_disable(port);
if (priv->hw_version == MVPP21)
mvpp2_port_disable(port);
else
gop_port_enable(port, 0);
port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
GFP_KERNEL);
if (!port->txqs)
return -ENOMEM;
/* Associate physical Tx queues to this port and initialize.
* The mapping is predefined.
*/
for (queue = 0; queue < txq_number; queue++) {
int queue_phy_id = mvpp2_txq_phys(port->id, queue);
struct mvpp2_tx_queue *txq;
txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
if (!txq)
return -ENOMEM;
txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu),
GFP_KERNEL);
if (!txq->pcpu)
return -ENOMEM;
txq->id = queue_phy_id;
txq->log_id = queue;
txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
for_each_present_cpu(cpu) {
txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
txq_pcpu->cpu = cpu;
}
port->txqs[queue] = txq;
}
port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
GFP_KERNEL);
if (!port->rxqs)
return -ENOMEM;
/* Allocate and initialize Rx queue for this port */
for (queue = 0; queue < rxq_number; queue++) {
struct mvpp2_rx_queue *rxq;
/* Map physical Rx queue to port's logical Rx queue */
rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
if (!rxq)
return -ENOMEM;
/* Map this Rx queue to a physical queue */
rxq->id = port->first_rxq + queue;
rxq->port = port->id;
rxq->logic_rxq = queue;
port->rxqs[queue] = rxq;
}
/* Create Rx descriptor rings */
for (queue = 0; queue < rxq_number; queue++) {
struct mvpp2_rx_queue *rxq = port->rxqs[queue];
rxq->size = port->rx_ring_size;
rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
rxq->time_coal = MVPP2_RX_COAL_USEC;
}
mvpp2_ingress_disable(port);
/* Port default configuration */
mvpp2_defaults_set(port);
/* Port's classifier configuration */
mvpp2_cls_oversize_rxq_set(port);
mvpp2_cls_port_config(port);
/* Provide an initial Rx packet size */
port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN);
/* Initialize pools for swf */
err = mvpp2_swf_bm_pool_init(port);
if (err)
return err;
return 0;
}
static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port)
{
int port_node = dev_of_offset(dev);
int phy_node;
u32 id;
u32 phyaddr = 0;
int fixed_link = 0;
int ret;
phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy");
fixed_link = fdt_subnode_offset(gd->fdt_blob, port_node, "fixed-link");
if (phy_node > 0) {
int parent;
if (fixed_link != -FDT_ERR_NOTFOUND) {
/* phy_addr is set to invalid value for fixed links */
phyaddr = PHY_MAX_ADDR;
} else {
phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node,
"reg", 0);
if (phyaddr < 0) {
dev_err(dev, "could not find phy address\n");
return -1;
}
}
parent = fdt_parent_offset(gd->fdt_blob, phy_node);
ret = uclass_get_device_by_of_offset(UCLASS_MDIO, parent,
&port->mdio_dev);
if (ret)
return ret;
} else {
/* phy_addr is set to invalid value */
phyaddr = PHY_MAX_ADDR;
}
port->phy_interface = dev_read_phy_mode(dev);
if (port->phy_interface == PHY_INTERFACE_MODE_NA) {
dev_err(dev, "incorrect phy mode\n");
return -EINVAL;
}
id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1);
if (id == -1) {
dev_err(dev, "missing port-id value\n");
return -EINVAL;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "phy-reset-gpios", 0,
&port->phy_reset_gpio, GPIOD_IS_OUT);
gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0,
&port->phy_tx_disable_gpio, GPIOD_IS_OUT);
#endif
port->id = id;
if (port->priv->hw_version == MVPP21)
port->first_rxq = port->id * rxq_number;
else
port->first_rxq = port->id * port->priv->max_port_rxqs;
port->phyaddr = phyaddr;
return 0;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
/* Port GPIO initialization */
static void mvpp2_gpio_init(struct mvpp2_port *port)
{
if (dm_gpio_is_valid(&port->phy_reset_gpio)) {
dm_gpio_set_value(&port->phy_reset_gpio, 1);
mdelay(10);
dm_gpio_set_value(&port->phy_reset_gpio, 0);
}
if (dm_gpio_is_valid(&port->phy_tx_disable_gpio))
dm_gpio_set_value(&port->phy_tx_disable_gpio, 0);
}
#endif
/* Ports initialization */
static int mvpp2_port_probe(struct udevice *dev,
struct mvpp2_port *port,
int port_node,
struct mvpp2 *priv)
{
int err;
port->tx_ring_size = MVPP2_MAX_TXD;
port->rx_ring_size = MVPP2_MAX_RXD;
err = mvpp2_port_init(dev, port);
if (err < 0) {
dev_err(dev, "failed to init port %d\n", port->id);
return err;
}
mvpp2_port_power_up(port);
#if CONFIG_IS_ENABLED(DM_GPIO)
mvpp2_gpio_init(port);
#endif
priv->port_list[port->id] = port;
priv->num_ports++;
return 0;
}
/* Initialize decoding windows */
static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
struct mvpp2 *priv)
{
u32 win_enable;
int i;
for (i = 0; i < 6; i++) {
mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
if (i < 4)
mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
}
win_enable = 0;
for (i = 0; i < dram->num_cs; i++) {
const struct mbus_dram_window *cs = dram->cs + i;
mvpp2_write(priv, MVPP2_WIN_BASE(i),
(cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
dram->mbus_dram_target_id);
mvpp2_write(priv, MVPP2_WIN_SIZE(i),
(cs->size - 1) & 0xffff0000);
win_enable |= (1 << i);
}
mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
}
/* Initialize Rx FIFO's */
static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
{
int port;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
if (priv->hw_version == MVPP22) {
if (port == 0) {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE);
} else if (port == 1) {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE);
} else {
mvpp2_write(priv,
MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE);
mvpp2_write(priv,
MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE);
}
} else {
mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
MVPP21_RX_FIFO_PORT_DATA_SIZE);
mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
MVPP21_RX_FIFO_PORT_ATTR_SIZE);
}
}
mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
MVPP2_RX_FIFO_PORT_MIN_PKT);
mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
}
/* Initialize Tx FIFO's */
static void mvpp2_tx_fifo_init(struct mvpp2 *priv)
{
int port, val;
for (port = 0; port < MVPP2_MAX_PORTS; port++) {
/* Port 0 supports 10KB TX FIFO */
if (port == 0) {
val = MVPP2_TX_FIFO_DATA_SIZE_10KB &
MVPP22_TX_FIFO_SIZE_MASK;
} else {
val = MVPP2_TX_FIFO_DATA_SIZE_3KB &
MVPP22_TX_FIFO_SIZE_MASK;
}
mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val);
}
}
static void mvpp2_axi_init(struct mvpp2 *priv)
{
u32 val, rdval, wrval;
mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0);
/* AXI Bridge Configuration */
rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_ATTR_CACHE_OFFS;
wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_ATTR_DOMAIN_OFFS;
/* BM */
mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval);
/* Descriptors */
mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval);
mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval);
/* Buffer Data */
mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval);
mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval);
val = MVPP22_AXI_CODE_CACHE_NON_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val);
mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_RD_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val);
val = MVPP22_AXI_CODE_CACHE_WR_CACHE
<< MVPP22_AXI_CODE_CACHE_OFFS;
val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM
<< MVPP22_AXI_CODE_DOMAIN_OFFS;
mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val);
}
/* Initialize network controller common part HW */
static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv)
{
const struct mbus_dram_target_info *dram_target_info;
int err, i;
u32 val;
/* Checks for hardware constraints (U-Boot uses only one rxq) */
if ((rxq_number > priv->max_port_rxqs) ||
(txq_number > MVPP2_MAX_TXQ)) {
dev_err(dev, "invalid queue size parameter\n");
return -EINVAL;
}
if (priv->hw_version == MVPP22)
mvpp2_axi_init(priv);
else {
/* MBUS windows configuration */
dram_target_info = mvebu_mbus_dram_info();
if (dram_target_info)
mvpp2_conf_mbus_windows(dram_target_info, priv);
}
if (priv->hw_version == MVPP21) {
/* Disable HW PHY polling */
val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
val |= MVPP2_PHY_AN_STOP_SMI0_MASK;
writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG);
} else {
/* Enable HW PHY polling */
val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
val |= MVPP22_SMI_POLLING_EN;
writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG);
}
/* Allocate and initialize aggregated TXQs */
priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(),
sizeof(struct mvpp2_tx_queue),
GFP_KERNEL);
if (!priv->aggr_txqs)
return -ENOMEM;
for_each_present_cpu(i) {
priv->aggr_txqs[i].id = i;
priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i],
MVPP2_AGGR_TXQ_SIZE, i, priv);
if (err < 0)
return err;
}
/* Rx Fifo Init */
mvpp2_rx_fifo_init(priv);
/* Tx Fifo Init */
if (priv->hw_version == MVPP22)
mvpp2_tx_fifo_init(priv);
if (priv->hw_version == MVPP21)
writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
/* Allow cache snoop when transmiting packets */
mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
/* Buffer Manager initialization */
err = mvpp2_bm_init(dev, priv);
if (err < 0)
return err;
/* Parser default initialization */
err = mvpp2_prs_default_init(dev, priv);
if (err < 0)
return err;
/* Classifier default initialization */
mvpp2_cls_init(priv);
return 0;
}
static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2_rx_desc *rx_desc;
struct mvpp2_bm_pool *bm_pool;
dma_addr_t dma_addr;
u32 bm, rx_status;
int pool, rx_bytes, err;
int rx_received;
struct mvpp2_rx_queue *rxq;
u8 *data;
if (port->phyaddr < PHY_MAX_ADDR)
if (!port->phy_dev->link)
return 0;
/* Process RX packets */
rxq = port->rxqs[0];
/* Get number of received packets and clamp the to-do */
rx_received = mvpp2_rxq_received(port, rxq->id);
/* Return if no packets are received */
if (!rx_received)
return 0;
rx_desc = mvpp2_rxq_next_desc_get(rxq);
rx_status = mvpp2_rxdesc_status_get(port, rx_desc);
rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc);
rx_bytes -= MVPP2_MH_SIZE;
dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc);
bm = mvpp2_bm_cookie_build(port, rx_desc);
pool = mvpp2_bm_cookie_pool_get(bm);
bm_pool = &port->priv->bm_pools[pool];
/* In case of an error, release the requested buffer pointer
* to the Buffer Manager. This request process is controlled
* by the hardware, and the information about the buffer is
* comprised by the RX descriptor.
*/
if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
mvpp2_rx_error(port, rx_desc);
/* Return the buffer to the pool */
mvpp2_pool_refill(port, bm, dma_addr, dma_addr);
return 0;
}
err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr);
if (err) {
dev_err(port->phy_dev->dev, "failed to refill BM pools\n");
return 0;
}
/* Update Rx queue management counters */
mb();
mvpp2_rxq_status_update(port, rxq->id, 1, 1);
/* give packet to stack - skip on first n bytes */
data = (u8 *)dma_addr + 2 + 32;
if (rx_bytes <= 0)
return 0;
/*
* No cache invalidation needed here, since the rx_buffer's are
* located in a uncached memory region
*/
*packetp = data;
return rx_bytes;
}
static int mvpp2_send(struct udevice *dev, void *packet, int length)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2_tx_queue *txq, *aggr_txq;
struct mvpp2_tx_desc *tx_desc;
int tx_done;
int timeout;
if (port->phyaddr < PHY_MAX_ADDR)
if (!port->phy_dev->link)
return 0;
txq = port->txqs[0];
aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
/* Get a descriptor for the first part of the packet */
tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
mvpp2_txdesc_txq_set(port, tx_desc, txq->id);
mvpp2_txdesc_size_set(port, tx_desc, length);
mvpp2_txdesc_offset_set(port, tx_desc,
(dma_addr_t)packet & MVPP2_TX_DESC_ALIGN);
mvpp2_txdesc_dma_addr_set(port, tx_desc,
(dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN);
/* First and Last descriptor */
mvpp2_txdesc_cmd_set(port, tx_desc,
MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE
| MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC);
/* Flush tx data */
flush_dcache_range((unsigned long)packet,
(unsigned long)packet + ALIGN(length, PKTALIGN));
/* Enable transmit */
mb();
mvpp2_aggr_txq_pend_desc_add(port, 1);
mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
timeout = 0;
do {
if (timeout++ > 10000) {
printf("timeout: packet not sent from aggregated to phys TXQ\n");
return 0;
}
tx_done = mvpp2_txq_pend_desc_num_get(port, txq);
} while (tx_done);
timeout = 0;
do {
if (timeout++ > 10000) {
printf("timeout: packet not sent\n");
return 0;
}
tx_done = mvpp2_txq_sent_desc_proc(port, txq);
} while (!tx_done);
return 0;
}
static int mvpp2_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct mvpp2_port *port = dev_get_priv(dev);
/* Load current MAC address */
memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN);
/* Reconfigure parser accept the original MAC address */
mvpp2_prs_update_mac_da(port, port->dev_addr);
switch (port->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_RGMII_ID:
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
mvpp2_port_power_up(port);
default:
break;
}
mvpp2_open(dev, port);
return 0;
}
static void mvpp2_stop(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
mvpp2_stop_dev(port);
mvpp2_cleanup_rxqs(port);
mvpp2_cleanup_txqs(port);
}
static int mvpp2_write_hwaddr(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
return mvpp2_prs_update_mac_da(port, port->dev_addr);
}
static int mvpp2_base_probe(struct udevice *dev)
{
struct mvpp2 *priv = dev_get_priv(dev);
void *bd_space;
u32 size = 0;
int i;
/* Save hw-version */
priv->hw_version = dev_get_driver_data(dev);
/*
* U-Boot special buffer handling:
*
* Allocate buffer area for descs and rx_buffers. This is only
* done once for all interfaces. As only one interface can
* be active. Make this area DMA-safe by disabling the D-cache
*/
if (!buffer_loc_init) {
/* Align buffer area for descs and rx_buffers to 1MiB */
bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE);
mmu_set_region_dcache_behaviour((unsigned long)bd_space,
BD_SPACE, DCACHE_OFF);
buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space;
size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE;
buffer_loc.tx_descs =
(struct mvpp2_tx_desc *)((unsigned long)bd_space + size);
size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE;
buffer_loc.rx_descs =
(struct mvpp2_rx_desc *)((unsigned long)bd_space + size);
size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
buffer_loc.bm_pool[i] =
(unsigned long *)((unsigned long)bd_space + size);
if (priv->hw_version == MVPP21)
size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32);
else
size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64);
}
for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) {
buffer_loc.rx_buffer[i] =
(unsigned long *)((unsigned long)bd_space + size);
size += RX_BUFFER_SIZE;
}
/* Clear the complete area so that all descriptors are cleared */
memset(bd_space, 0, size);
buffer_loc_init = 1;
}
/* Save base addresses for later use */
priv->base = devfdt_get_addr_index_ptr(dev, 0);
if (!priv->base)
return -EINVAL;
if (priv->hw_version == MVPP21) {
priv->lms_base = devfdt_get_addr_index_ptr(dev, 1);
if (!priv->lms_base)
return -EINVAL;
} else {
priv->iface_base = devfdt_get_addr_index_ptr(dev, 1);
if (!priv->iface_base)
return -EINVAL;
/* Store common base addresses for all ports */
priv->mpcs_base = priv->iface_base + MVPP22_MPCS;
priv->xpcs_base = priv->iface_base + MVPP22_XPCS;
priv->rfu1_base = priv->iface_base + MVPP22_RFU1;
}
if (priv->hw_version == MVPP21)
priv->max_port_rxqs = 8;
else
priv->max_port_rxqs = 32;
return 0;
}
static int mvpp2_probe(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2 *priv = dev_get_priv(dev->parent);
int err;
/* Only call the probe function for the parent once */
if (!priv->probe_done)
err = mvpp2_base_probe(dev->parent);
port->priv = priv;
err = phy_info_parse(dev, port);
if (err)
return err;
/*
* We need the port specific io base addresses at this stage, since
* gop_port_init() accesses these registers
*/
if (priv->hw_version == MVPP21) {
int priv_common_regs_num = 2;
port->base = devfdt_get_addr_index_ptr(
dev->parent, priv_common_regs_num + port->id);
if (!port->base)
return -EINVAL;
} else {
port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev),
"gop-port-id", -1);
if (port->id == -1) {
dev_err(dev, "missing gop-port-id value\n");
return -EINVAL;
}
port->base = priv->iface_base + MVPP22_PORT_BASE +
port->gop_id * MVPP22_PORT_OFFSET;
/* GoP Init */
gop_port_init(port);
}
if (!priv->probe_done) {
/* Initialize network controller */
err = mvpp2_init(dev, priv);
if (err < 0) {
dev_err(dev, "failed to initialize controller\n");
return err;
}
priv->num_ports = 0;
priv->probe_done = 1;
}
err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv);
if (err)
return err;
if (priv->hw_version == MVPP22) {
priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id,
port->phy_interface);
/* Netcomplex configurations for all ports */
gop_netc_init(priv, MV_NETC_FIRST_PHASE);
gop_netc_init(priv, MV_NETC_SECOND_PHASE);
}
return 0;
}
/*
* Empty BM pool and stop its activity before the OS is started
*/
static int mvpp2_remove(struct udevice *dev)
{
struct mvpp2_port *port = dev_get_priv(dev);
struct mvpp2 *priv = port->priv;
int i;
priv->num_ports--;
if (priv->num_ports)
return 0;
for (i = 0; i < MVPP2_BM_POOLS_NUM; i++)
mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]);
return 0;
}
static const struct eth_ops mvpp2_ops = {
.start = mvpp2_start,
.send = mvpp2_send,
.recv = mvpp2_recv,
.stop = mvpp2_stop,
.write_hwaddr = mvpp2_write_hwaddr
};
static struct driver mvpp2_driver = {
.name = "mvpp2",
.id = UCLASS_ETH,
.probe = mvpp2_probe,
.remove = mvpp2_remove,
.ops = &mvpp2_ops,
.priv_auto = sizeof(struct mvpp2_port),
.plat_auto = sizeof(struct eth_pdata),
.flags = DM_FLAG_ACTIVE_DMA,
};
/*
* Use a MISC device to bind the n instances (child nodes) of the
* network base controller in UCLASS_ETH.
*/
static int mvpp2_base_bind(struct udevice *parent)
{
const void *blob = gd->fdt_blob;
int node = dev_of_offset(parent);
struct uclass_driver *drv;
struct udevice *dev;
struct eth_pdata *plat;
char *name;
int subnode;
u32 id;
int base_id_add;
/* Lookup eth driver */
drv = lists_uclass_lookup(UCLASS_ETH);
if (!drv) {
puts("Cannot find eth driver\n");
return -ENOENT;
}
base_id_add = base_id;
fdt_for_each_subnode(subnode, blob, node) {
/* Increment base_id for all subnodes, also the disabled ones */
base_id++;
/* Skip disabled ports */
if (!fdtdec_get_is_enabled(blob, subnode))
continue;
plat = calloc(1, sizeof(*plat));
if (!plat)
return -ENOMEM;
id = fdtdec_get_int(blob, subnode, "port-id", -1);
id += base_id_add;
name = calloc(1, 16);
if (!name) {
free(plat);
return -ENOMEM;
}
sprintf(name, "mvpp2-%d", id);
/* Create child device UCLASS_ETH and bind it */
device_bind(parent, &mvpp2_driver, name, plat,
offset_to_ofnode(subnode), &dev);
}
return 0;
}
static const struct udevice_id mvpp2_ids[] = {
{
.compatible = "marvell,armada-375-pp2",
.data = MVPP21,
},
{
.compatible = "marvell,armada-7k-pp22",
.data = MVPP22,
},
{ }
};
U_BOOT_DRIVER(mvpp2_base) = {
.name = "mvpp2_base",
.id = UCLASS_MISC,
.of_match = mvpp2_ids,
.bind = mvpp2_base_bind,
.priv_auto = sizeof(struct mvpp2),
};