| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Library to support early TI EVM EEPROM handling |
| * |
| * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/ |
| * Lokesh Vutla |
| * Steve Kipisz |
| */ |
| |
| #include <log.h> |
| #include <net.h> |
| #include <linux/types.h> |
| #include <asm/arch/hardware.h> |
| #include <asm/omap_common.h> |
| #include <dm/uclass.h> |
| #include <env.h> |
| #include <i2c.h> |
| #include <mmc.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <linux/printk.h> |
| |
| #include "board_detect.h" |
| |
| #if !CONFIG_IS_ENABLED(DM_I2C) |
| /** |
| * ti_i2c_eeprom_init - Initialize an i2c bus and probe for a device |
| * @i2c_bus: i2c bus number to initialize |
| * @dev_addr: Device address to probe for |
| * |
| * Return: 0 on success or corresponding error on failure. |
| */ |
| static int __maybe_unused ti_i2c_eeprom_init(int i2c_bus, int dev_addr) |
| { |
| int rc; |
| |
| if (i2c_bus >= 0) { |
| rc = i2c_set_bus_num(i2c_bus); |
| if (rc) |
| return rc; |
| } |
| |
| return i2c_probe(dev_addr); |
| } |
| |
| /** |
| * ti_i2c_eeprom_read - Read data from an EEPROM |
| * @dev_addr: The device address of the EEPROM |
| * @offset: Offset to start reading in the EEPROM |
| * @ep: Pointer to a buffer to read into |
| * @epsize: Size of buffer |
| * |
| * Return: 0 on success or corresponding result of i2c_read |
| */ |
| static int __maybe_unused ti_i2c_eeprom_read(int dev_addr, int offset, |
| uchar *ep, int epsize) |
| { |
| return i2c_read(dev_addr, offset, 2, ep, epsize); |
| } |
| #endif |
| |
| /** |
| * ti_eeprom_string_cleanup() - Handle eeprom programming errors |
| * @s: eeprom string (should be NULL terminated) |
| * |
| * Some Board manufacturers do not add a NULL termination at the |
| * end of string, instead some binary information is kludged in, hence |
| * convert the string to just printable characters of ASCII chart. |
| */ |
| static void __maybe_unused ti_eeprom_string_cleanup(char *s) |
| { |
| int i, l; |
| |
| l = strlen(s); |
| for (i = 0; i < l; i++, s++) |
| if (*s < ' ' || *s > '~') { |
| *s = 0; |
| break; |
| } |
| } |
| |
| __weak void gpi2c_init(void) |
| { |
| } |
| |
| static int __maybe_unused ti_i2c_eeprom_get(int bus_addr, int dev_addr, |
| u32 header, u32 size, uint8_t *ep) |
| { |
| int rc; |
| uint8_t offset_test; |
| bool one_byte_addressing = true; |
| |
| #if CONFIG_IS_ENABLED(DM_I2C) |
| struct udevice *dev; |
| struct udevice *bus; |
| |
| rc = uclass_get_device_by_seq(UCLASS_I2C, bus_addr, &bus); |
| if (rc) |
| return rc; |
| rc = dm_i2c_probe(bus, dev_addr, 0, &dev); |
| if (rc) |
| return rc; |
| |
| /* |
| * Read the header first then only read the other contents. |
| */ |
| rc = i2c_set_chip_offset_len(dev, 1); |
| if (rc) |
| return rc; |
| |
| /* |
| * Skip checking result here since this could be a valid i2c read fail |
| * on some boards that use 2 byte addressing. |
| * We must allow for fall through to check the data if 2 byte |
| * addressing works |
| */ |
| (void)dm_i2c_read(dev, 0, ep, size); |
| |
| if (*((u32 *)ep) != header) |
| one_byte_addressing = false; |
| |
| /* |
| * Handle case of bad 2 byte eeproms that responds to 1 byte addressing |
| * but gets stuck in const addressing when read requests are performed |
| * on offsets. We perform an offset test to make sure it is not a 2 byte |
| * eeprom that works with 1 byte addressing but just without an offset |
| */ |
| |
| rc = dm_i2c_read(dev, 0x1, &offset_test, sizeof(offset_test)); |
| |
| if (offset_test != ((header >> 8) & 0xFF)) |
| one_byte_addressing = false; |
| |
| /* Corrupted data??? */ |
| if (!one_byte_addressing) { |
| /* |
| * read the eeprom header using i2c again, but use only a |
| * 2 byte address (some newer boards need this..) |
| */ |
| rc = i2c_set_chip_offset_len(dev, 2); |
| if (rc) |
| return rc; |
| |
| rc = dm_i2c_read(dev, 0, ep, size); |
| if (rc) |
| return rc; |
| } |
| if (*((u32 *)ep) != header) |
| return -1; |
| #else |
| u32 byte; |
| |
| gpi2c_init(); |
| rc = ti_i2c_eeprom_init(bus_addr, dev_addr); |
| if (rc) |
| return rc; |
| |
| /* |
| * Read the header first then only read the other contents. |
| */ |
| byte = 1; |
| |
| /* |
| * Skip checking result here since this could be a valid i2c read fail |
| * on some boards that use 2 byte addressing. |
| * We must allow for fall through to check the data if 2 byte |
| * addressing works |
| */ |
| (void)i2c_read(dev_addr, 0x0, byte, ep, size); |
| |
| if (*((u32 *)ep) != header) |
| one_byte_addressing = false; |
| |
| /* |
| * Handle case of bad 2 byte eeproms that responds to 1 byte addressing |
| * but gets stuck in const addressing when read requests are performed |
| * on offsets. We perform an offset test to make sure it is not a 2 byte |
| * eeprom that works with 1 byte addressing but just without an offset |
| */ |
| |
| rc = i2c_read(dev_addr, 0x1, byte, &offset_test, sizeof(offset_test)); |
| |
| if (offset_test != ((header >> 8) & 0xFF)) |
| one_byte_addressing = false; |
| |
| /* Corrupted data??? */ |
| if (!one_byte_addressing) { |
| /* |
| * read the eeprom header using i2c again, but use only a |
| * 2 byte address (some newer boards need this..) |
| */ |
| byte = 2; |
| rc = i2c_read(dev_addr, 0x0, byte, ep, size); |
| if (rc) |
| return rc; |
| } |
| if (*((u32 *)ep) != header) |
| return -1; |
| #endif |
| return 0; |
| } |
| |
| int __maybe_unused ti_emmc_boardid_get(void) |
| { |
| int rc; |
| struct udevice *dev; |
| struct mmc *mmc; |
| struct ti_common_eeprom *ep; |
| struct ti_am_eeprom brdid; |
| struct blk_desc *bdesc; |
| uchar *buffer; |
| |
| ep = TI_EEPROM_DATA; |
| if (ep->header == TI_EEPROM_HEADER_MAGIC) |
| return 0; /* EEPROM has already been read */ |
| |
| /* Initialize with a known bad marker for emmc fails.. */ |
| ep->header = TI_DEAD_EEPROM_MAGIC; |
| ep->name[0] = 0x0; |
| ep->version[0] = 0x0; |
| ep->serial[0] = 0x0; |
| ep->config[0] = 0x0; |
| |
| /* uclass object initialization */ |
| rc = mmc_initialize(NULL); |
| if (rc) |
| return rc; |
| |
| /* Set device to /dev/mmcblk1 */ |
| rc = uclass_get_device(UCLASS_MMC, 1, &dev); |
| if (rc) |
| return rc; |
| |
| /* Grab the mmc device */ |
| mmc = mmc_get_mmc_dev(dev); |
| if (!mmc) |
| return -ENODEV; |
| |
| /* mmc hardware initialization routine */ |
| mmc_init(mmc); |
| |
| /* Set partition to /dev/mmcblk1boot1 */ |
| rc = mmc_switch_part(mmc, 2); |
| if (rc) |
| return rc; |
| |
| buffer = malloc(mmc->read_bl_len); |
| if (!buffer) |
| return -ENOMEM; |
| |
| bdesc = mmc_get_blk_desc(mmc); |
| |
| /* blk_dread returns the number of blocks read*/ |
| if (blk_dread(bdesc, 0L, 1, buffer) != 1) { |
| rc = -EIO; |
| goto cleanup; |
| } |
| |
| memcpy(&brdid, buffer, sizeof(brdid)); |
| |
| /* Write out the ep struct values */ |
| ep->header = brdid.header; |
| strlcpy(ep->name, brdid.name, TI_EEPROM_HDR_NAME_LEN + 1); |
| ti_eeprom_string_cleanup(ep->name); |
| strlcpy(ep->version, brdid.version, TI_EEPROM_HDR_REV_LEN + 1); |
| ti_eeprom_string_cleanup(ep->version); |
| strlcpy(ep->serial, brdid.serial, TI_EEPROM_HDR_SERIAL_LEN + 1); |
| ti_eeprom_string_cleanup(ep->serial); |
| |
| cleanup: |
| free(buffer); |
| |
| return rc; |
| } |
| |
| int __maybe_unused ti_i2c_eeprom_am_set(const char *name, const char *rev) |
| { |
| struct ti_common_eeprom *ep; |
| |
| if (!name || !rev) |
| return -1; |
| |
| ep = TI_EEPROM_DATA; |
| if (ep->header == TI_EEPROM_HEADER_MAGIC) |
| goto already_set; |
| |
| /* Set to 0 all fields */ |
| memset(ep, 0, sizeof(*ep)); |
| strncpy(ep->name, name, TI_EEPROM_HDR_NAME_LEN); |
| strncpy(ep->version, rev, TI_EEPROM_HDR_REV_LEN); |
| /* Some dummy serial number to identify the platform */ |
| strncpy(ep->serial, "0000", TI_EEPROM_HDR_SERIAL_LEN); |
| /* Mark it with a valid header */ |
| ep->header = TI_EEPROM_HEADER_MAGIC; |
| |
| already_set: |
| return 0; |
| } |
| |
| int __maybe_unused ti_i2c_eeprom_am_get(int bus_addr, int dev_addr) |
| { |
| int rc; |
| struct ti_am_eeprom am_ep; |
| struct ti_common_eeprom *ep; |
| |
| ep = TI_EEPROM_DATA; |
| #ifndef CONFIG_SPL_BUILD |
| if (ep->header == TI_EEPROM_HEADER_MAGIC) |
| return 0; /* EEPROM has already been read */ |
| #endif |
| |
| /* Initialize with a known bad marker for i2c fails.. */ |
| ep->header = TI_DEAD_EEPROM_MAGIC; |
| ep->name[0] = 0x0; |
| ep->version[0] = 0x0; |
| ep->serial[0] = 0x0; |
| ep->config[0] = 0x0; |
| |
| rc = ti_i2c_eeprom_get(bus_addr, dev_addr, TI_EEPROM_HEADER_MAGIC, |
| sizeof(am_ep), (uint8_t *)&am_ep); |
| if (rc) |
| return rc; |
| |
| ep->header = am_ep.header; |
| strlcpy(ep->name, am_ep.name, TI_EEPROM_HDR_NAME_LEN + 1); |
| ti_eeprom_string_cleanup(ep->name); |
| |
| /* BeagleBone Green '1' eeprom, board_rev: 0x1a 0x00 0x00 0x00 */ |
| if (am_ep.version[0] == 0x1a && am_ep.version[1] == 0x00 && |
| am_ep.version[2] == 0x00 && am_ep.version[3] == 0x00) |
| strlcpy(ep->version, "BBG1", TI_EEPROM_HDR_REV_LEN + 1); |
| else |
| strlcpy(ep->version, am_ep.version, TI_EEPROM_HDR_REV_LEN + 1); |
| ti_eeprom_string_cleanup(ep->version); |
| strlcpy(ep->serial, am_ep.serial, TI_EEPROM_HDR_SERIAL_LEN + 1); |
| ti_eeprom_string_cleanup(ep->serial); |
| strlcpy(ep->config, am_ep.config, TI_EEPROM_HDR_CONFIG_LEN + 1); |
| ti_eeprom_string_cleanup(ep->config); |
| |
| memcpy(ep->mac_addr, am_ep.mac_addr, |
| TI_EEPROM_HDR_NO_OF_MAC_ADDR * TI_EEPROM_HDR_ETH_ALEN); |
| |
| return 0; |
| } |
| |
| int __maybe_unused ti_i2c_eeprom_dra7_get(int bus_addr, int dev_addr) |
| { |
| int rc, offset = 0; |
| struct dra7_eeprom dra7_ep; |
| struct ti_common_eeprom *ep; |
| |
| ep = TI_EEPROM_DATA; |
| #ifndef CONFIG_SPL_BUILD |
| if (ep->header == DRA7_EEPROM_HEADER_MAGIC) |
| return 0; /* EEPROM has already been read */ |
| #endif |
| |
| /* Initialize with a known bad marker for i2c fails.. */ |
| ep->header = TI_DEAD_EEPROM_MAGIC; |
| ep->name[0] = 0x0; |
| ep->version[0] = 0x0; |
| ep->serial[0] = 0x0; |
| ep->config[0] = 0x0; |
| ep->emif1_size = 0; |
| ep->emif2_size = 0; |
| |
| rc = ti_i2c_eeprom_get(bus_addr, dev_addr, DRA7_EEPROM_HEADER_MAGIC, |
| sizeof(dra7_ep), (uint8_t *)&dra7_ep); |
| if (rc) |
| return rc; |
| |
| ep->header = dra7_ep.header; |
| strlcpy(ep->name, dra7_ep.name, TI_EEPROM_HDR_NAME_LEN + 1); |
| ti_eeprom_string_cleanup(ep->name); |
| |
| offset = dra7_ep.version_major - 1; |
| |
| /* Rev F is skipped */ |
| if (offset >= 5) |
| offset = offset + 1; |
| snprintf(ep->version, TI_EEPROM_HDR_REV_LEN + 1, "%c.%d", |
| 'A' + offset, dra7_ep.version_minor); |
| ti_eeprom_string_cleanup(ep->version); |
| ep->emif1_size = (u64)dra7_ep.emif1_size; |
| ep->emif2_size = (u64)dra7_ep.emif2_size; |
| strlcpy(ep->config, dra7_ep.config, TI_EEPROM_HDR_CONFIG_LEN + 1); |
| ti_eeprom_string_cleanup(ep->config); |
| |
| return 0; |
| } |
| |
| static int ti_i2c_eeprom_am6_parse_record(struct ti_am6_eeprom_record *record, |
| struct ti_am6_eeprom *ep, |
| char **mac_addr, |
| u8 mac_addr_max_cnt, |
| u8 *mac_addr_cnt) |
| { |
| switch (record->header.id) { |
| case TI_AM6_EEPROM_RECORD_BOARD_INFO: |
| if (record->header.len != sizeof(record->data.board_info)) |
| return -EINVAL; |
| |
| if (!ep) |
| break; |
| |
| /* Populate (and clean, if needed) the board name */ |
| strlcpy(ep->name, record->data.board_info.name, |
| sizeof(ep->name)); |
| ti_eeprom_string_cleanup(ep->name); |
| |
| /* Populate selected other fields from the board info record */ |
| strlcpy(ep->version, record->data.board_info.version, |
| sizeof(ep->version)); |
| strlcpy(ep->software_revision, |
| record->data.board_info.software_revision, |
| sizeof(ep->software_revision)); |
| strlcpy(ep->serial, record->data.board_info.serial, |
| sizeof(ep->serial)); |
| break; |
| case TI_AM6_EEPROM_RECORD_MAC_INFO: |
| if (record->header.len != sizeof(record->data.mac_info)) |
| return -EINVAL; |
| |
| if (!mac_addr || !mac_addr_max_cnt) |
| break; |
| |
| *mac_addr_cnt = ((record->data.mac_info.mac_control & |
| TI_AM6_EEPROM_MAC_ADDR_COUNT_MASK) >> |
| TI_AM6_EEPROM_MAC_ADDR_COUNT_SHIFT) + 1; |
| |
| /* |
| * The EEPROM can (but may not) hold a very large amount |
| * of MAC addresses, by far exceeding what we want/can store |
| * in the common memory array, so only grab what we can fit. |
| * Note that a value of 0 means 1 MAC address, and so on. |
| */ |
| *mac_addr_cnt = min(*mac_addr_cnt, mac_addr_max_cnt); |
| |
| memcpy(mac_addr, record->data.mac_info.mac_addr, |
| *mac_addr_cnt * TI_EEPROM_HDR_ETH_ALEN); |
| break; |
| case 0x00: |
| /* Illegal value... Fall through... */ |
| case 0xFF: |
| /* Illegal value... Something went horribly wrong... */ |
| return -EINVAL; |
| default: |
| pr_warn("%s: Ignoring record id %u\n", __func__, |
| record->header.id); |
| } |
| |
| return 0; |
| } |
| |
| int __maybe_unused ti_i2c_eeprom_am6_get(int bus_addr, int dev_addr, |
| struct ti_am6_eeprom *ep, |
| char **mac_addr, |
| u8 mac_addr_max_cnt, |
| u8 *mac_addr_cnt) |
| { |
| struct udevice *dev; |
| struct udevice *bus; |
| unsigned int eeprom_addr; |
| struct ti_am6_eeprom_record_board_id board_id; |
| struct ti_am6_eeprom_record record; |
| int rc; |
| int consecutive_bad_records = 0; |
| |
| /* Initialize with a known bad marker for i2c fails.. */ |
| memset(ep, 0, sizeof(*ep)); |
| ep->header = TI_DEAD_EEPROM_MAGIC; |
| |
| /* Read the board ID record which is always the first EEPROM record */ |
| rc = ti_i2c_eeprom_get(bus_addr, dev_addr, TI_EEPROM_HEADER_MAGIC, |
| sizeof(board_id), (uint8_t *)&board_id); |
| if (rc) |
| return rc; |
| |
| if (board_id.header.id != TI_AM6_EEPROM_RECORD_BOARD_ID) { |
| pr_err("%s: Invalid board ID record!\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* Establish DM handle to board config EEPROM */ |
| rc = uclass_get_device_by_seq(UCLASS_I2C, bus_addr, &bus); |
| if (rc) |
| return rc; |
| rc = i2c_get_chip(bus, dev_addr, 1, &dev); |
| if (rc) |
| return rc; |
| |
| ep->header = TI_EEPROM_HEADER_MAGIC; |
| |
| /* Ready to parse TLV structure. Initialize variables... */ |
| *mac_addr_cnt = 0; |
| |
| /* |
| * After the all-encompassing board ID record all other records follow |
| * a TLV-type scheme. Point to the first such record and then start |
| * parsing those one by one. |
| */ |
| eeprom_addr = sizeof(board_id); |
| |
| while (consecutive_bad_records < 10) { |
| rc = dm_i2c_read(dev, eeprom_addr, (uint8_t *)&record.header, |
| sizeof(record.header)); |
| if (rc) |
| return rc; |
| |
| /* |
| * Check for end of list marker. If we reached it don't go |
| * any further and stop parsing right here. |
| */ |
| if (record.header.id == TI_AM6_EEPROM_RECORD_END_LIST) |
| break; |
| |
| eeprom_addr += sizeof(record.header); |
| |
| debug("%s: dev_addr=0x%02x header.id=%u header.len=%u\n", |
| __func__, dev_addr, record.header.id, |
| record.header.len); |
| |
| /* Read record into memory if it fits */ |
| if (record.header.len <= sizeof(record.data)) { |
| rc = dm_i2c_read(dev, eeprom_addr, |
| (uint8_t *)&record.data, |
| record.header.len); |
| if (rc) |
| return rc; |
| |
| /* Process record */ |
| rc = ti_i2c_eeprom_am6_parse_record(&record, ep, |
| mac_addr, |
| mac_addr_max_cnt, |
| mac_addr_cnt); |
| if (rc) { |
| pr_err("%s: EEPROM parsing error!\n", __func__); |
| return rc; |
| } |
| consecutive_bad_records = 0; |
| } else { |
| /* |
| * We may get here in case of larger records which |
| * are not yet understood. |
| */ |
| pr_err("%s: Ignoring record id %u\n", __func__, |
| record.header.id); |
| consecutive_bad_records++; |
| } |
| |
| eeprom_addr += record.header.len; |
| } |
| |
| return 0; |
| } |
| |
| int __maybe_unused ti_i2c_eeprom_am6_get_base(int bus_addr, int dev_addr) |
| { |
| struct ti_am6_eeprom *ep = TI_AM6_EEPROM_DATA; |
| int ret; |
| |
| /* |
| * Always execute EEPROM read by not allowing to bypass it during the |
| * first invocation of SPL which happens on the R5 core. |
| */ |
| #if !(defined(CONFIG_SPL_BUILD) && defined(CONFIG_CPU_V7R)) |
| if (ep->header == TI_EEPROM_HEADER_MAGIC) { |
| debug("%s: EEPROM has already been read\n", __func__); |
| return 0; |
| } |
| #endif |
| |
| ret = ti_i2c_eeprom_am6_get(bus_addr, dev_addr, ep, |
| (char **)ep->mac_addr, |
| AM6_EEPROM_HDR_NO_OF_MAC_ADDR, |
| &ep->mac_addr_cnt); |
| return ret; |
| } |
| |
| bool __maybe_unused board_ti_k3_is(char *name_tag) |
| { |
| struct ti_am6_eeprom *ep = TI_AM6_EEPROM_DATA; |
| |
| if (ep->header == TI_DEAD_EEPROM_MAGIC) |
| return false; |
| return !strncmp(ep->name, name_tag, AM6_EEPROM_HDR_NAME_LEN); |
| } |
| |
| bool __maybe_unused board_ti_is(char *name_tag) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (ep->header == TI_DEAD_EEPROM_MAGIC) |
| return false; |
| return !strncmp(ep->name, name_tag, TI_EEPROM_HDR_NAME_LEN); |
| } |
| |
| bool __maybe_unused board_ti_rev_is(char *rev_tag, int cmp_len) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| int l; |
| |
| if (ep->header == TI_DEAD_EEPROM_MAGIC) |
| return false; |
| |
| l = cmp_len > TI_EEPROM_HDR_REV_LEN ? TI_EEPROM_HDR_REV_LEN : cmp_len; |
| return !strncmp(ep->version, rev_tag, l); |
| } |
| |
| char * __maybe_unused board_ti_get_rev(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| /* if ep->header == TI_DEAD_EEPROM_MAGIC, this is empty already */ |
| return ep->version; |
| } |
| |
| char * __maybe_unused board_ti_get_config(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| /* if ep->header == TI_DEAD_EEPROM_MAGIC, this is empty already */ |
| return ep->config; |
| } |
| |
| char * __maybe_unused board_ti_get_name(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| /* if ep->header == TI_DEAD_EEPROM_MAGIC, this is empty already */ |
| return ep->name; |
| } |
| |
| void __maybe_unused |
| board_ti_get_eth_mac_addr(int index, |
| u8 mac_addr[TI_EEPROM_HDR_ETH_ALEN]) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (ep->header == TI_DEAD_EEPROM_MAGIC) |
| goto fail; |
| |
| if (index < 0 || index >= TI_EEPROM_HDR_NO_OF_MAC_ADDR) |
| goto fail; |
| |
| memcpy(mac_addr, ep->mac_addr[index], TI_EEPROM_HDR_ETH_ALEN); |
| return; |
| |
| fail: |
| memset(mac_addr, 0, TI_EEPROM_HDR_ETH_ALEN); |
| } |
| |
| void __maybe_unused |
| board_ti_am6_get_eth_mac_addr(int index, |
| u8 mac_addr[TI_EEPROM_HDR_ETH_ALEN]) |
| { |
| struct ti_am6_eeprom *ep = TI_AM6_EEPROM_DATA; |
| |
| if (ep->header == TI_DEAD_EEPROM_MAGIC) |
| goto fail; |
| |
| if (index < 0 || index >= ep->mac_addr_cnt) |
| goto fail; |
| |
| memcpy(mac_addr, ep->mac_addr[index], TI_EEPROM_HDR_ETH_ALEN); |
| return; |
| |
| fail: |
| memset(mac_addr, 0, TI_EEPROM_HDR_ETH_ALEN); |
| } |
| |
| u64 __maybe_unused board_ti_get_emif1_size(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (ep->header != DRA7_EEPROM_HEADER_MAGIC) |
| return 0; |
| |
| return ep->emif1_size; |
| } |
| |
| u64 __maybe_unused board_ti_get_emif2_size(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (ep->header != DRA7_EEPROM_HEADER_MAGIC) |
| return 0; |
| |
| return ep->emif2_size; |
| } |
| |
| void __maybe_unused set_board_info_env(char *name) |
| { |
| char *unknown = "unknown"; |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (name) |
| env_set("board_name", name); |
| else if (strlen(ep->name) != 0) |
| env_set("board_name", ep->name); |
| else |
| env_set("board_name", unknown); |
| |
| if (strlen(ep->version) != 0) |
| env_set("board_rev", ep->version); |
| else |
| env_set("board_rev", unknown); |
| |
| if (strlen(ep->serial) != 0) |
| env_set("board_serial", ep->serial); |
| else |
| env_set("board_serial", unknown); |
| } |
| |
| void __maybe_unused set_board_info_env_am6(char *name) |
| { |
| char *unknown = "unknown"; |
| struct ti_am6_eeprom *ep = TI_AM6_EEPROM_DATA; |
| |
| if (name) |
| env_set("board_name", name); |
| else if (strlen(ep->name) != 0) |
| env_set("board_name", ep->name); |
| else |
| env_set("board_name", unknown); |
| |
| if (strlen(ep->version) != 0) |
| env_set("board_rev", ep->version); |
| else |
| env_set("board_rev", unknown); |
| |
| if (strlen(ep->software_revision) != 0) |
| env_set("board_software_revision", ep->software_revision); |
| else |
| env_set("board_software_revision", unknown); |
| |
| if (strlen(ep->serial) != 0) |
| env_set("board_serial", ep->serial); |
| else |
| env_set("board_serial", unknown); |
| } |
| |
| static u64 mac_to_u64(u8 mac[6]) |
| { |
| int i; |
| u64 addr = 0; |
| |
| for (i = 0; i < 6; i++) { |
| addr <<= 8; |
| addr |= mac[i]; |
| } |
| |
| return addr; |
| } |
| |
| static void u64_to_mac(u64 addr, u8 mac[6]) |
| { |
| mac[5] = addr; |
| mac[4] = addr >> 8; |
| mac[3] = addr >> 16; |
| mac[2] = addr >> 24; |
| mac[1] = addr >> 32; |
| mac[0] = addr >> 40; |
| } |
| |
| void board_ti_set_ethaddr(int index) |
| { |
| uint8_t mac_addr[6]; |
| int i; |
| u64 mac1, mac2; |
| u8 mac_addr1[6], mac_addr2[6]; |
| int num_macs; |
| /* |
| * Export any Ethernet MAC addresses from EEPROM. |
| * The 2 MAC addresses in EEPROM define the address range. |
| */ |
| board_ti_get_eth_mac_addr(0, mac_addr1); |
| board_ti_get_eth_mac_addr(1, mac_addr2); |
| |
| if (is_valid_ethaddr(mac_addr1) && is_valid_ethaddr(mac_addr2)) { |
| mac1 = mac_to_u64(mac_addr1); |
| mac2 = mac_to_u64(mac_addr2); |
| |
| /* must contain an address range */ |
| num_macs = mac2 - mac1 + 1; |
| if (num_macs <= 0) |
| return; |
| |
| if (num_macs > 50) { |
| printf("%s: Too many MAC addresses: %d. Limiting to 50\n", |
| __func__, num_macs); |
| num_macs = 50; |
| } |
| |
| for (i = 0; i < num_macs; i++) { |
| u64_to_mac(mac1 + i, mac_addr); |
| if (is_valid_ethaddr(mac_addr)) { |
| eth_env_set_enetaddr_by_index("eth", i + index, |
| mac_addr); |
| } |
| } |
| } |
| } |
| |
| void board_ti_am6_set_ethaddr(int index, int count) |
| { |
| u8 mac_addr[6]; |
| int i; |
| |
| for (i = 0; i < count; i++) { |
| board_ti_am6_get_eth_mac_addr(i, mac_addr); |
| if (is_valid_ethaddr(mac_addr)) |
| eth_env_set_enetaddr_by_index("eth", i + index, |
| mac_addr); |
| } |
| } |
| |
| bool __maybe_unused board_ti_was_eeprom_read(void) |
| { |
| struct ti_common_eeprom *ep = TI_EEPROM_DATA; |
| |
| if (ep->header == TI_EEPROM_HEADER_MAGIC) |
| return true; |
| else |
| return false; |
| } |