| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2015-2016 Marvell International Ltd. |
| */ |
| |
| #include <common.h> |
| #include <fdtdec.h> |
| #include <log.h> |
| #include <asm/global_data.h> |
| #include <asm/io.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/soc.h> |
| #include <linux/delay.h> |
| #include <phy.h> |
| |
| #include "comphy_a3700.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| struct comphy_mux_data a3700_comphy_mux_data[] = { |
| /* Lane 0 */ |
| { |
| 4, |
| { |
| { COMPHY_TYPE_UNCONNECTED, 0x0 }, |
| { COMPHY_TYPE_SGMII1, 0x0 }, |
| { COMPHY_TYPE_USB3_HOST0, 0x1 }, |
| { COMPHY_TYPE_USB3_DEVICE, 0x1 } |
| } |
| }, |
| /* Lane 1 */ |
| { |
| 3, |
| { |
| { COMPHY_TYPE_UNCONNECTED, 0x0}, |
| { COMPHY_TYPE_SGMII0, 0x0}, |
| { COMPHY_TYPE_PEX0, 0x1} |
| } |
| }, |
| /* Lane 2 */ |
| { |
| 4, |
| { |
| { COMPHY_TYPE_UNCONNECTED, 0x0}, |
| { COMPHY_TYPE_SATA0, 0x0}, |
| { COMPHY_TYPE_USB3_HOST0, 0x1}, |
| { COMPHY_TYPE_USB3_DEVICE, 0x1} |
| } |
| }, |
| }; |
| |
| struct sgmii_phy_init_data_fix { |
| u16 addr; |
| u16 value; |
| }; |
| |
| /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */ |
| static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = { |
| {0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000}, |
| {0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030}, |
| {0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC}, |
| {0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA}, |
| {0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550}, |
| {0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0}, |
| {0x104, 0x0C10} |
| }; |
| |
| /* 40M1G25 mode init data */ |
| static u16 sgmii_phy_init[512] = { |
| /* 0 1 2 3 4 5 6 7 */ |
| /*-----------------------------------------------------------*/ |
| /* 8 9 A B C D E F */ |
| 0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26, /* 00 */ |
| 0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52, /* 08 */ |
| 0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000, /* 10 */ |
| 0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF, /* 18 */ |
| 0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000, /* 20 */ |
| 0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, /* 28 */ |
| 0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ |
| 0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100, /* 38 */ |
| 0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00, /* 40 */ |
| 0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A, /* 48 */ |
| 0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001, /* 50 */ |
| 0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF, /* 58 */ |
| 0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000, /* 60 */ |
| 0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002, /* 68 */ |
| 0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780, /* 70 */ |
| 0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000, /* 78 */ |
| 0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000, /* 80 */ |
| 0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210, /* 88 */ |
| 0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F, /* 90 */ |
| 0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651, /* 98 */ |
| 0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000, /* A0 */ |
| 0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* A8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /* B0 */ |
| 0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000, /* B8 */ |
| 0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003, /* C0 */ |
| 0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000, /* C8 */ |
| 0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00, /* D0 */ |
| 0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000, /* D8 */ |
| 0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541, /* E0 */ |
| 0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200, /* E8 */ |
| 0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000, /* F0 */ |
| 0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000, /* F8 */ |
| 0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000, /*100 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*108 */ |
| 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000, /*110 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*118 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*120 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*128 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*130 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*138 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*140 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*148 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*150 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*158 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*160 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*168 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*170 */ |
| 0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000, /*178 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*180 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*188 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*190 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*198 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1A8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1B8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1C8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1D8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1E8 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, /*1F0 */ |
| 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000 /*1F8 */ |
| }; |
| |
| /* |
| * comphy_poll_reg |
| * |
| * return: 1 on success, 0 on timeout |
| */ |
| static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type) |
| { |
| u32 rval = 0xDEAD, timeout; |
| |
| for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) { |
| if (op_type == POLL_16B_REG) |
| rval = readw(addr); /* 16 bit */ |
| else |
| rval = readl(addr) ; /* 32 bit */ |
| |
| if ((rval & mask) == val) |
| return 1; |
| |
| udelay(10000); |
| } |
| |
| debug("Time out waiting (%p = %#010x)\n", addr, rval); |
| return 0; |
| } |
| |
| /* |
| * comphy_pcie_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_pcie_power_up(u32 speed, u32 invert) |
| { |
| int ret; |
| |
| debug_enter(); |
| |
| /* |
| * 1. Enable max PLL. |
| */ |
| reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0); |
| |
| /* |
| * 2. Select 20 bit SERDES interface. |
| */ |
| reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0); |
| |
| /* |
| * 3. Force to use reg setting for PCIe mode |
| */ |
| reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0); |
| |
| /* |
| * 4. Change RX wait |
| */ |
| reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF); |
| |
| /* |
| * 5. Enable idle sync |
| */ |
| reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF); |
| |
| /* |
| * 6. Enable the output of 100M/125M/500M clock |
| */ |
| reg_set16(phy_addr(PCIE, MISC_REG0), |
| 0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF); |
| |
| /* |
| * 7. Enable TX |
| */ |
| reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF); |
| |
| /* |
| * 8. Check crystal jumper setting and program the Power and PLL |
| * Control accordingly |
| */ |
| if (get_ref_clk() == 40) { |
| /* 40 MHz */ |
| reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF); |
| } else { |
| /* 25 MHz */ |
| reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF); |
| } |
| |
| /* |
| * 9. Override Speed_PLL value and use MAC PLL |
| */ |
| reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate, |
| 0xFFFF); |
| |
| /* |
| * 10. Check the Polarity invert bit |
| */ |
| if (invert & COMPHY_POLARITY_TXD_INVERT) |
| reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0); |
| else |
| reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv); |
| |
| if (invert & COMPHY_POLARITY_RXD_INVERT) |
| reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0); |
| else |
| reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv); |
| |
| /* |
| * 11. Release SW reset |
| */ |
| reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0), |
| rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32, |
| bf_soft_rst | bf_mode_refdiv); |
| |
| /* Wait for > 55 us to allow PCLK be enabled */ |
| udelay(PLL_SET_DELAY_US); |
| |
| /* Assert PCLK enabled */ |
| ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1), /* address */ |
| rb_txdclk_pclk_en, /* value */ |
| rb_txdclk_pclk_en, /* mask */ |
| POLL_16B_REG); /* 16bit */ |
| if (!ret) |
| printf("Failed to lock PCIe PLL\n"); |
| |
| debug_exit(); |
| |
| /* Return the status of the PLL */ |
| return ret; |
| } |
| |
| /* |
| * reg_set_indirect |
| * |
| * return: void |
| */ |
| static void reg_set_indirect(u32 reg, u16 data, u16 mask) |
| { |
| reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF); |
| reg_set(rh_vsreg_data, data, mask); |
| } |
| |
| /* |
| * comphy_sata_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_sata_power_up(u32 invert) |
| { |
| int ret; |
| u32 data = 0; |
| |
| debug_enter(); |
| |
| /* |
| * 0. Check the Polarity invert bits |
| */ |
| if (invert & COMPHY_POLARITY_TXD_INVERT) |
| data |= bs_txd_inv; |
| |
| if (invert & COMPHY_POLARITY_RXD_INVERT) |
| data |= bs_rxd_inv; |
| |
| reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv); |
| |
| /* |
| * 1. Select 40-bit data width width |
| */ |
| reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit); |
| |
| /* |
| * 2. Select reference clock and PHY mode (SATA) |
| */ |
| if (get_ref_clk() == 40) { |
| /* 40 MHz */ |
| reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF); |
| } else { |
| /* 20 MHz */ |
| reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF); |
| } |
| |
| /* |
| * 3. Use maximum PLL rate (no power save) |
| */ |
| reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate); |
| |
| /* |
| * 4. Reset reserved bit (??) |
| */ |
| reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin); |
| |
| /* |
| * 5. Set vendor-specific configuration (??) |
| */ |
| reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF); |
| reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll); |
| |
| /* Wait for > 55 us to allow PLL be enabled */ |
| udelay(PLL_SET_DELAY_US); |
| |
| /* Assert SATA PLL enabled */ |
| reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF); |
| ret = comphy_poll_reg(rh_vsreg_data, /* address */ |
| bs_pll_ready_tx, /* value */ |
| bs_pll_ready_tx, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) |
| printf("Failed to lock SATA PLL\n"); |
| |
| debug_exit(); |
| |
| return ret; |
| } |
| |
| /* |
| * usb3_reg_set16 |
| * |
| * return: void |
| */ |
| static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane) |
| { |
| /* |
| * When Lane 2 PHY is for USB3, access the PHY registers |
| * through indirect Address and Data registers INDIR_ACC_PHY_ADDR |
| * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0]) |
| * within the SATA Host Controller registers, Lane 2 base register |
| * offset is 0x200 |
| */ |
| |
| if (lane == 2) |
| reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data, |
| mask); |
| else |
| reg_set16(phy_addr(USB3, reg), data, mask); |
| } |
| |
| /* |
| * comphy_usb3_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert) |
| { |
| int ret; |
| |
| debug_enter(); |
| |
| /* |
| * 1. Power up OTG module |
| */ |
| reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0); |
| |
| /* |
| * 2. Set counter for 100us pulse in USB3 Host and Device |
| * restore default burst size limit (Reference Clock 31:24) |
| */ |
| reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns); |
| |
| |
| /* 0xd005c300 = 0x1001 */ |
| /* set PRD_TXDEEMPH (3.5db de-emph) */ |
| usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane); |
| |
| /* |
| * Set BIT0: enable transmitter in high impedance mode |
| * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency |
| * Set BIT6: Tx detect Rx at HiZ mode |
| * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db |
| * together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR |
| * register |
| */ |
| usb3_reg_set16(LANE_CFG1, |
| tx_det_rx_mode | gen2_tx_data_dly_deft |
| | tx_elec_idle_mode_en, |
| prd_txdeemph1_mask | tx_det_rx_mode |
| | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane); |
| |
| /* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */ |
| usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane); |
| |
| /* |
| * set Override Margining Controls From the MAC: Use margining signals |
| * from lane configuration |
| */ |
| usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane); |
| |
| /* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */ |
| /* set Mode Clock Source = PCLK is generated from REFCLK */ |
| usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane); |
| |
| /* set G2 Spread Spectrum Clock Amplitude at 4K */ |
| usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane); |
| |
| /* |
| * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register |
| * Master Current Select |
| */ |
| usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane); |
| |
| /* |
| * 3. Check crystal jumper setting and program the Power and PLL |
| * Control accordingly |
| * 4. Change RX wait |
| */ |
| if (get_ref_clk() == 40) { |
| /* 40 MHz */ |
| usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane); |
| usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane); |
| } else { |
| /* 25 MHz */ |
| usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane); |
| usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane); |
| } |
| |
| /* |
| * 5. Enable idle sync |
| */ |
| usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane); |
| |
| /* |
| * 6. Enable the output of 500M clock |
| */ |
| usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane); |
| |
| /* |
| * 7. Set 20-bit data width |
| */ |
| usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane); |
| |
| /* |
| * 8. Override Speed_PLL value and use MAC PLL |
| */ |
| usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF, |
| lane); |
| |
| /* |
| * 9. Check the Polarity invert bit |
| */ |
| if (invert & COMPHY_POLARITY_TXD_INVERT) |
| usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane); |
| else |
| usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane); |
| |
| if (invert & COMPHY_POLARITY_RXD_INVERT) |
| usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane); |
| else |
| usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane); |
| |
| /* |
| * 10. Set max speed generation to USB3.0 5Gbps |
| */ |
| usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane); |
| |
| /* |
| * 11. Set capacitor value for FFE gain peaking to 0xF |
| */ |
| usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane); |
| |
| /* |
| * 12. Release SW reset |
| */ |
| usb3_reg_set16(GLOB_PHY_CTRL0, |
| rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32 |
| | 0x20, 0xFFFF, lane); |
| |
| /* Wait for > 55 us to allow PCLK be enabled */ |
| udelay(PLL_SET_DELAY_US); |
| |
| /* Assert PCLK enabled */ |
| if (lane == 2) { |
| reg_set(rh_vsreg_addr, |
| LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET, |
| 0xFFFFFFFF); |
| ret = comphy_poll_reg(rh_vsreg_data, /* address */ |
| rb_txdclk_pclk_en, /* value */ |
| rb_txdclk_pclk_en, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| } else { |
| ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */ |
| rb_txdclk_pclk_en, /* value */ |
| rb_txdclk_pclk_en, /* mask */ |
| POLL_16B_REG); /* 16bit */ |
| } |
| if (!ret) |
| printf("Failed to lock USB3 PLL\n"); |
| |
| /* |
| * Set Soft ID for Host mode (Device mode works with Hard ID |
| * detection) |
| */ |
| if (type == COMPHY_TYPE_USB3_HOST0) { |
| /* |
| * set BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1) |
| * clear BIT1: set SOFT_ID = Host |
| * set BIT4: set INT_MODE = ID. Interrupt Mode: enable |
| * interrupt by ID instead of using both interrupts |
| * of HOST and Device ORed simultaneously |
| * INT_MODE=ID in order to avoid unexpected |
| * behaviour or both interrupts together |
| */ |
| reg_set(USB32_CTRL_BASE, |
| usb32_ctrl_id_mode | usb32_ctrl_int_mode, |
| usb32_ctrl_id_mode | usb32_ctrl_soft_id | |
| usb32_ctrl_int_mode); |
| } |
| |
| debug_exit(); |
| |
| return ret; |
| } |
| |
| /* |
| * comphy_usb2_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_usb2_power_up(u8 usb32) |
| { |
| int ret; |
| |
| debug_enter(); |
| |
| if (usb32 != 0 && usb32 != 1) { |
| printf("invalid usb32 value: (%d), should be either 0 or 1\n", |
| usb32); |
| debug_exit(); |
| return 0; |
| } |
| |
| /* |
| * 0. Setup PLL. 40MHz clock uses defaults. |
| * See "PLL Settings for Typical REFCLK" table |
| */ |
| if (get_ref_clk() == 25) { |
| reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16), |
| 0x3F | (0xFF << 16) | (0x3 << 28)); |
| } |
| |
| /* |
| * 1. PHY pull up and disable USB2 suspend |
| */ |
| reg_set(USB2_PHY_CTRL_ADDR(usb32), |
| RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0); |
| |
| if (usb32 != 0) { |
| /* |
| * 2. Power up OTG module |
| */ |
| reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0); |
| |
| /* |
| * 3. Configure PHY charger detection |
| */ |
| reg_set(USB2_PHY_CHRGR_DET_ADDR, 0, |
| rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto | |
| rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc); |
| } |
| |
| /* Assert PLL calibration done */ |
| ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32), |
| rb_usb2phy_pllcal_done, /* value */ |
| rb_usb2phy_pllcal_done, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) { |
| printf("Failed to end USB2 PLL calibration\n"); |
| goto out; |
| } |
| |
| /* Assert impedance calibration done */ |
| ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32), |
| rb_usb2phy_impcal_done, /* value */ |
| rb_usb2phy_impcal_done, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) { |
| printf("Failed to end USB2 impedance calibration\n"); |
| goto out; |
| } |
| |
| /* Assert squetch calibration done */ |
| ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32), |
| rb_usb2phy_sqcal_done, /* value */ |
| rb_usb2phy_sqcal_done, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) { |
| printf("Failed to end USB2 unknown calibration\n"); |
| goto out; |
| } |
| |
| /* Assert PLL is ready */ |
| ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32), |
| rb_usb2phy_pll_ready, /* value */ |
| rb_usb2phy_pll_ready, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| |
| if (!ret) { |
| printf("Failed to lock USB2 PLL\n"); |
| goto out; |
| } |
| |
| out: |
| debug_exit(); |
| |
| return ret; |
| } |
| |
| /* |
| * comphy_emmc_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_emmc_power_up(void) |
| { |
| debug_enter(); |
| |
| /* |
| * 1. Bus power ON, Bus voltage 1.8V |
| */ |
| reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00); |
| |
| /* |
| * 2. Set FIFO parameters |
| */ |
| reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF); |
| |
| /* |
| * 3. Set Capabilities 1_2 |
| */ |
| reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF); |
| |
| /* |
| * 4. Set Endian |
| */ |
| reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0); |
| |
| /* |
| * 4. Init PHY |
| */ |
| reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000); |
| reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000); |
| |
| /* |
| * 5. DLL reset |
| */ |
| reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0); |
| reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0); |
| |
| debug_exit(); |
| |
| return 1; |
| } |
| |
| /* |
| * comphy_sgmii_power_up |
| * |
| * return: |
| */ |
| static void comphy_sgmii_phy_init(u32 lane, u32 speed) |
| { |
| const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix); |
| int addr, fix_idx; |
| u16 val; |
| |
| fix_idx = 0; |
| for (addr = 0; addr < 512; addr++) { |
| /* |
| * All PHY register values are defined in full for 3.125Gbps |
| * SERDES speed. The values required for 1.25 Gbps are almost |
| * the same and only few registers should be "fixed" in |
| * comparison to 3.125 Gbps values. These register values are |
| * stored in "sgmii_phy_init_fix" array. |
| */ |
| if (speed != COMPHY_SPEED_1_25G && |
| sgmii_phy_init_fix[fix_idx].addr == addr) { |
| /* Use new value */ |
| val = sgmii_phy_init_fix[fix_idx].value; |
| if (fix_idx < fix_arr_sz) |
| fix_idx++; |
| } else { |
| val = sgmii_phy_init[addr]; |
| } |
| |
| reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF); |
| } |
| } |
| |
| /* |
| * comphy_sgmii_power_up |
| * |
| * return: 1 if PLL locked (OK), 0 otherwise (FAIL) |
| */ |
| static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert) |
| { |
| int ret; |
| u32 saved_selector; |
| |
| debug_enter(); |
| |
| /* |
| * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0 |
| */ |
| saved_selector = readl(COMPHY_SEL_ADDR); |
| reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF); |
| |
| /* |
| * 2. Reset PHY by setting PHY input port PIN_RESET=1. |
| * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep |
| * PHY TXP/TXN output to idle state during PHY initialization |
| * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0. |
| */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), |
| rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref, |
| rb_pin_reset_core | rb_pin_pu_pll | |
| rb_pin_pu_rx | rb_pin_pu_tx); |
| |
| /* |
| * 5. Release reset to the PHY by setting PIN_RESET=0. |
| */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy); |
| |
| /* |
| * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide |
| * COMPHY bit rate |
| */ |
| if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), |
| (0x8 << rf_gen_rx_sel_shift) | |
| (0x8 << rf_gen_tx_sel_shift), |
| rf_gen_rx_select | rf_gen_tx_select); |
| |
| } else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), |
| (0x6 << rf_gen_rx_sel_shift) | |
| (0x6 << rf_gen_tx_sel_shift), |
| rf_gen_rx_select | rf_gen_tx_select); |
| } else { |
| printf("Unsupported COMPHY speed!\n"); |
| return 0; |
| } |
| |
| /* |
| * 8. Wait 1mS for bandgap and reference clocks to stabilize; |
| * then start SW programming. |
| */ |
| mdelay(10); |
| |
| /* 9. Program COMPHY register PHY_MODE */ |
| reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), |
| PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask); |
| |
| /* |
| * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK |
| * source |
| */ |
| reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel); |
| |
| /* |
| * 11. Set correct reference clock frequency in COMPHY register |
| * REF_FREF_SEL. |
| */ |
| if (get_ref_clk() == 40) { |
| reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), |
| 0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask); |
| } else { |
| /* 25MHz */ |
| reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL), |
| 0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask); |
| } |
| |
| /* 12. Program COMPHY register PHY_GEN_MAX[1:0] */ |
| /* |
| * This step is mentioned in the flow received from verification team. |
| * However the PHY_GEN_MAX value is only meaningful for other |
| * interfaces (not SGMII). For instance, it selects SATA speed |
| * 1.5/3/6 Gbps or PCIe speed 2.5/5 Gbps |
| */ |
| |
| /* |
| * 13. Program COMPHY register SEL_BITS to set correct parallel data |
| * bus width |
| */ |
| /* 10bit */ |
| reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask); |
| |
| /* |
| * 14. As long as DFE function needs to be enabled in any mode, |
| * COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F |
| * for real chip during COMPHY power on. |
| */ |
| /* |
| * The step 14 exists (and empty) in the original initialization flow |
| * obtained from the verification team. According to the functional |
| * specification DFE_UPDATE_EN already has the default value 0x3F |
| */ |
| |
| /* |
| * 15. Program COMPHY GEN registers. |
| * These registers should be programmed based on the lab testing |
| * result to achieve optimal performance. Please contact the CEA |
| * group to get the related GEN table during real chip bring-up. |
| * We only requred to run though the entire registers programming |
| * flow defined by "comphy_sgmii_phy_init" when the REF clock is |
| * 40 MHz. For REF clock 25 MHz the default values stored in PHY |
| * registers are OK. |
| */ |
| debug("Running C-DPI phy init %s mode\n", |
| speed == COMPHY_SPEED_3_125G ? "2G5" : "1G"); |
| if (get_ref_clk() == 40) |
| comphy_sgmii_phy_init(lane, speed); |
| |
| /* |
| * 16. [Simulation Only] should not be used for real chip. |
| * By pass power up calibration by programming EXT_FORCE_CAL_DONE |
| * (R02h[9]) to 1 to shorten COMPHY simulation time. |
| */ |
| /* |
| * 17. [Simulation Only: should not be used for real chip] |
| * Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX |
| * training simulation time. |
| */ |
| |
| /* |
| * 18. Check the PHY Polarity invert bit |
| */ |
| if (invert & COMPHY_POLARITY_TXD_INVERT) |
| reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0); |
| else |
| reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv); |
| |
| if (invert & COMPHY_POLARITY_RXD_INVERT) |
| reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0); |
| else |
| reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv); |
| |
| /* |
| * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1 |
| * to start PHY power up sequence. All the PHY register |
| * programming should be done before PIN_PU_PLL=1. There should be |
| * no register programming for normal PHY operation from this point. |
| */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), |
| rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx, |
| rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx); |
| |
| /* |
| * 20. Wait for PHY power up sequence to finish by checking output ports |
| * PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1. |
| */ |
| ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */ |
| rb_pll_ready_tx | rb_pll_ready_rx, /* value */ |
| rb_pll_ready_tx | rb_pll_ready_rx, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) { |
| printf("Failed to lock PLL for SGMII PHY %d\n", lane); |
| goto out; |
| } |
| |
| /* |
| * 21. Set COMPHY input port PIN_TX_IDLE=0 |
| */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle); |
| |
| /* |
| * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1. |
| * to start RX initialization. PIN_RX_INIT_DONE will be cleared to |
| * 0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE |
| * will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after |
| * PIN_RX_INIT_DONE= 1. |
| * Please refer to RX initialization part for details. |
| */ |
| reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0); |
| |
| ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */ |
| rb_rx_init_done, /* value */ |
| rb_rx_init_done, /* mask */ |
| POLL_32B_REG); /* 32bit */ |
| if (!ret) { |
| printf("Failed to init RX of SGMII PHY %d\n", lane); |
| goto out; |
| } |
| |
| /* |
| * Restore saved selector. |
| */ |
| reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF); |
| |
| out: |
| debug_exit(); |
| |
| return ret; |
| } |
| |
| void comphy_dedicated_phys_init(void) |
| { |
| int node, usb32, ret = 1; |
| const void *blob = gd->fdt_blob; |
| |
| debug_enter(); |
| |
| for (usb32 = 0; usb32 <= 1; usb32++) { |
| /* |
| * There are 2 UTMI PHYs in this SOC. |
| * One is independendent and one is paired with USB3 port (OTG) |
| */ |
| if (usb32 == 0) { |
| node = fdt_node_offset_by_compatible( |
| blob, -1, "marvell,armada3700-ehci"); |
| } else { |
| node = fdt_node_offset_by_compatible( |
| blob, -1, "marvell,armada3700-xhci"); |
| } |
| |
| if (node > 0) { |
| if (fdtdec_get_is_enabled(blob, node)) { |
| ret = comphy_usb2_power_up(usb32); |
| if (!ret) |
| printf("Failed to initialize UTMI PHY\n"); |
| else |
| debug("UTMI PHY init succeed\n"); |
| } else { |
| debug("USB%d node is disabled\n", |
| usb32 == 0 ? 2 : 3); |
| } |
| } else { |
| debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3); |
| } |
| } |
| |
| node = fdt_node_offset_by_compatible(blob, -1, |
| "marvell,armada-8k-sdhci"); |
| if (node <= 0) { |
| node = fdt_node_offset_by_compatible( |
| blob, -1, "marvell,armada-3700-sdhci"); |
| } |
| |
| if (node > 0) { |
| if (fdtdec_get_is_enabled(blob, node)) { |
| ret = comphy_emmc_power_up(); |
| if (!ret) |
| printf("Failed to initialize SDIO/eMMC PHY\n"); |
| else |
| debug("SDIO/eMMC PHY init succeed\n"); |
| } else { |
| debug("SDIO/eMMC node is disabled\n"); |
| } |
| } else { |
| debug("No SDIO/eMMC node in DT\n"); |
| } |
| |
| debug_exit(); |
| } |
| |
| static int find_available_node_by_compatible(int offset, const char *compatible) |
| { |
| do { |
| offset = fdt_node_offset_by_compatible(gd->fdt_blob, offset, |
| compatible); |
| } while (offset > 0 && !fdtdec_get_is_enabled(gd->fdt_blob, offset)); |
| |
| return offset; |
| } |
| |
| static bool comphy_a3700_find_lane(const int nodes[3], int node, |
| int port, int *lane, int *invert) |
| { |
| int res, i, j; |
| |
| for (i = 0; ; i++) { |
| struct fdtdec_phandle_args args; |
| |
| res = fdtdec_parse_phandle_with_args(gd->fdt_blob, node, "phys", |
| "#phy-cells", 0, i, &args); |
| if (res) |
| return false; |
| |
| for (j = 0; j < 3; j++) { |
| if (nodes[j] >= 0 && args.node == nodes[j] && |
| (args.args_count >= 1 ? args.args[0] : 0) == port) { |
| *lane = j; |
| *invert = args.args_count >= 2 ? args.args[1] |
| : 0; |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| static void comphy_a3700_fill_cfg(struct chip_serdes_phy_config *cfg, |
| const int nodes[3], const char *compatible, |
| int type) |
| { |
| int node, lane, port, speed, invert; |
| |
| port = (type == COMPHY_TYPE_SGMII1) ? 1 : 0; |
| |
| node = -1; |
| while (1) { |
| node = find_available_node_by_compatible(node, compatible); |
| if (node < 0) |
| return; |
| |
| if (comphy_a3700_find_lane(nodes, node, port, &lane, &invert)) |
| break; |
| } |
| |
| if (cfg->comphy_map_data[lane].type != COMPHY_TYPE_UNCONNECTED) { |
| printf("Error: More PHYs defined for lane %d, skipping\n", |
| lane); |
| return; |
| } |
| |
| if (type == COMPHY_TYPE_SGMII0 || type == COMPHY_TYPE_SGMII1) { |
| const char *phy_mode; |
| |
| phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL); |
| if (phy_mode && |
| !strcmp(phy_mode, |
| phy_string_for_interface(PHY_INTERFACE_MODE_2500BASEX))) |
| speed = COMPHY_SPEED_3_125G; |
| else |
| speed = COMPHY_SPEED_1_25G; |
| } else if (type == COMPHY_TYPE_SATA0) { |
| speed = COMPHY_SPEED_6G; |
| } else { |
| speed = COMPHY_SPEED_5G; |
| } |
| |
| cfg->comphy_map_data[lane].type = type; |
| cfg->comphy_map_data[lane].speed = speed; |
| cfg->comphy_map_data[lane].invert = invert; |
| } |
| |
| static const fdt32_t comphy_a3700_mux_lane_order[3] = { |
| __constant_cpu_to_be32(1), |
| __constant_cpu_to_be32(0), |
| __constant_cpu_to_be32(2), |
| }; |
| |
| int comphy_a3700_init_serdes_map(int node, struct chip_serdes_phy_config *cfg) |
| { |
| int comphy_nodes[3]; |
| int child, i; |
| |
| for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) |
| comphy_nodes[i] = -FDT_ERR_NOTFOUND; |
| |
| fdt_for_each_subnode(child, gd->fdt_blob, node) { |
| if (!fdtdec_get_is_enabled(gd->fdt_blob, child)) |
| continue; |
| |
| i = fdtdec_get_int(gd->fdt_blob, child, "reg", -1); |
| if (i < 0 || i >= ARRAY_SIZE(comphy_nodes)) |
| continue; |
| |
| comphy_nodes[i] = child; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(comphy_nodes); i++) { |
| cfg->comphy_map_data[i].type = COMPHY_TYPE_UNCONNECTED; |
| cfg->comphy_map_data[i].speed = COMPHY_SPEED_INVALID; |
| } |
| |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-u3d", |
| COMPHY_TYPE_USB3_DEVICE); |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada3700-xhci", |
| COMPHY_TYPE_USB3_HOST0); |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-pcie", |
| COMPHY_TYPE_PEX0); |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-ahci", |
| COMPHY_TYPE_SATA0); |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta", |
| COMPHY_TYPE_SGMII0); |
| comphy_a3700_fill_cfg(cfg, comphy_nodes, "marvell,armada-3700-neta", |
| COMPHY_TYPE_SGMII1); |
| |
| cfg->comphy_lanes_count = 3; |
| cfg->comphy_mux_bitcount = 4; |
| cfg->comphy_mux_lane_order = comphy_a3700_mux_lane_order; |
| |
| return 0; |
| } |
| |
| int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg, |
| struct comphy_map *serdes_map) |
| { |
| struct comphy_map *comphy_map; |
| u32 comphy_max_count = chip_cfg->comphy_lanes_count; |
| u32 lane, ret = 0; |
| |
| debug_enter(); |
| |
| /* Initialize PHY mux */ |
| chip_cfg->mux_data = a3700_comphy_mux_data; |
| comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR); |
| |
| for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count; |
| lane++, comphy_map++) { |
| debug("Initialize serdes number %d\n", lane); |
| debug("Serdes type = 0x%x invert=%d\n", |
| comphy_map->type, comphy_map->invert); |
| |
| switch (comphy_map->type) { |
| case COMPHY_TYPE_UNCONNECTED: |
| continue; |
| break; |
| |
| case COMPHY_TYPE_PEX0: |
| ret = comphy_pcie_power_up(comphy_map->speed, |
| comphy_map->invert); |
| break; |
| |
| case COMPHY_TYPE_USB3_HOST0: |
| case COMPHY_TYPE_USB3_DEVICE: |
| ret = comphy_usb3_power_up(lane, |
| comphy_map->type, |
| comphy_map->speed, |
| comphy_map->invert); |
| break; |
| |
| case COMPHY_TYPE_SGMII0: |
| case COMPHY_TYPE_SGMII1: |
| ret = comphy_sgmii_power_up(lane, comphy_map->speed, |
| comphy_map->invert); |
| break; |
| |
| case COMPHY_TYPE_SATA0: |
| ret = comphy_sata_power_up(comphy_map->invert); |
| break; |
| |
| default: |
| debug("Unknown SerDes type, skip initialize SerDes %d\n", |
| lane); |
| ret = 1; |
| break; |
| } |
| if (!ret) |
| printf("PLL is not locked - Failed to initialize lane %d\n", |
| lane); |
| } |
| |
| debug_exit(); |
| return ret; |
| } |