blob: ebb5a560c3af6d7f94fb9482ae303a4e86015782 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Board functions for Gumstix Pepper and AM335x-based boards
*
* Copyright (C) 2014, Gumstix, Incorporated - http://www.gumstix.com/
* Based on board/ti/am335x/board.c from Texas Instruments, Inc.
*/
#include <common.h>
#include <env.h>
#include <errno.h>
#include <init.h>
#include <net.h>
#include <serial.h>
#include <spl.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <power/tps65217.h>
#include <watchdog.h>
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_SPL_BUILD
#define OSC (V_OSCK/1000000)
static const struct ddr_data ddr3_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct cmd_control ddr3_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static struct emif_regs ddr3_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
};
const struct dpll_params dpll_ddr3 = {400, OSC-1, 1, -1, -1, -1, -1};
const struct ctrl_ioregs ioregs_ddr3 = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
static const struct ddr_data ddr2_data = {
.datardsratio0 = MT47H128M16RT25E_RD_DQS,
.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
};
static const struct cmd_control ddr2_cmd_ctrl_data = {
.cmd0csratio = MT47H128M16RT25E_RATIO,
.cmd1csratio = MT47H128M16RT25E_RATIO,
.cmd2csratio = MT47H128M16RT25E_RATIO,
};
static const struct emif_regs ddr2_emif_reg_data = {
.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
};
const struct dpll_params dpll_ddr2 = {266, OSC-1, 1, -1, -1, -1, -1};
const struct ctrl_ioregs ioregs_ddr2 = {
.cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
};
static int read_eeprom(struct pepper_board_id *header)
{
if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) {
return -ENODEV;
}
if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header,
sizeof(struct pepper_board_id))) {
return -EIO;
}
return 0;
}
const struct dpll_params *get_dpll_ddr_params(void)
{
struct pepper_board_id header;
enable_i2c0_pin_mux();
i2c_set_bus_num(0);
if (read_eeprom(&header) < 0)
return &dpll_ddr3;
switch (header.device_vendor) {
case GUMSTIX_PEPPER:
return &dpll_ddr2;
case GUMSTIX_PEPPER_DVI:
return &dpll_ddr3;
default:
return &dpll_ddr3;
}
}
void sdram_init(void)
{
const struct dpll_params *dpll = get_dpll_ddr_params();
/*
* Here we are assuming PLL clock reveals the type of RAM.
* DDR2 = 266
* DDR3 = 400
* Note that DDR3 is the default.
*/
if (dpll->m == 266) {
config_ddr(dpll->m, &ioregs_ddr2, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
}
else if (dpll->m == 400) {
config_ddr(dpll->m, &ioregs_ddr3, &ddr3_data,
&ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
}
}
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
/* break into full u-boot on 'c' */
return serial_tstc() && serial_getc() == 'c';
}
#endif
void set_uart_mux_conf(void)
{
enable_uart0_pin_mux();
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
#endif
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
gpmc_init();
return 0;
}
#if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
static void cpsw_control(int enabled)
{
/* VTP can be added here */
return;
}
static struct cpsw_slave_data cpsw_slaves[] = {
{
.slave_reg_ofs = 0x208,
.sliver_reg_ofs = 0xd80,
.phy_addr = 0,
.phy_if = PHY_INTERFACE_MODE_RGMII,
},
};
static struct cpsw_platform_data cpsw_data = {
.mdio_base = CPSW_MDIO_BASE,
.cpsw_base = CPSW_BASE,
.mdio_div = 0xff,
.channels = 8,
.cpdma_reg_ofs = 0x800,
.slaves = 1,
.slave_data = cpsw_slaves,
.ale_reg_ofs = 0xd00,
.ale_entries = 1024,
.host_port_reg_ofs = 0x108,
.hw_stats_reg_ofs = 0x900,
.bd_ram_ofs = 0x2000,
.mac_control = (1 << 5),
.control = cpsw_control,
.host_port_num = 0,
.version = CPSW_CTRL_VERSION_2,
};
int board_eth_init(bd_t *bis)
{
int rv, n = 0;
uint8_t mac_addr[6];
uint32_t mac_hi, mac_lo;
const char *devname;
if (!eth_env_get_enetaddr("ethaddr", mac_addr)) {
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("ethaddr", mac_addr);
}
writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
rv = cpsw_register(&cpsw_data);
if (rv < 0)
printf("Error %d registering CPSW switch\n", rv);
else
n += rv;
/*
*
* CPSW RGMII Internal Delay Mode is not supported in all PVT
* operating points. So we must set the TX clock delay feature
* in the KSZ9021 PHY. Since we only support a single ethernet
* device in U-Boot, we only do this for the current instance.
*/
devname = miiphy_get_current_dev();
/* max rx/tx clock delay, min rx/tx control delay */
miiphy_write(devname, 0x0, 0x0b, 0x8104);
miiphy_write(devname, 0x0, 0xc, 0xa0a0);
/* min rx data delay */
miiphy_write(devname, 0x0, 0x0b, 0x8105);
miiphy_write(devname, 0x0, 0x0c, 0x0000);
/* min tx data delay */
miiphy_write(devname, 0x0, 0x0b, 0x8106);
miiphy_write(devname, 0x0, 0x0c, 0x0000);
return n;
}
#endif