| /* |
| * Ethernet driver for TI K2HK EVM. |
| * |
| * (C) Copyright 2012-2014 |
| * Texas Instruments Incorporated, <www.ti.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| #include <common.h> |
| #include <command.h> |
| |
| #include <net.h> |
| #include <miiphy.h> |
| #include <malloc.h> |
| #include <asm/arch/emac_defs.h> |
| #include <asm/arch/psc_defs.h> |
| #include <asm/ti-common/keystone_nav.h> |
| |
| unsigned int emac_dbg; |
| |
| unsigned int emac_open; |
| static unsigned int sys_has_mdio = 1; |
| |
| #ifdef KEYSTONE2_EMAC_GIG_ENABLE |
| #define emac_gigabit_enable(x) keystone2_eth_gigabit_enable(x) |
| #else |
| #define emac_gigabit_enable(x) /* no gigabit to enable */ |
| #endif |
| |
| #define RX_BUFF_NUMS 24 |
| #define RX_BUFF_LEN 1520 |
| #define MAX_SIZE_STREAM_BUFFER RX_BUFF_LEN |
| |
| static u8 rx_buffs[RX_BUFF_NUMS * RX_BUFF_LEN] __aligned(16); |
| |
| struct rx_buff_desc net_rx_buffs = { |
| .buff_ptr = rx_buffs, |
| .num_buffs = RX_BUFF_NUMS, |
| .buff_len = RX_BUFF_LEN, |
| .rx_flow = 22, |
| }; |
| |
| static void keystone2_eth_mdio_enable(void); |
| |
| static int gen_get_link_speed(int phy_addr); |
| |
| /* EMAC Addresses */ |
| static volatile struct emac_regs *adap_emac = |
| (struct emac_regs *)EMAC_EMACSL_BASE_ADDR; |
| static volatile struct mdio_regs *adap_mdio = |
| (struct mdio_regs *)EMAC_MDIO_BASE_ADDR; |
| |
| int keystone2_eth_read_mac_addr(struct eth_device *dev) |
| { |
| struct eth_priv_t *eth_priv; |
| u32 maca = 0; |
| u32 macb = 0; |
| |
| eth_priv = (struct eth_priv_t *)dev->priv; |
| |
| /* Read the e-fuse mac address */ |
| if (eth_priv->slave_port == 1) { |
| maca = __raw_readl(MAC_ID_BASE_ADDR); |
| macb = __raw_readl(MAC_ID_BASE_ADDR + 4); |
| } |
| |
| dev->enetaddr[0] = (macb >> 8) & 0xff; |
| dev->enetaddr[1] = (macb >> 0) & 0xff; |
| dev->enetaddr[2] = (maca >> 24) & 0xff; |
| dev->enetaddr[3] = (maca >> 16) & 0xff; |
| dev->enetaddr[4] = (maca >> 8) & 0xff; |
| dev->enetaddr[5] = (maca >> 0) & 0xff; |
| |
| return 0; |
| } |
| |
| static void keystone2_eth_mdio_enable(void) |
| { |
| u_int32_t clkdiv; |
| |
| clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; |
| |
| writel((clkdiv & 0xffff) | |
| MDIO_CONTROL_ENABLE | |
| MDIO_CONTROL_FAULT | |
| MDIO_CONTROL_FAULT_ENABLE, |
| &adap_mdio->control); |
| |
| while (readl(&adap_mdio->control) & MDIO_CONTROL_IDLE) |
| ; |
| } |
| |
| /* Read a PHY register via MDIO inteface. Returns 1 on success, 0 otherwise */ |
| int keystone2_eth_phy_read(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t *data) |
| { |
| int tmp; |
| |
| while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| ; |
| |
| writel(MDIO_USERACCESS0_GO | |
| MDIO_USERACCESS0_WRITE_READ | |
| ((reg_num & 0x1f) << 21) | |
| ((phy_addr & 0x1f) << 16), |
| &adap_mdio->useraccess0); |
| |
| /* Wait for command to complete */ |
| while ((tmp = readl(&adap_mdio->useraccess0)) & MDIO_USERACCESS0_GO) |
| ; |
| |
| if (tmp & MDIO_USERACCESS0_ACK) { |
| *data = tmp & 0xffff; |
| return 0; |
| } |
| |
| *data = -1; |
| return -1; |
| } |
| |
| /* |
| * Write to a PHY register via MDIO inteface. |
| * Blocks until operation is complete. |
| */ |
| int keystone2_eth_phy_write(u_int8_t phy_addr, u_int8_t reg_num, u_int16_t data) |
| { |
| while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| ; |
| |
| writel(MDIO_USERACCESS0_GO | |
| MDIO_USERACCESS0_WRITE_WRITE | |
| ((reg_num & 0x1f) << 21) | |
| ((phy_addr & 0x1f) << 16) | |
| (data & 0xffff), |
| &adap_mdio->useraccess0); |
| |
| /* Wait for command to complete */ |
| while (readl(&adap_mdio->useraccess0) & MDIO_USERACCESS0_GO) |
| ; |
| |
| return 0; |
| } |
| |
| /* PHY functions for a generic PHY */ |
| static int gen_get_link_speed(int phy_addr) |
| { |
| u_int16_t tmp; |
| |
| if ((!keystone2_eth_phy_read(phy_addr, MII_STATUS_REG, &tmp)) && |
| (tmp & 0x04)) { |
| return 0; |
| } |
| |
| return -1; |
| } |
| |
| static void __attribute__((unused)) |
| keystone2_eth_gigabit_enable(struct eth_device *dev) |
| { |
| u_int16_t data; |
| struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| |
| if (sys_has_mdio) { |
| if (keystone2_eth_phy_read(eth_priv->phy_addr, 0, &data) || |
| !(data & (1 << 6))) /* speed selection MSB */ |
| return; |
| } |
| |
| /* |
| * Check if link detected is giga-bit |
| * If Gigabit mode detected, enable gigbit in MAC |
| */ |
| writel(readl(&(adap_emac[eth_priv->slave_port - 1].maccontrol)) | |
| EMAC_MACCONTROL_GIGFORCE | EMAC_MACCONTROL_GIGABIT_ENABLE, |
| &(adap_emac[eth_priv->slave_port - 1].maccontrol)) |
| ; |
| } |
| |
| int keystone_sgmii_link_status(int port) |
| { |
| u32 status = 0; |
| |
| status = __raw_readl(SGMII_STATUS_REG(port)); |
| |
| return status & SGMII_REG_STATUS_LINK; |
| } |
| |
| |
| int keystone_get_link_status(struct eth_device *dev) |
| { |
| struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| int sgmii_link; |
| int link_state = 0; |
| #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 |
| int j; |
| |
| for (j = 0; (j < CONFIG_GET_LINK_STATUS_ATTEMPTS) && (link_state == 0); |
| j++) { |
| #endif |
| sgmii_link = |
| keystone_sgmii_link_status(eth_priv->slave_port - 1); |
| |
| if (sgmii_link) { |
| link_state = 1; |
| |
| if (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) |
| if (gen_get_link_speed(eth_priv->phy_addr)) |
| link_state = 0; |
| } |
| #if CONFIG_GET_LINK_STATUS_ATTEMPTS > 1 |
| } |
| #endif |
| return link_state; |
| } |
| |
| int keystone_sgmii_config(int port, int interface) |
| { |
| unsigned int i, status, mask; |
| unsigned int mr_adv_ability, control; |
| |
| switch (interface) { |
| case SGMII_LINK_MAC_MAC_AUTONEG: |
| mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | |
| SGMII_REG_MR_ADV_LINK | |
| SGMII_REG_MR_ADV_FULL_DUPLEX | |
| SGMII_REG_MR_ADV_GIG_MODE); |
| control = (SGMII_REG_CONTROL_MASTER | |
| SGMII_REG_CONTROL_AUTONEG); |
| |
| break; |
| case SGMII_LINK_MAC_PHY: |
| case SGMII_LINK_MAC_PHY_FORCED: |
| mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; |
| control = SGMII_REG_CONTROL_AUTONEG; |
| |
| break; |
| case SGMII_LINK_MAC_MAC_FORCED: |
| mr_adv_ability = (SGMII_REG_MR_ADV_ENABLE | |
| SGMII_REG_MR_ADV_LINK | |
| SGMII_REG_MR_ADV_FULL_DUPLEX | |
| SGMII_REG_MR_ADV_GIG_MODE); |
| control = SGMII_REG_CONTROL_MASTER; |
| |
| break; |
| case SGMII_LINK_MAC_FIBER: |
| mr_adv_ability = 0x20; |
| control = SGMII_REG_CONTROL_AUTONEG; |
| |
| break; |
| default: |
| mr_adv_ability = SGMII_REG_MR_ADV_ENABLE; |
| control = SGMII_REG_CONTROL_AUTONEG; |
| } |
| |
| __raw_writel(0, SGMII_CTL_REG(port)); |
| |
| /* |
| * Wait for the SerDes pll to lock, |
| * but don't trap if lock is never read |
| */ |
| for (i = 0; i < 1000; i++) { |
| udelay(2000); |
| status = __raw_readl(SGMII_STATUS_REG(port)); |
| if ((status & SGMII_REG_STATUS_LOCK) != 0) |
| break; |
| } |
| |
| __raw_writel(mr_adv_ability, SGMII_MRADV_REG(port)); |
| __raw_writel(control, SGMII_CTL_REG(port)); |
| |
| |
| mask = SGMII_REG_STATUS_LINK; |
| |
| if (control & SGMII_REG_CONTROL_AUTONEG) |
| mask |= SGMII_REG_STATUS_AUTONEG; |
| |
| for (i = 0; i < 1000; i++) { |
| status = __raw_readl(SGMII_STATUS_REG(port)); |
| if ((status & mask) == mask) |
| break; |
| } |
| |
| return 0; |
| } |
| |
| int mac_sl_reset(u32 port) |
| { |
| u32 i, v; |
| |
| if (port >= DEVICE_N_GMACSL_PORTS) |
| return GMACSL_RET_INVALID_PORT; |
| |
| /* Set the soft reset bit */ |
| writel(CPGMAC_REG_RESET_VAL_RESET, |
| DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); |
| |
| /* Wait for the bit to clear */ |
| for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { |
| v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); |
| if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != |
| CPGMAC_REG_RESET_VAL_RESET) |
| return GMACSL_RET_OK; |
| } |
| |
| /* Timeout on the reset */ |
| return GMACSL_RET_WARN_RESET_INCOMPLETE; |
| } |
| |
| int mac_sl_config(u_int16_t port, struct mac_sl_cfg *cfg) |
| { |
| u32 v, i; |
| int ret = GMACSL_RET_OK; |
| |
| if (port >= DEVICE_N_GMACSL_PORTS) |
| return GMACSL_RET_INVALID_PORT; |
| |
| if (cfg->max_rx_len > CPGMAC_REG_MAXLEN_LEN) { |
| cfg->max_rx_len = CPGMAC_REG_MAXLEN_LEN; |
| ret = GMACSL_RET_WARN_MAXLEN_TOO_BIG; |
| } |
| |
| /* Must wait if the device is undergoing reset */ |
| for (i = 0; i < DEVICE_EMACSL_RESET_POLL_COUNT; i++) { |
| v = readl(DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_RESET); |
| if ((v & CPGMAC_REG_RESET_VAL_RESET_MASK) != |
| CPGMAC_REG_RESET_VAL_RESET) |
| break; |
| } |
| |
| if (i == DEVICE_EMACSL_RESET_POLL_COUNT) |
| return GMACSL_RET_CONFIG_FAIL_RESET_ACTIVE; |
| |
| writel(cfg->max_rx_len, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_MAXLEN); |
| writel(cfg->ctl, DEVICE_EMACSL_BASE(port) + CPGMACSL_REG_CTL); |
| |
| return ret; |
| } |
| |
| int ethss_config(u32 ctl, u32 max_pkt_size) |
| { |
| u32 i; |
| |
| /* Max length register */ |
| writel(max_pkt_size, DEVICE_CPSW_BASE + CPSW_REG_MAXLEN); |
| |
| /* Control register */ |
| writel(ctl, DEVICE_CPSW_BASE + CPSW_REG_CTL); |
| |
| /* All statistics enabled by default */ |
| writel(CPSW_REG_VAL_STAT_ENABLE_ALL, |
| DEVICE_CPSW_BASE + CPSW_REG_STAT_PORT_EN); |
| |
| /* Reset and enable the ALE */ |
| writel(CPSW_REG_VAL_ALE_CTL_RESET_AND_ENABLE | |
| CPSW_REG_VAL_ALE_CTL_BYPASS, |
| DEVICE_CPSW_BASE + CPSW_REG_ALE_CONTROL); |
| |
| /* All ports put into forward mode */ |
| for (i = 0; i < DEVICE_CPSW_NUM_PORTS; i++) |
| writel(CPSW_REG_VAL_PORTCTL_FORWARD_MODE, |
| DEVICE_CPSW_BASE + CPSW_REG_ALE_PORTCTL(i)); |
| |
| return 0; |
| } |
| |
| int ethss_start(void) |
| { |
| int i; |
| struct mac_sl_cfg cfg; |
| |
| cfg.max_rx_len = MAX_SIZE_STREAM_BUFFER; |
| cfg.ctl = GMACSL_ENABLE | GMACSL_RX_ENABLE_EXT_CTL; |
| |
| for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) { |
| mac_sl_reset(i); |
| mac_sl_config(i, &cfg); |
| } |
| |
| return 0; |
| } |
| |
| int ethss_stop(void) |
| { |
| int i; |
| |
| for (i = 0; i < DEVICE_N_GMACSL_PORTS; i++) |
| mac_sl_reset(i); |
| |
| return 0; |
| } |
| |
| int32_t cpmac_drv_send(u32 *buffer, int num_bytes, int slave_port_num) |
| { |
| if (num_bytes < EMAC_MIN_ETHERNET_PKT_SIZE) |
| num_bytes = EMAC_MIN_ETHERNET_PKT_SIZE; |
| |
| return ksnav_send(&netcp_pktdma, buffer, |
| num_bytes, (slave_port_num) << 16); |
| } |
| |
| /* Eth device open */ |
| static int keystone2_eth_open(struct eth_device *dev, bd_t *bis) |
| { |
| u_int32_t clkdiv; |
| int link; |
| struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| |
| debug("+ emac_open\n"); |
| |
| net_rx_buffs.rx_flow = eth_priv->rx_flow; |
| |
| sys_has_mdio = |
| (eth_priv->sgmii_link_type == SGMII_LINK_MAC_PHY) ? 1 : 0; |
| |
| psc_enable_module(KS2_LPSC_PA); |
| psc_enable_module(KS2_LPSC_CPGMAC); |
| |
| sgmii_serdes_setup_156p25mhz(); |
| |
| if (sys_has_mdio) |
| keystone2_eth_mdio_enable(); |
| |
| keystone_sgmii_config(eth_priv->slave_port - 1, |
| eth_priv->sgmii_link_type); |
| |
| udelay(10000); |
| |
| /* On chip switch configuration */ |
| ethss_config(target_get_switch_ctl(), SWITCH_MAX_PKT_SIZE); |
| |
| /* TODO: add error handling code */ |
| if (qm_init()) { |
| printf("ERROR: qm_init()\n"); |
| return -1; |
| } |
| if (ksnav_init(&netcp_pktdma, &net_rx_buffs)) { |
| qm_close(); |
| printf("ERROR: netcp_init()\n"); |
| return -1; |
| } |
| |
| /* |
| * Streaming switch configuration. If not present this |
| * statement is defined to void in target.h. |
| * If present this is usually defined to a series of register writes |
| */ |
| hw_config_streaming_switch(); |
| |
| if (sys_has_mdio) { |
| /* Init MDIO & get link state */ |
| clkdiv = (EMAC_MDIO_BUS_FREQ / EMAC_MDIO_CLOCK_FREQ) - 1; |
| writel((clkdiv & 0xff) | MDIO_CONTROL_ENABLE | |
| MDIO_CONTROL_FAULT, &adap_mdio->control) |
| ; |
| |
| /* We need to wait for MDIO to start */ |
| udelay(1000); |
| |
| link = keystone_get_link_status(dev); |
| if (link == 0) { |
| ksnav_close(&netcp_pktdma); |
| qm_close(); |
| return -1; |
| } |
| } |
| |
| emac_gigabit_enable(dev); |
| |
| ethss_start(); |
| |
| debug("- emac_open\n"); |
| |
| emac_open = 1; |
| |
| return 0; |
| } |
| |
| /* Eth device close */ |
| void keystone2_eth_close(struct eth_device *dev) |
| { |
| debug("+ emac_close\n"); |
| |
| if (!emac_open) |
| return; |
| |
| ethss_stop(); |
| |
| ksnav_close(&netcp_pktdma); |
| qm_close(); |
| |
| emac_open = 0; |
| |
| debug("- emac_close\n"); |
| } |
| |
| static int tx_send_loop; |
| |
| /* |
| * This function sends a single packet on the network and returns |
| * positive number (number of bytes transmitted) or negative for error |
| */ |
| static int keystone2_eth_send_packet(struct eth_device *dev, |
| void *packet, int length) |
| { |
| int ret_status = -1; |
| struct eth_priv_t *eth_priv = (struct eth_priv_t *)dev->priv; |
| |
| tx_send_loop = 0; |
| |
| if (keystone_get_link_status(dev) == 0) |
| return -1; |
| |
| emac_gigabit_enable(dev); |
| |
| if (cpmac_drv_send((u32 *)packet, length, eth_priv->slave_port) != 0) |
| return ret_status; |
| |
| if (keystone_get_link_status(dev) == 0) |
| return -1; |
| |
| emac_gigabit_enable(dev); |
| |
| return length; |
| } |
| |
| /* |
| * This function handles receipt of a packet from the network |
| */ |
| static int keystone2_eth_rcv_packet(struct eth_device *dev) |
| { |
| void *hd; |
| int pkt_size; |
| u32 *pkt; |
| |
| hd = ksnav_recv(&netcp_pktdma, &pkt, &pkt_size); |
| if (hd == NULL) |
| return 0; |
| |
| NetReceive((uchar *)pkt, pkt_size); |
| |
| ksnav_release_rxhd(&netcp_pktdma, hd); |
| |
| return pkt_size; |
| } |
| |
| /* |
| * This function initializes the EMAC hardware. |
| */ |
| int keystone2_emac_initialize(struct eth_priv_t *eth_priv) |
| { |
| struct eth_device *dev; |
| |
| dev = malloc(sizeof(struct eth_device)); |
| if (dev == NULL) |
| return -1; |
| |
| memset(dev, 0, sizeof(struct eth_device)); |
| |
| strcpy(dev->name, eth_priv->int_name); |
| dev->priv = eth_priv; |
| |
| keystone2_eth_read_mac_addr(dev); |
| |
| dev->iobase = 0; |
| dev->init = keystone2_eth_open; |
| dev->halt = keystone2_eth_close; |
| dev->send = keystone2_eth_send_packet; |
| dev->recv = keystone2_eth_rcv_packet; |
| |
| eth_register(dev); |
| |
| return 0; |
| } |
| |
| void sgmii_serdes_setup_156p25mhz(void) |
| { |
| unsigned int cnt; |
| |
| /* |
| * configure Serializer/Deserializer (SerDes) hardware. SerDes IP |
| * hardware vendor published only register addresses and their values |
| * to be used for configuring SerDes. So had to use hardcoded values |
| * below. |
| */ |
| clrsetbits_le32(0x0232a000, 0xffff0000, 0x00800000); |
| clrsetbits_le32(0x0232a014, 0x0000ffff, 0x00008282); |
| clrsetbits_le32(0x0232a060, 0x00ffffff, 0x00142438); |
| clrsetbits_le32(0x0232a064, 0x00ffff00, 0x00c3c700); |
| clrsetbits_le32(0x0232a078, 0x0000ff00, 0x0000c000); |
| |
| clrsetbits_le32(0x0232a204, 0xff0000ff, 0x38000080); |
| clrsetbits_le32(0x0232a208, 0x000000ff, 0x00000000); |
| clrsetbits_le32(0x0232a20c, 0xff000000, 0x02000000); |
| clrsetbits_le32(0x0232a210, 0xff000000, 0x1b000000); |
| clrsetbits_le32(0x0232a214, 0x0000ffff, 0x00006fb8); |
| clrsetbits_le32(0x0232a218, 0xffff00ff, 0x758000e4); |
| clrsetbits_le32(0x0232a2ac, 0x0000ff00, 0x00004400); |
| clrsetbits_le32(0x0232a22c, 0x00ffff00, 0x00200800); |
| clrsetbits_le32(0x0232a280, 0x00ff00ff, 0x00820082); |
| clrsetbits_le32(0x0232a284, 0xffffffff, 0x1d0f0385); |
| |
| clrsetbits_le32(0x0232a404, 0xff0000ff, 0x38000080); |
| clrsetbits_le32(0x0232a408, 0x000000ff, 0x00000000); |
| clrsetbits_le32(0x0232a40c, 0xff000000, 0x02000000); |
| clrsetbits_le32(0x0232a410, 0xff000000, 0x1b000000); |
| clrsetbits_le32(0x0232a414, 0x0000ffff, 0x00006fb8); |
| clrsetbits_le32(0x0232a418, 0xffff00ff, 0x758000e4); |
| clrsetbits_le32(0x0232a4ac, 0x0000ff00, 0x00004400); |
| clrsetbits_le32(0x0232a42c, 0x00ffff00, 0x00200800); |
| clrsetbits_le32(0x0232a480, 0x00ff00ff, 0x00820082); |
| clrsetbits_le32(0x0232a484, 0xffffffff, 0x1d0f0385); |
| |
| clrsetbits_le32(0x0232a604, 0xff0000ff, 0x38000080); |
| clrsetbits_le32(0x0232a608, 0x000000ff, 0x00000000); |
| clrsetbits_le32(0x0232a60c, 0xff000000, 0x02000000); |
| clrsetbits_le32(0x0232a610, 0xff000000, 0x1b000000); |
| clrsetbits_le32(0x0232a614, 0x0000ffff, 0x00006fb8); |
| clrsetbits_le32(0x0232a618, 0xffff00ff, 0x758000e4); |
| clrsetbits_le32(0x0232a6ac, 0x0000ff00, 0x00004400); |
| clrsetbits_le32(0x0232a62c, 0x00ffff00, 0x00200800); |
| clrsetbits_le32(0x0232a680, 0x00ff00ff, 0x00820082); |
| clrsetbits_le32(0x0232a684, 0xffffffff, 0x1d0f0385); |
| |
| clrsetbits_le32(0x0232a804, 0xff0000ff, 0x38000080); |
| clrsetbits_le32(0x0232a808, 0x000000ff, 0x00000000); |
| clrsetbits_le32(0x0232a80c, 0xff000000, 0x02000000); |
| clrsetbits_le32(0x0232a810, 0xff000000, 0x1b000000); |
| clrsetbits_le32(0x0232a814, 0x0000ffff, 0x00006fb8); |
| clrsetbits_le32(0x0232a818, 0xffff00ff, 0x758000e4); |
| clrsetbits_le32(0x0232a8ac, 0x0000ff00, 0x00004400); |
| clrsetbits_le32(0x0232a82c, 0x00ffff00, 0x00200800); |
| clrsetbits_le32(0x0232a880, 0x00ff00ff, 0x00820082); |
| clrsetbits_le32(0x0232a884, 0xffffffff, 0x1d0f0385); |
| |
| clrsetbits_le32(0x0232aa00, 0x0000ff00, 0x00000800); |
| clrsetbits_le32(0x0232aa08, 0xffff0000, 0x38a20000); |
| clrsetbits_le32(0x0232aa30, 0x00ffff00, 0x008a8a00); |
| clrsetbits_le32(0x0232aa84, 0x0000ff00, 0x00000600); |
| clrsetbits_le32(0x0232aa94, 0xff000000, 0x10000000); |
| clrsetbits_le32(0x0232aaa0, 0xff000000, 0x81000000); |
| clrsetbits_le32(0x0232aabc, 0xff000000, 0xff000000); |
| clrsetbits_le32(0x0232aac0, 0x000000ff, 0x0000008b); |
| clrsetbits_le32(0x0232ab08, 0xffff0000, 0x583f0000); |
| clrsetbits_le32(0x0232ab0c, 0x000000ff, 0x0000004e); |
| clrsetbits_le32(0x0232a000, 0x000000ff, 0x00000003); |
| clrsetbits_le32(0x0232aa00, 0x000000ff, 0x0000005f); |
| |
| clrsetbits_le32(0x0232aa48, 0x00ffff00, 0x00fd8c00); |
| clrsetbits_le32(0x0232aa54, 0x00ffffff, 0x002fec72); |
| clrsetbits_le32(0x0232aa58, 0xffffff00, 0x00f92100); |
| clrsetbits_le32(0x0232aa5c, 0xffffffff, 0x00040060); |
| clrsetbits_le32(0x0232aa60, 0xffffffff, 0x00008000); |
| clrsetbits_le32(0x0232aa64, 0xffffffff, 0x0c581220); |
| clrsetbits_le32(0x0232aa68, 0xffffffff, 0xe13b0602); |
| clrsetbits_le32(0x0232aa6c, 0xffffffff, 0xb8074cc1); |
| clrsetbits_le32(0x0232aa70, 0xffffffff, 0x3f02e989); |
| clrsetbits_le32(0x0232aa74, 0x000000ff, 0x00000001); |
| clrsetbits_le32(0x0232ab20, 0x00ff0000, 0x00370000); |
| clrsetbits_le32(0x0232ab1c, 0xff000000, 0x37000000); |
| clrsetbits_le32(0x0232ab20, 0x000000ff, 0x0000005d); |
| |
| /*Bring SerDes out of Reset if SerDes is Shutdown & is in Reset Mode*/ |
| clrbits_le32(0x0232a010, 1 << 28); |
| |
| /* Enable TX and RX via the LANExCTL_STS 0x0000 + x*4 */ |
| clrbits_le32(0x0232a228, 1 << 29); |
| writel(0xF800F8C0, 0x0232bfe0); |
| clrbits_le32(0x0232a428, 1 << 29); |
| writel(0xF800F8C0, 0x0232bfe4); |
| clrbits_le32(0x0232a628, 1 << 29); |
| writel(0xF800F8C0, 0x0232bfe8); |
| clrbits_le32(0x0232a828, 1 << 29); |
| writel(0xF800F8C0, 0x0232bfec); |
| |
| /*Enable pll via the pll_ctrl 0x0014*/ |
| writel(0xe0000000, 0x0232bff4) |
| ; |
| |
| /*Waiting for SGMII Serdes PLL lock.*/ |
| for (cnt = 10000; cnt > 0 && ((readl(0x02090114) & 0x10) == 0); cnt--) |
| ; |
| |
| for (cnt = 10000; cnt > 0 && ((readl(0x02090214) & 0x10) == 0); cnt--) |
| ; |
| |
| for (cnt = 10000; cnt > 0 && ((readl(0x02090414) & 0x10) == 0); cnt--) |
| ; |
| |
| for (cnt = 10000; cnt > 0 && ((readl(0x02090514) & 0x10) == 0); cnt--) |
| ; |
| |
| udelay(45000); |
| } |
| |
| void sgmii_serdes_shutdown(void) |
| { |
| /* |
| * shutdown SerDes hardware. SerDes hardware vendor published only |
| * register addresses and their values. So had to use hardcoded |
| * values below. |
| */ |
| clrbits_le32(0x0232bfe0, 3 << 29 | 3 << 13); |
| setbits_le32(0x02320228, 1 << 29); |
| clrbits_le32(0x0232bfe4, 3 << 29 | 3 << 13); |
| setbits_le32(0x02320428, 1 << 29); |
| clrbits_le32(0x0232bfe8, 3 << 29 | 3 << 13); |
| setbits_le32(0x02320628, 1 << 29); |
| clrbits_le32(0x0232bfec, 3 << 29 | 3 << 13); |
| setbits_le32(0x02320828, 1 << 29); |
| |
| clrbits_le32(0x02320034, 3 << 29); |
| setbits_le32(0x02320010, 1 << 28); |
| } |