| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2018-2020 Marvell International Ltd. |
| */ |
| |
| /* |
| * Simple allocate only memory allocator. Used to allocate memory at |
| * application start time. |
| */ |
| |
| #include <asm/global_data.h> |
| |
| #include <linux/compat.h> |
| #include <linux/io.h> |
| #include <linux/types.h> |
| |
| #include <mach/octeon-model.h> |
| #include <mach/cvmx-bootmem.h> |
| #include <mach/cvmx-coremask.h> |
| #include <mach/cvmx-regs.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /** |
| * This is the physical location of a struct cvmx_bootmem_desc |
| * structure in Octeon's memory. Note that dues to addressing |
| * limits or runtime environment it might not be possible to |
| * create a C pointer to this structure. |
| */ |
| static u64 cvmx_bootmem_desc_addr; |
| |
| /** |
| * This macro returns the size of a member of a structure. |
| * Logically it is the same as "sizeof(s::field)" in C++, but |
| * C lacks the "::" operator. |
| */ |
| #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field) |
| |
| /** |
| * This macro returns a member of the struct cvmx_bootmem_desc |
| * structure. These members can't be directly addressed as |
| * they might be in memory not directly reachable. In the case |
| * where bootmem is compiled with LINUX_HOST, the structure |
| * itself might be located on a remote Octeon. The argument |
| * "field" is the member name of the struct cvmx_bootmem_desc to read. |
| * Regardless of the type of the field, the return type is always |
| * a u64. |
| */ |
| #define CVMX_BOOTMEM_DESC_GET_FIELD(field) \ |
| __cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \ |
| offsetof(struct cvmx_bootmem_desc, field), \ |
| SIZEOF_FIELD(struct cvmx_bootmem_desc, field)) |
| |
| /** |
| * This macro writes a member of the struct cvmx_bootmem_desc |
| * structure. These members can't be directly addressed as |
| * they might be in memory not directly reachable. In the case |
| * where bootmem is compiled with LINUX_HOST, the structure |
| * itself might be located on a remote Octeon. The argument |
| * "field" is the member name of the struct cvmx_bootmem_desc to write. |
| */ |
| #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \ |
| __cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \ |
| offsetof(struct cvmx_bootmem_desc, field), \ |
| SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \ |
| value) |
| |
| /** |
| * This macro returns a member of the |
| * struct cvmx_bootmem_named_block_desc structure. These members can't |
| * be directly addressed as they might be in memory not directly |
| * reachable. In the case where bootmem is compiled with |
| * LINUX_HOST, the structure itself might be located on a remote |
| * Octeon. The argument "field" is the member name of the |
| * struct cvmx_bootmem_named_block_desc to read. Regardless of the type |
| * of the field, the return type is always a u64. The "addr" |
| * parameter is the physical address of the structure. |
| */ |
| #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \ |
| __cvmx_bootmem_desc_get(addr, \ |
| offsetof(struct cvmx_bootmem_named_block_desc, field), \ |
| SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field)) |
| |
| /** |
| * This macro writes a member of the struct cvmx_bootmem_named_block_desc |
| * structure. These members can't be directly addressed as |
| * they might be in memory not directly reachable. In the case |
| * where bootmem is compiled with LINUX_HOST, the structure |
| * itself might be located on a remote Octeon. The argument |
| * "field" is the member name of the |
| * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter |
| * is the physical address of the structure. |
| */ |
| #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \ |
| __cvmx_bootmem_desc_set(addr, \ |
| offsetof(struct cvmx_bootmem_named_block_desc, field), \ |
| SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \ |
| value) |
| |
| /** |
| * This function is the implementation of the get macros defined |
| * for individual structure members. The argument are generated |
| * by the macros inorder to read only the needed memory. |
| * |
| * @param base 64bit physical address of the complete structure |
| * @param offset Offset from the beginning of the structure to the member being |
| * accessed. |
| * @param size Size of the structure member. |
| * |
| * @return Value of the structure member promoted into a u64. |
| */ |
| static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset, |
| int size) |
| { |
| base = (1ull << 63) | (base + offset); |
| switch (size) { |
| case 4: |
| return cvmx_read64_uint32(base); |
| case 8: |
| return cvmx_read64_uint64(base); |
| default: |
| return 0; |
| } |
| } |
| |
| /** |
| * This function is the implementation of the set macros defined |
| * for individual structure members. The argument are generated |
| * by the macros in order to write only the needed memory. |
| * |
| * @param base 64bit physical address of the complete structure |
| * @param offset Offset from the beginning of the structure to the member being |
| * accessed. |
| * @param size Size of the structure member. |
| * @param value Value to write into the structure |
| */ |
| static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size, |
| u64 value) |
| { |
| base = (1ull << 63) | (base + offset); |
| switch (size) { |
| case 4: |
| cvmx_write64_uint32(base, value); |
| break; |
| case 8: |
| cvmx_write64_uint64(base, value); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /** |
| * This function returns the address of the bootmem descriptor lock. |
| * |
| * @return 64-bit address in KSEG0 of the bootmem descriptor block |
| */ |
| static inline u64 __cvmx_bootmem_get_lock_addr(void) |
| { |
| return (1ull << 63) | |
| (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock)); |
| } |
| |
| /** |
| * This function retrieves the string name of a named block. It is |
| * more complicated than a simple memcpy() since the named block |
| * descriptor may not be directly accessible. |
| * |
| * @param addr Physical address of the named block descriptor |
| * @param str String to receive the named block string name |
| * @param len Length of the string buffer, which must match the length |
| * stored in the bootmem descriptor. |
| */ |
| static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len) |
| { |
| int l = len; |
| char *ptr = str; |
| |
| addr |= (1ull << 63); |
| addr += offsetof(struct cvmx_bootmem_named_block_desc, name); |
| while (l) { |
| /* |
| * With big-endian in memory byte order, this gives uniform |
| * results for the CPU in either big or Little endian mode. |
| */ |
| u64 blob = cvmx_read64_uint64(addr); |
| int sa = 56; |
| |
| addr += sizeof(u64); |
| while (l && sa >= 0) { |
| *ptr++ = (char)(blob >> sa); |
| l--; |
| sa -= 8; |
| } |
| } |
| str[len] = 0; |
| } |
| |
| /** |
| * This function stores the string name of a named block. It is |
| * more complicated than a simple memcpy() since the named block |
| * descriptor may not be directly accessible. |
| * |
| * @param addr Physical address of the named block descriptor |
| * @param str String to store into the named block string name |
| * @param len Length of the string buffer, which must match the length |
| * stored in the bootmem descriptor. |
| */ |
| void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len) |
| { |
| int l = len; |
| |
| addr |= (1ull << 63); |
| addr += offsetof(struct cvmx_bootmem_named_block_desc, name); |
| |
| while (l) { |
| /* |
| * With big-endian in memory byte order, this gives uniform |
| * results for the CPU in either big or Little endian mode. |
| */ |
| u64 blob = 0; |
| int sa = 56; |
| |
| while (l && sa >= 0) { |
| u64 c = (u8)(*str++); |
| |
| l--; |
| if (l == 0) |
| c = 0; |
| blob |= c << sa; |
| sa -= 8; |
| } |
| cvmx_write64_uint64(addr, blob); |
| addr += sizeof(u64); |
| } |
| } |
| |
| /* See header file for descriptions of functions */ |
| |
| /* |
| * Wrapper functions are provided for reading/writing the size and next block |
| * values as these may not be directly addressible (in 32 bit applications, for |
| * instance.) |
| * |
| * Offsets of data elements in bootmem list, must match |
| * struct cvmx_bootmem_block_header |
| */ |
| #define NEXT_OFFSET 0 |
| #define SIZE_OFFSET 8 |
| |
| static void cvmx_bootmem_phy_set_size(u64 addr, u64 size) |
| { |
| cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size); |
| } |
| |
| static void cvmx_bootmem_phy_set_next(u64 addr, u64 next) |
| { |
| cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next); |
| } |
| |
| static u64 cvmx_bootmem_phy_get_size(u64 addr) |
| { |
| return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63)); |
| } |
| |
| static u64 cvmx_bootmem_phy_get_next(u64 addr) |
| { |
| return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63)); |
| } |
| |
| /** |
| * Check the version information on the bootmem descriptor |
| * |
| * @param exact_match |
| * Exact major version to check against. A zero means |
| * check that the version supports named blocks. |
| * |
| * @return Zero if the version is correct. Negative if the version is |
| * incorrect. Failures also cause a message to be displayed. |
| */ |
| static int __cvmx_bootmem_check_version(int exact_match) |
| { |
| int major_version; |
| |
| major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version); |
| if (major_version > 3 || |
| (exact_match && major_version) != exact_match) { |
| debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n", |
| major_version, |
| (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version), |
| CAST_ULL(cvmx_bootmem_desc_addr)); |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| /** |
| * Get the low level bootmem descriptor lock. If no locking |
| * is specified in the flags, then nothing is done. |
| * |
| * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do |
| * nothing. This is used to support nested bootmem calls. |
| */ |
| static inline void __cvmx_bootmem_lock(u32 flags) |
| { |
| if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { |
| /* |
| * Unfortunately we can't use the normal cvmx-spinlock code as |
| * the memory for the bootmem descriptor may be not accessible |
| * by a C pointer. We use a 64bit XKPHYS address to access the |
| * memory directly |
| */ |
| u64 lock_addr = (1ull << 63) | |
| (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, |
| lock)); |
| unsigned int tmp; |
| |
| __asm__ __volatile__(".set noreorder\n" |
| "1: ll %[tmp], 0(%[addr])\n" |
| " bnez %[tmp], 1b\n" |
| " li %[tmp], 1\n" |
| " sc %[tmp], 0(%[addr])\n" |
| " beqz %[tmp], 1b\n" |
| " nop\n" |
| ".set reorder\n" |
| : [tmp] "=&r"(tmp) |
| : [addr] "r"(lock_addr) |
| : "memory"); |
| } |
| } |
| |
| /** |
| * Release the low level bootmem descriptor lock. If no locking |
| * is specified in the flags, then nothing is done. |
| * |
| * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do |
| * nothing. This is used to support nested bootmem calls. |
| */ |
| static inline void __cvmx_bootmem_unlock(u32 flags) |
| { |
| if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) { |
| /* |
| * Unfortunately we can't use the normal cvmx-spinlock code as |
| * the memory for the bootmem descriptor may be not accessible |
| * by a C pointer. We use a 64bit XKPHYS address to access the |
| * memory directly |
| */ |
| u64 lock_addr = __cvmx_bootmem_get_lock_addr(); |
| |
| CVMX_SYNCW; |
| __asm__ __volatile__("sw $0, 0(%[addr])\n" |
| : : [addr] "r"(lock_addr) |
| : "memory"); |
| CVMX_SYNCW; |
| } |
| } |
| |
| /* |
| * Some of the cvmx-bootmem functions dealing with C pointers are not |
| * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This |
| * ifndef removes these functions when they aren't needed. |
| * |
| * This functions takes an address range and adjusts it as necessary |
| * to match the ABI that is currently being used. This is required to |
| * ensure that bootmem_alloc* functions only return valid pointers for |
| * 32 bit ABIs |
| */ |
| static int __cvmx_validate_mem_range(u64 *min_addr_ptr, |
| u64 *max_addr_ptr) |
| { |
| u64 max_phys = (1ull << 29) - 0x10; /* KSEG0 */ |
| |
| *min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys); |
| if (!*max_addr_ptr) { |
| *max_addr_ptr = max_phys; |
| } else { |
| *max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr, |
| max_phys), 0x0); |
| } |
| |
| return 0; |
| } |
| |
| u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment, |
| u64 min_addr, u64 max_addr) |
| { |
| s64 address; |
| |
| __cvmx_validate_mem_range(&min_addr, &max_addr); |
| address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, |
| alignment, 0); |
| if (address > 0) |
| return address; |
| else |
| return 0; |
| } |
| |
| void *cvmx_bootmem_alloc_range(u64 size, u64 alignment, |
| u64 min_addr, u64 max_addr) |
| { |
| s64 address; |
| |
| __cvmx_validate_mem_range(&min_addr, &max_addr); |
| address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, |
| alignment, 0); |
| |
| if (address > 0) |
| return cvmx_phys_to_ptr(address); |
| else |
| return NULL; |
| } |
| |
| void *cvmx_bootmem_alloc_address(u64 size, u64 address, |
| u64 alignment) |
| { |
| return cvmx_bootmem_alloc_range(size, alignment, address, |
| address + size); |
| } |
| |
| void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment) |
| { |
| return cvmx_bootmem_alloc_range(size, alignment, |
| node << CVMX_NODE_MEM_SHIFT, |
| ((node + 1) << CVMX_NODE_MEM_SHIFT) - 1); |
| } |
| |
| void *cvmx_bootmem_alloc(u64 size, u64 alignment) |
| { |
| return cvmx_bootmem_alloc_range(size, alignment, 0, 0); |
| } |
| |
| void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr, |
| u64 max_addr, u64 align, |
| const char *name, |
| void (*init)(void *)) |
| { |
| u64 named_block_desc_addr; |
| void *ptr; |
| s64 addr; |
| |
| __cvmx_bootmem_lock(0); |
| |
| __cvmx_validate_mem_range(&min_addr, &max_addr); |
| named_block_desc_addr = |
| cvmx_bootmem_phy_named_block_find(name, |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| |
| if (named_block_desc_addr) { |
| addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr, |
| base_addr); |
| __cvmx_bootmem_unlock(0); |
| return cvmx_phys_to_ptr(addr); |
| } |
| |
| addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, |
| align, name, |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| |
| if (addr < 0) { |
| __cvmx_bootmem_unlock(0); |
| return NULL; |
| } |
| ptr = cvmx_phys_to_ptr(addr); |
| |
| if (init) |
| init(ptr); |
| else |
| memset(ptr, 0, size); |
| |
| __cvmx_bootmem_unlock(0); |
| return ptr; |
| } |
| |
| void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr, |
| u64 max_addr, u64 align, |
| const char *name, u32 flags) |
| { |
| s64 addr; |
| |
| __cvmx_validate_mem_range(&min_addr, &max_addr); |
| addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr, |
| align, name, flags); |
| if (addr >= 0) |
| return cvmx_phys_to_ptr(addr); |
| else |
| return NULL; |
| } |
| |
| void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr, |
| u64 max_addr, u64 align, |
| const char *name) |
| { |
| return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr, |
| align, name, 0); |
| } |
| |
| void *cvmx_bootmem_alloc_named_address(u64 size, u64 address, |
| const char *name) |
| { |
| return cvmx_bootmem_alloc_named_range(size, address, address + size, |
| 0, name); |
| } |
| |
| void *cvmx_bootmem_alloc_named(u64 size, u64 alignment, |
| const char *name) |
| { |
| return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name); |
| } |
| |
| void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment, |
| const char *name, u32 flags) |
| { |
| return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment, |
| name, flags); |
| } |
| |
| int cvmx_bootmem_free_named(const char *name) |
| { |
| return cvmx_bootmem_phy_named_block_free(name, 0); |
| } |
| |
| /** |
| * Find a named block with flags |
| * |
| * @param name is the block name |
| * @param flags indicates the need to use locking during search |
| * @return pointer to named block descriptor |
| * |
| * Note: this function returns a pointer to a static structure, |
| * and is therefore not re-entrant. |
| * Making this function re-entrant will break backward compatibility. |
| */ |
| const struct cvmx_bootmem_named_block_desc * |
| __cvmx_bootmem_find_named_block_flags(const char *name, u32 flags) |
| { |
| static struct cvmx_bootmem_named_block_desc desc; |
| u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags); |
| |
| if (named_addr) { |
| desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, |
| base_addr); |
| desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); |
| strncpy(desc.name, name, sizeof(desc.name)); |
| desc.name[sizeof(desc.name) - 1] = 0; |
| return &desc; |
| } else { |
| return NULL; |
| } |
| } |
| |
| const struct cvmx_bootmem_named_block_desc * |
| cvmx_bootmem_find_named_block(const char *name) |
| { |
| return __cvmx_bootmem_find_named_block_flags(name, 0); |
| } |
| |
| void cvmx_bootmem_print_named(void) |
| { |
| cvmx_bootmem_phy_named_block_print(); |
| } |
| |
| int cvmx_bootmem_init(u64 mem_desc_addr) |
| { |
| if (!cvmx_bootmem_desc_addr) |
| cvmx_bootmem_desc_addr = mem_desc_addr; |
| |
| return 0; |
| } |
| |
| u64 cvmx_bootmem_available_mem(u64 min_block_size) |
| { |
| return cvmx_bootmem_phy_available_mem(min_block_size); |
| } |
| |
| /* |
| * The cvmx_bootmem_phy* functions below return 64 bit physical |
| * addresses, and expose more features that the cvmx_bootmem_functions |
| * above. These are required for full memory space access in 32 bit |
| * applications, as well as for using some advance features. Most |
| * applications should not need to use these. |
| */ |
| |
| s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min, |
| u64 address_max, u64 alignment, |
| u32 flags) |
| { |
| u64 head_addr, ent_addr, ent_size; |
| u64 target_ent_addr = 0, target_prev_addr = 0; |
| u64 target_size = ~0ull; |
| u64 free_start, free_end; |
| u64 next_addr, prev_addr = 0; |
| u64 new_ent_addr = 0, new_ent_size; |
| u64 desired_min_addr, usable_max; |
| u64 align, align_mask; |
| |
| debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n", |
| __func__, CAST_ULL(req_size), CAST_ULL(address_min), |
| CAST_ULL(address_max), CAST_ULL(alignment)); |
| |
| if (__cvmx_bootmem_check_version(0)) |
| return -1; |
| |
| /* |
| * Do a variety of checks to validate the arguments. The |
| * allocator code will later assume that these checks have |
| * been made. We validate that the requested constraints are |
| * not self-contradictory before we look through the list of |
| * available memory |
| */ |
| |
| /* 0 is not a valid req_size for this allocator */ |
| if (!req_size) |
| return -1; |
| |
| /* Round req_size up to multiple of minimum alignment bytes */ |
| req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & |
| ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); |
| |
| /* Make sure alignment is power of 2, and at least the minimum */ |
| for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE; |
| align < (1ull << 48); |
| align <<= 1) { |
| if (align >= alignment) |
| break; |
| } |
| |
| align_mask = ~(align - 1); |
| |
| /* |
| * Adjust address minimum based on requested alignment (round |
| * up to meet alignment). Do this here so we can reject |
| * impossible requests up front. (NOP for address_min == 0) |
| */ |
| address_min = (address_min + (align - 1)) & align_mask; |
| |
| /* |
| * Convert !0 address_min and 0 address_max to special case of |
| * range that specifies an exact memory block to allocate. Do |
| * this before other checks and adjustments so that this |
| * tranformation will be validated |
| */ |
| if (address_min && !address_max) |
| address_max = address_min + req_size; |
| else if (!address_min && !address_max) |
| address_max = ~0ull; /* If no limits given, use max */ |
| |
| /* |
| * Reject inconsistent args. We have adjusted these, so this |
| * may fail due to our internal changes even if this check |
| * would pass for the values the user supplied. |
| */ |
| if (req_size > address_max - address_min) |
| return -1; |
| |
| __cvmx_bootmem_lock(flags); |
| |
| /* Walk through the list entries to find the right fit */ |
| head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); |
| |
| for (ent_addr = head_addr; |
| ent_addr != 0ULL && ent_addr < address_max; |
| prev_addr = ent_addr, |
| ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) { |
| /* Raw free block size */ |
| ent_size = cvmx_bootmem_phy_get_size(ent_addr); |
| next_addr = cvmx_bootmem_phy_get_next(ent_addr); |
| |
| /* Validate the free list ascending order */ |
| if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE || |
| (next_addr && ent_addr > next_addr)) { |
| debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n", |
| __func__, CAST_ULL(ent_addr), |
| CAST_ULL(next_addr)); |
| goto error_out; |
| } |
| |
| /* adjust free block edges for alignment */ |
| free_start = (ent_addr + align - 1) & align_mask; |
| free_end = (ent_addr + ent_size) & align_mask; |
| |
| /* check that free block is large enough */ |
| if ((free_start + req_size) > free_end) |
| continue; |
| |
| /* check that desired start is within the free block */ |
| if (free_end < address_min || free_start > address_max) |
| continue; |
| if ((free_end - address_min) < req_size) |
| continue; |
| if ((address_max - free_start) < req_size) |
| continue; |
| |
| /* Found usebale free block */ |
| target_ent_addr = ent_addr; |
| target_prev_addr = prev_addr; |
| target_size = ent_size; |
| |
| /* Continue looking for highest/best block that fits */ |
| } |
| |
| /* Bail if the search has resulted in no eligible free blocks */ |
| if (target_ent_addr == 0) { |
| debug("%s: eligible free block not found\n", __func__); |
| goto error_out; |
| } |
| |
| /* Found the free block to allocate from */ |
| ent_addr = target_ent_addr; |
| prev_addr = target_prev_addr; |
| ent_size = target_size; |
| |
| debug("%s: using free block at %#010llx size %#llx\n", |
| __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size)); |
| |
| /* Always allocate from the end of a free block */ |
| usable_max = min_t(u64, address_max, ent_addr + ent_size); |
| desired_min_addr = usable_max - req_size; |
| desired_min_addr &= align_mask; |
| |
| /* Split current free block into up to 3 free blocks */ |
| |
| /* Check for head room */ |
| if (desired_min_addr > ent_addr) { |
| /* Create a new free block at the allocation address */ |
| new_ent_addr = desired_min_addr; |
| new_ent_size = ent_size - (desired_min_addr - ent_addr); |
| |
| cvmx_bootmem_phy_set_next(new_ent_addr, |
| cvmx_bootmem_phy_get_next(ent_addr)); |
| cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size); |
| |
| /* Split out head room into a new free block */ |
| ent_size -= new_ent_size; |
| cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); |
| cvmx_bootmem_phy_set_size(ent_addr, ent_size); |
| |
| debug("%s: splitting head, addr %#llx size %#llx\n", |
| __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size)); |
| |
| /* Make the allocation target the current free block */ |
| prev_addr = ent_addr; |
| ent_addr = new_ent_addr; |
| ent_size = new_ent_size; |
| } |
| |
| /* Check for tail room */ |
| if ((desired_min_addr + req_size) < (ent_addr + ent_size)) { |
| new_ent_addr = ent_addr + req_size; |
| new_ent_size = ent_size - req_size; |
| |
| /* Create a new free block from tail room */ |
| cvmx_bootmem_phy_set_next(new_ent_addr, |
| cvmx_bootmem_phy_get_next(ent_addr)); |
| cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size); |
| |
| debug("%s: splitting tail, addr %#llx size %#llx\n", |
| __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size)); |
| |
| /* Adjust the current block to exclude tail room */ |
| ent_size = ent_size - new_ent_size; |
| cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr); |
| cvmx_bootmem_phy_set_size(ent_addr, ent_size); |
| } |
| |
| /* The current free block IS the allocation target */ |
| if (desired_min_addr != ent_addr || ent_size != req_size) |
| debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n", |
| __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr), |
| CAST_ULL(ent_size), CAST_ULL(req_size)); |
| |
| /* Remove the current free block from list */ |
| if (prev_addr) { |
| cvmx_bootmem_phy_set_next(prev_addr, |
| cvmx_bootmem_phy_get_next(ent_addr)); |
| } else { |
| /* head of list being returned, so update head ptr */ |
| CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, |
| cvmx_bootmem_phy_get_next(ent_addr)); |
| } |
| |
| __cvmx_bootmem_unlock(flags); |
| debug("%s: allocated size: %#llx, at addr: %#010llx\n", |
| __func__, |
| CAST_ULL(req_size), |
| CAST_ULL(desired_min_addr)); |
| |
| return desired_min_addr; |
| |
| error_out: |
| /* Requested memory not found or argument error */ |
| __cvmx_bootmem_unlock(flags); |
| return -1; |
| } |
| |
| int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags) |
| { |
| u64 cur_addr; |
| u64 prev_addr = 0; /* zero is invalid */ |
| int retval = 0; |
| |
| debug("%s addr: %#llx, size: %#llx\n", __func__, |
| CAST_ULL(phy_addr), CAST_ULL(size)); |
| |
| if (__cvmx_bootmem_check_version(0)) |
| return 0; |
| |
| /* 0 is not a valid size for this allocator */ |
| if (!size || !phy_addr) |
| return 0; |
| |
| /* Round size up to mult of minimum alignment bytes */ |
| size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & |
| ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); |
| |
| __cvmx_bootmem_lock(flags); |
| cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); |
| if (cur_addr == 0 || phy_addr < cur_addr) { |
| /* add at front of list - special case with changing head ptr */ |
| if (cur_addr && phy_addr + size > cur_addr) |
| goto bootmem_free_done; /* error, overlapping section */ |
| else if (phy_addr + size == cur_addr) { |
| /* Add to front of existing first block */ |
| cvmx_bootmem_phy_set_next(phy_addr, |
| cvmx_bootmem_phy_get_next(cur_addr)); |
| cvmx_bootmem_phy_set_size(phy_addr, |
| cvmx_bootmem_phy_get_size(cur_addr) + size); |
| CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); |
| |
| } else { |
| /* New block before first block */ |
| /* OK if cur_addr is 0 */ |
| cvmx_bootmem_phy_set_next(phy_addr, cur_addr); |
| cvmx_bootmem_phy_set_size(phy_addr, size); |
| CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr); |
| } |
| retval = 1; |
| goto bootmem_free_done; |
| } |
| |
| /* Find place in list to add block */ |
| while (cur_addr && phy_addr > cur_addr) { |
| prev_addr = cur_addr; |
| cur_addr = cvmx_bootmem_phy_get_next(cur_addr); |
| } |
| |
| if (!cur_addr) { |
| /* |
| * We have reached the end of the list, add on to end, checking |
| * to see if we need to combine with last block |
| */ |
| if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { |
| cvmx_bootmem_phy_set_size(prev_addr, |
| cvmx_bootmem_phy_get_size(prev_addr) + size); |
| } else { |
| cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| cvmx_bootmem_phy_set_size(phy_addr, size); |
| cvmx_bootmem_phy_set_next(phy_addr, 0); |
| } |
| retval = 1; |
| goto bootmem_free_done; |
| } else { |
| /* |
| * insert between prev and cur nodes, checking for merge with |
| * either/both |
| */ |
| if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) { |
| /* Merge with previous */ |
| cvmx_bootmem_phy_set_size(prev_addr, |
| cvmx_bootmem_phy_get_size(prev_addr) + size); |
| if (phy_addr + size == cur_addr) { |
| /* Also merge with current */ |
| cvmx_bootmem_phy_set_size(prev_addr, |
| cvmx_bootmem_phy_get_size(cur_addr) + |
| cvmx_bootmem_phy_get_size(prev_addr)); |
| cvmx_bootmem_phy_set_next(prev_addr, |
| cvmx_bootmem_phy_get_next(cur_addr)); |
| } |
| retval = 1; |
| goto bootmem_free_done; |
| } else if (phy_addr + size == cur_addr) { |
| /* Merge with current */ |
| cvmx_bootmem_phy_set_size(phy_addr, |
| cvmx_bootmem_phy_get_size(cur_addr) + size); |
| cvmx_bootmem_phy_set_next(phy_addr, |
| cvmx_bootmem_phy_get_next(cur_addr)); |
| cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| retval = 1; |
| goto bootmem_free_done; |
| } |
| |
| /* It is a standalone block, add in between prev and cur */ |
| cvmx_bootmem_phy_set_size(phy_addr, size); |
| cvmx_bootmem_phy_set_next(phy_addr, cur_addr); |
| cvmx_bootmem_phy_set_next(prev_addr, phy_addr); |
| } |
| retval = 1; |
| |
| bootmem_free_done: |
| __cvmx_bootmem_unlock(flags); |
| return retval; |
| } |
| |
| void cvmx_bootmem_phy_list_print(void) |
| { |
| u64 addr; |
| |
| addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); |
| printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n", |
| CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr)); |
| printf("Descriptor version: %d.%d\n", |
| (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version), |
| (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version)); |
| if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3) |
| debug("Warning: Bootmem descriptor version is newer than expected\n"); |
| |
| if (!addr) |
| printf("mem list is empty!\n"); |
| |
| while (addr) { |
| printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr), |
| CAST_ULL(cvmx_bootmem_phy_get_size(addr)), |
| CAST_ULL(cvmx_bootmem_phy_get_next(addr))); |
| addr = cvmx_bootmem_phy_get_next(addr); |
| } |
| printf("\n\n"); |
| } |
| |
| u64 cvmx_bootmem_phy_available_mem(u64 min_block_size) |
| { |
| u64 addr; |
| |
| u64 available_mem = 0; |
| |
| __cvmx_bootmem_lock(0); |
| addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); |
| while (addr) { |
| if (cvmx_bootmem_phy_get_size(addr) >= min_block_size) |
| available_mem += cvmx_bootmem_phy_get_size(addr); |
| addr = cvmx_bootmem_phy_get_next(addr); |
| } |
| __cvmx_bootmem_unlock(0); |
| return available_mem; |
| } |
| |
| u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags) |
| { |
| u64 result = 0; |
| |
| debug("%s: %s\n", __func__, name); |
| |
| __cvmx_bootmem_lock(flags); |
| if (!__cvmx_bootmem_check_version(3)) { |
| int i; |
| u64 named_block_array_addr = |
| CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); |
| int num_blocks = |
| CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); |
| int name_length = |
| CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); |
| u64 named_addr = named_block_array_addr; |
| |
| for (i = 0; i < num_blocks; i++) { |
| u64 named_size = |
| CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size); |
| if (name && named_size) { |
| char name_tmp[name_length + 1]; |
| |
| CVMX_BOOTMEM_NAMED_GET_NAME(named_addr, |
| name_tmp, |
| name_length); |
| if (!strncmp(name, name_tmp, name_length)) { |
| result = named_addr; |
| break; |
| } |
| } else if (!name && !named_size) { |
| result = named_addr; |
| break; |
| } |
| |
| named_addr += |
| sizeof(struct cvmx_bootmem_named_block_desc); |
| } |
| } |
| __cvmx_bootmem_unlock(flags); |
| return result; |
| } |
| |
| int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags) |
| { |
| u64 named_block_addr; |
| |
| if (__cvmx_bootmem_check_version(3)) |
| return 0; |
| |
| debug("%s: %s\n", __func__, name); |
| |
| /* |
| * Take lock here, as name lookup/block free/name free need to be |
| * atomic |
| */ |
| __cvmx_bootmem_lock(flags); |
| |
| named_block_addr = cvmx_bootmem_phy_named_block_find(name, |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| if (named_block_addr) { |
| u64 named_addr = |
| CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, |
| base_addr); |
| u64 named_size = |
| CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); |
| |
| debug("%s: %s, base: 0x%llx, size: 0x%llx\n", |
| __func__, name, CAST_ULL(named_addr), |
| CAST_ULL(named_size)); |
| |
| __cvmx_bootmem_phy_free(named_addr, named_size, |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| |
| /* Set size to zero to indicate block not used. */ |
| CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0); |
| } |
| |
| __cvmx_bootmem_unlock(flags); |
| return !!named_block_addr; /* 0 on failure, 1 on success */ |
| } |
| |
| s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr, |
| u64 max_addr, |
| u64 alignment, const char *name, |
| u32 flags) |
| { |
| s64 addr_allocated; |
| u64 named_block_desc_addr; |
| |
| debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n", |
| __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr), |
| CAST_ULL(alignment), name); |
| |
| if (__cvmx_bootmem_check_version(3)) |
| return -1; |
| |
| /* |
| * Take lock here, as name lookup/block alloc/name add need to be |
| * atomic |
| */ |
| __cvmx_bootmem_lock(flags); |
| |
| named_block_desc_addr = |
| cvmx_bootmem_phy_named_block_find(name, flags | |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| if (named_block_desc_addr) { |
| __cvmx_bootmem_unlock(flags); |
| return -1; |
| } |
| |
| /* Get pointer to first available named block descriptor */ |
| named_block_desc_addr = |
| cvmx_bootmem_phy_named_block_find(NULL, flags | |
| CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| if (!named_block_desc_addr) { |
| __cvmx_bootmem_unlock(flags); |
| return -1; |
| } |
| |
| /* |
| * Round size up to mult of minimum alignment bytes |
| * We need the actual size allocated to allow for blocks to be |
| * coallesced when they are freed. The alloc routine does the |
| * same rounding up on all allocations. |
| */ |
| size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) & |
| ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1); |
| |
| addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr, |
| alignment, |
| flags | CVMX_BOOTMEM_FLAG_NO_LOCKING); |
| if (addr_allocated >= 0) { |
| CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr, |
| addr_allocated); |
| CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size); |
| CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name, |
| CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len)); |
| } |
| |
| __cvmx_bootmem_unlock(flags); |
| return addr_allocated; |
| } |
| |
| void cvmx_bootmem_phy_named_block_print(void) |
| { |
| int i; |
| int printed = 0; |
| |
| u64 named_block_array_addr = |
| CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr); |
| int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks); |
| int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len); |
| u64 named_block_addr = named_block_array_addr; |
| |
| debug("%s: desc addr: 0x%llx\n", |
| __func__, CAST_ULL(cvmx_bootmem_desc_addr)); |
| |
| if (__cvmx_bootmem_check_version(3)) |
| return; |
| |
| printf("List of currently allocated named bootmem blocks:\n"); |
| for (i = 0; i < num_blocks; i++) { |
| u64 named_size = |
| CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size); |
| if (named_size) { |
| char name_tmp[name_length + 1]; |
| u64 named_addr = |
| CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, |
| base_addr); |
| CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp, |
| name_length); |
| printed++; |
| printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp, |
| CAST_ULL(named_addr), |
| CAST_ULL(named_size), i); |
| } |
| named_block_addr += |
| sizeof(struct cvmx_bootmem_named_block_desc); |
| } |
| |
| if (!printed) |
| printf("No named bootmem blocks exist.\n"); |
| } |
| |
| s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size, |
| u32 low_reserved_bytes, |
| struct cvmx_bootmem_desc *desc_buffer) |
| { |
| u64 cur_block_addr; |
| s64 addr; |
| int i; |
| |
| debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n", |
| __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr)); |
| |
| /* |
| * Descriptor buffer needs to be in 32 bit addressable space to be |
| * compatible with 32 bit applications |
| */ |
| if (!desc_buffer) { |
| debug("ERROR: no memory for cvmx_bootmem descriptor provided\n"); |
| return 0; |
| } |
| |
| if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) { |
| mem_size = OCTEON_MAX_PHY_MEM_SIZE; |
| debug("ERROR: requested memory size too large, truncating to maximum size\n"); |
| } |
| |
| if (cvmx_bootmem_desc_addr) |
| return 1; |
| |
| /* Initialize cvmx pointer to descriptor */ |
| cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer)); |
| |
| /* Fill the bootmem descriptor */ |
| CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER); |
| CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER); |
| CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0); |
| |
| /* |
| * Set up global pointer to start of list, exclude low 64k for exception |
| * vectors, space for global descriptor |
| */ |
| cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes); |
| |
| if (mem_size <= OCTEON_DDR0_SIZE) { |
| __cvmx_bootmem_phy_free(cur_block_addr, |
| mem_size - low_reserved_bytes, 0); |
| goto frees_done; |
| } |
| |
| __cvmx_bootmem_phy_free(cur_block_addr, |
| OCTEON_DDR0_SIZE - low_reserved_bytes, 0); |
| |
| mem_size -= OCTEON_DDR0_SIZE; |
| |
| /* Add DDR2 block next if present */ |
| if (mem_size > OCTEON_DDR1_SIZE) { |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0); |
| __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE, |
| mem_size - OCTEON_DDR1_SIZE, 0); |
| } else { |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0); |
| } |
| frees_done: |
| |
| /* Initialize the named block structure */ |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN); |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, |
| CVMX_BOOTMEM_NUM_NAMED_BLOCKS); |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0); |
| |
| /* Allocate this near the top of the low 256 MBytes of memory */ |
| addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * |
| sizeof(struct cvmx_bootmem_named_block_desc), |
| 0, 0x10000000, 0, |
| CVMX_BOOTMEM_FLAG_END_ALLOC); |
| if (addr >= 0) |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr); |
| |
| debug("%s: named_block_array_addr: 0x%llx)\n", |
| __func__, CAST_ULL(addr)); |
| |
| if (addr < 0) { |
| debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); |
| return 0; |
| } |
| |
| for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) { |
| CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0); |
| CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0); |
| addr += sizeof(struct cvmx_bootmem_named_block_desc); |
| } |
| |
| return 1; |
| } |
| |
| s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask, |
| u32 mem_sizes[], |
| u32 low_reserved_bytes, |
| struct cvmx_bootmem_desc *desc_buffer) |
| { |
| u64 cur_block_addr; |
| u64 mem_size; |
| s64 addr; |
| int i; |
| int node; |
| u64 node_base; /* Make u64 to reduce type casting */ |
| |
| mem_sizes[0] = gd->ram_size / (1024 * 1024); |
| |
| debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n", |
| desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr)); |
| |
| /* |
| * Descriptor buffer needs to be in 32 bit addressable space to be |
| * compatible with 32 bit applications |
| */ |
| if (!desc_buffer) { |
| debug("ERROR: no memory for cvmx_bootmem descriptor provided\n"); |
| return 0; |
| } |
| |
| cvmx_coremask_for_each_node(node, node_mask) { |
| if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) { |
| mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE / |
| (1024 * 1024); |
| debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n", |
| CAST_ULL(node)); |
| } |
| } |
| |
| if (cvmx_bootmem_desc_addr) |
| return 1; |
| |
| /* Initialize cvmx pointer to descriptor */ |
| cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer)); |
| |
| /* Fill the bootmem descriptor */ |
| CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER); |
| CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER); |
| CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0); |
| CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0); |
| |
| cvmx_coremask_for_each_node(node, node_mask) { |
| if (node != 0) /* do not reserve memory on remote nodes */ |
| low_reserved_bytes = 0; |
| |
| mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */ |
| |
| /* |
| * Set up global pointer to start of list, exclude low 64k |
| * for exception vectors, space for global descriptor |
| */ |
| |
| node_base = (u64)node << CVMX_NODE_MEM_SHIFT; |
| cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) | |
| node_base; |
| |
| if (mem_size <= OCTEON_DDR0_SIZE) { |
| __cvmx_bootmem_phy_free(cur_block_addr, |
| mem_size - low_reserved_bytes, |
| 0); |
| continue; |
| } |
| |
| __cvmx_bootmem_phy_free(cur_block_addr, |
| OCTEON_DDR0_SIZE - low_reserved_bytes, |
| 0); |
| |
| mem_size -= OCTEON_DDR0_SIZE; |
| |
| /* Add DDR2 block next if present */ |
| if (mem_size > OCTEON_DDR1_SIZE) { |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE | |
| node_base, |
| OCTEON_DDR1_SIZE, 0); |
| __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE | |
| node_base, |
| mem_size - OCTEON_DDR1_SIZE, 0); |
| } else { |
| __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE | |
| node_base, |
| mem_size, 0); |
| } |
| } |
| |
| debug("%s: Initialize the named block\n", __func__); |
| |
| /* Initialize the named block structure */ |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN); |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks, |
| CVMX_BOOTMEM_NUM_NAMED_BLOCKS); |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0); |
| |
| /* Allocate this near the top of the low 256 MBytes of memory */ |
| addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS * |
| sizeof(struct cvmx_bootmem_named_block_desc), |
| 0, 0x10000000, 0, |
| CVMX_BOOTMEM_FLAG_END_ALLOC); |
| if (addr >= 0) |
| CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr); |
| |
| debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n", |
| CAST_ULL(addr)); |
| |
| if (addr < 0) { |
| debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n"); |
| return 0; |
| } |
| |
| for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) { |
| CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0); |
| CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0); |
| addr += sizeof(struct cvmx_bootmem_named_block_desc); |
| } |
| |
| // test-only: DEBUG ifdef??? |
| cvmx_bootmem_phy_list_print(); |
| |
| return 1; |
| } |
| |
| int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size, |
| const char *name, u32 flags) |
| { |
| u64 addr; |
| int rc = 1; |
| static unsigned int block_num; |
| char block_name[CVMX_BOOTMEM_NAME_LEN]; |
| |
| debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n", |
| __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags); |
| |
| if (__cvmx_bootmem_check_version(3)) |
| return 0; |
| |
| addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr); |
| if (!addr) |
| return 0; |
| |
| if (!name) |
| name = "__cvmx_bootmem_reserved"; |
| |
| while (addr && rc) { |
| u64 block_size = cvmx_bootmem_phy_get_size(addr); |
| u64 reserve_size = 0; |
| |
| if (addr >= start_addr && addr < start_addr + size) { |
| reserve_size = size - (addr - start_addr); |
| if (block_size < reserve_size) |
| reserve_size = block_size; |
| } else if (start_addr > addr && |
| start_addr < (addr + block_size)) { |
| reserve_size = block_size - (start_addr - addr); |
| } |
| |
| if (reserve_size) { |
| snprintf(block_name, sizeof(block_name), |
| "%.32s_%012llx_%u", |
| name, (unsigned long long)start_addr, |
| (unsigned int)block_num); |
| |
| debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n", |
| __func__, CAST_ULL(reserve_size), |
| CAST_ULL(addr), block_name); |
| |
| if (cvmx_bootmem_phy_named_block_alloc(reserve_size, |
| addr, 0, 0, |
| block_name, |
| flags) == -1) { |
| debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n", |
| __func__, CAST_ULL(reserve_size), |
| (unsigned long long)addr); |
| rc = 0; |
| break; |
| } |
| |
| debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n", |
| __func__, CAST_ULL(reserve_size), |
| CAST_ULL(addr), block_name); |
| } |
| |
| addr = cvmx_bootmem_phy_get_next(addr); |
| block_num++; |
| } |
| |
| return rc; |
| } |
| |
| void cvmx_bootmem_lock(void) |
| { |
| __cvmx_bootmem_lock(0); |
| } |
| |
| void cvmx_bootmem_unlock(void) |
| { |
| __cvmx_bootmem_unlock(0); |
| } |
| |
| void *__cvmx_phys_addr_to_ptr(u64 phys, int size) |
| { |
| void *tmp; |
| |
| if (sizeof(void *) == 8) { |
| tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys)); |
| } else { |
| u32 phy32 = (u32)(phys & 0x7fffffffULL); |
| |
| tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, |
| phy32)); |
| } |
| |
| return tmp; |
| } |
| |
| void *__cvmx_bootmem_internal_get_desc_ptr(void) |
| { |
| return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr); |
| } |