blob: f1dea66d60dd5a14d7299d294810a61cf714595f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/dma.h>
#include <asm/mach-imx/hab.h>
#include <asm/mach-imx/rdc-sema.h>
#include <asm/arch/imx-rdc.h>
#include <asm/arch/crm_regs.h>
#include <dm.h>
#include <imx_thermal.h>
#include <fsl_sec.h>
#include <asm/setup.h>
#if defined(CONFIG_IMX_THERMAL)
static const struct imx_thermal_plat imx7_thermal_plat = {
.regs = (void *)ANATOP_BASE_ADDR,
.fuse_bank = 3,
.fuse_word = 3,
};
U_BOOT_DEVICE(imx7_thermal) = {
.name = "imx_thermal",
.platdata = &imx7_thermal_plat,
};
#endif
#if CONFIG_IS_ENABLED(IMX_RDC)
/*
* In current design, if any peripheral was assigned to both A7 and M4,
* it will receive ipg_stop or ipg_wait when any of the 2 platforms enter
* low power mode. So M4 sleep will cause some peripherals fail to work
* at A7 core side. At default, all resources are in domain 0 - 3.
*
* There are 26 peripherals impacted by this IC issue:
* SIM2(sim2/emvsim2)
* SIM1(sim1/emvsim1)
* UART1/UART2/UART3/UART4/UART5/UART6/UART7
* SAI1/SAI2/SAI3
* WDOG1/WDOG2/WDOG3/WDOG4
* GPT1/GPT2/GPT3/GPT4
* PWM1/PWM2/PWM3/PWM4
* ENET1/ENET2
* Software Workaround:
* Here we setup some resources to domain 0 where M4 codes will move
* the M4 out of this domain. Then M4 is not able to access them any longer.
* This is a workaround for ic issue. So the peripherals are not shared
* by them. This way requires the uboot implemented the RDC driver and
* set the 26 IPs above to domain 0 only. M4 code will assign resource
* to its own domain, if it want to use the resource.
*/
static rdc_peri_cfg_t const resources[] = {
(RDC_PER_SIM1 | RDC_DOMAIN(0)),
(RDC_PER_SIM2 | RDC_DOMAIN(0)),
(RDC_PER_UART1 | RDC_DOMAIN(0)),
(RDC_PER_UART2 | RDC_DOMAIN(0)),
(RDC_PER_UART3 | RDC_DOMAIN(0)),
(RDC_PER_UART4 | RDC_DOMAIN(0)),
(RDC_PER_UART5 | RDC_DOMAIN(0)),
(RDC_PER_UART6 | RDC_DOMAIN(0)),
(RDC_PER_UART7 | RDC_DOMAIN(0)),
(RDC_PER_SAI1 | RDC_DOMAIN(0)),
(RDC_PER_SAI2 | RDC_DOMAIN(0)),
(RDC_PER_SAI3 | RDC_DOMAIN(0)),
(RDC_PER_WDOG1 | RDC_DOMAIN(0)),
(RDC_PER_WDOG2 | RDC_DOMAIN(0)),
(RDC_PER_WDOG3 | RDC_DOMAIN(0)),
(RDC_PER_WDOG4 | RDC_DOMAIN(0)),
(RDC_PER_GPT1 | RDC_DOMAIN(0)),
(RDC_PER_GPT2 | RDC_DOMAIN(0)),
(RDC_PER_GPT3 | RDC_DOMAIN(0)),
(RDC_PER_GPT4 | RDC_DOMAIN(0)),
(RDC_PER_PWM1 | RDC_DOMAIN(0)),
(RDC_PER_PWM2 | RDC_DOMAIN(0)),
(RDC_PER_PWM3 | RDC_DOMAIN(0)),
(RDC_PER_PWM4 | RDC_DOMAIN(0)),
(RDC_PER_ENET1 | RDC_DOMAIN(0)),
(RDC_PER_ENET2 | RDC_DOMAIN(0)),
};
static void isolate_resource(void)
{
imx_rdc_setup_peripherals(resources, ARRAY_SIZE(resources));
}
#endif
#if defined(CONFIG_SECURE_BOOT)
struct imx_sec_config_fuse_t const imx_sec_config_fuse = {
.bank = 1,
.word = 3,
};
#endif
static bool is_mx7d(void)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[1];
struct fuse_bank1_regs *fuse =
(struct fuse_bank1_regs *)bank->fuse_regs;
int val;
val = readl(&fuse->tester4);
if (val & 1)
return false;
else
return true;
}
u32 get_cpu_rev(void)
{
struct mxc_ccm_anatop_reg *ccm_anatop = (struct mxc_ccm_anatop_reg *)
ANATOP_BASE_ADDR;
u32 reg = readl(&ccm_anatop->digprog);
u32 type = (reg >> 16) & 0xff;
if (!is_mx7d())
type = MXC_CPU_MX7S;
reg &= 0xff;
return (type << 12) | reg;
}
#ifdef CONFIG_REVISION_TAG
u32 __weak get_board_rev(void)
{
return get_cpu_rev();
}
#endif
/* enable all periherial can be accessed in nosec mode */
static void init_csu(void)
{
int i = 0;
for (i = 0; i < CSU_NUM_REGS; i++)
writel(CSU_INIT_SEC_LEVEL0, CSU_IPS_BASE_ADDR + i * 4);
}
static void imx_enet_mdio_fixup(void)
{
struct iomuxc_gpr_base_regs *gpr_regs =
(struct iomuxc_gpr_base_regs *)IOMUXC_GPR_BASE_ADDR;
/*
* The management data input/output (MDIO) requires open-drain,
* i.MX7D TO1.0 ENET MDIO pin has no open drain, but TO1.1 supports
* this feature. So to TO1.1, need to enable open drain by setting
* bits GPR0[8:7].
*/
if (soc_rev() >= CHIP_REV_1_1) {
setbits_le32(&gpr_regs->gpr[0],
IOMUXC_GPR_GPR0_ENET_MDIO_OPEN_DRAIN_MASK);
}
}
int arch_cpu_init(void)
{
init_aips();
init_csu();
/* Disable PDE bit of WMCR register */
imx_wdog_disable_powerdown();
imx_enet_mdio_fixup();
#ifdef CONFIG_APBH_DMA
/* Start APBH DMA */
mxs_dma_init();
#endif
#if CONFIG_IS_ENABLED(IMX_RDC)
isolate_resource();
#endif
init_snvs();
return 0;
}
#ifdef CONFIG_ARCH_MISC_INIT
int arch_misc_init(void)
{
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
if (is_mx7d())
env_set("soc", "imx7d");
else
env_set("soc", "imx7s");
#endif
#ifdef CONFIG_FSL_CAAM
sec_init();
#endif
return 0;
}
#endif
#ifdef CONFIG_SERIAL_TAG
/*
* OCOTP_TESTER
* i.MX 7Solo Applications Processor Reference Manual, Rev. 0.1, 08/2016
* OCOTP_TESTER describes a unique ID based on silicon wafer
* and die X/Y position
*
* OCOTOP_TESTER offset 0x410
* 31:0 fuse 0
* FSL-wide unique, encoded LOT ID STD II/SJC CHALLENGE/ Unique ID
*
* OCOTP_TESTER1 offset 0x420
* 31:24 fuse 1
* The X-coordinate of the die location on the wafer/SJC CHALLENGE/ Unique ID
* 23:16 fuse 1
* The Y-coordinate of the die location on the wafer/SJC CHALLENGE/ Unique ID
* 15:11 fuse 1
* The wafer number of the wafer on which the device was fabricated/SJC
* CHALLENGE/ Unique ID
* 10:0 fuse 1
* FSL-wide unique, encoded LOT ID STD II/SJC CHALLENGE/ Unique ID
*/
void get_board_serial(struct tag_serialnr *serialnr)
{
struct ocotp_regs *ocotp = (struct ocotp_regs *)OCOTP_BASE_ADDR;
struct fuse_bank *bank = &ocotp->bank[0];
struct fuse_bank0_regs *fuse =
(struct fuse_bank0_regs *)bank->fuse_regs;
serialnr->low = fuse->tester0;
serialnr->high = fuse->tester1;
}
#endif
void set_wdog_reset(struct wdog_regs *wdog)
{
u32 reg = readw(&wdog->wcr);
/*
* Output WDOG_B signal to reset external pmic or POR_B decided by
* the board desgin. Without external reset, the peripherals/DDR/
* PMIC are not reset, that may cause system working abnormal.
*/
reg = readw(&wdog->wcr);
reg |= 1 << 3;
/*
* WDZST bit is write-once only bit. Align this bit in kernel,
* otherwise kernel code will have no chance to set this bit.
*/
reg |= 1 << 0;
writew(reg, &wdog->wcr);
}
/*
* cfg_val will be used for
* Boot_cfg4[7:0]:Boot_cfg3[7:0]:Boot_cfg2[7:0]:Boot_cfg1[7:0]
* After reset, if GPR10[28] is 1, ROM will copy GPR9[25:0]
* to SBMR1, which will determine the boot device.
*/
const struct boot_mode soc_boot_modes[] = {
{"ecspi1:0", MAKE_CFGVAL(0x00, 0x60, 0x00, 0x00)},
{"ecspi1:1", MAKE_CFGVAL(0x40, 0x62, 0x00, 0x00)},
{"ecspi1:2", MAKE_CFGVAL(0x80, 0x64, 0x00, 0x00)},
{"ecspi1:3", MAKE_CFGVAL(0xc0, 0x66, 0x00, 0x00)},
{"weim", MAKE_CFGVAL(0x00, 0x50, 0x00, 0x00)},
{"qspi1", MAKE_CFGVAL(0x10, 0x40, 0x00, 0x00)},
/* 4 bit bus width */
{"usdhc1", MAKE_CFGVAL(0x10, 0x10, 0x00, 0x00)},
{"usdhc2", MAKE_CFGVAL(0x10, 0x14, 0x00, 0x00)},
{"usdhc3", MAKE_CFGVAL(0x10, 0x18, 0x00, 0x00)},
{"mmc1", MAKE_CFGVAL(0x10, 0x20, 0x00, 0x00)},
{"mmc2", MAKE_CFGVAL(0x10, 0x24, 0x00, 0x00)},
{"mmc3", MAKE_CFGVAL(0x10, 0x28, 0x00, 0x00)},
{NULL, 0},
};
void s_init(void)
{
#if !defined CONFIG_SPL_BUILD
/* Enable SMP mode for CPU0, by setting bit 6 of Auxiliary Ctl reg */
asm volatile(
"mrc p15, 0, r0, c1, c0, 1\n"
"orr r0, r0, #1 << 6\n"
"mcr p15, 0, r0, c1, c0, 1\n");
#endif
/* clock configuration. */
clock_init();
return;
}
void reset_misc(void)
{
#ifdef CONFIG_VIDEO_MXS
lcdif_power_down();
#endif
}