| /* |
| * Copyright (c) 2011 The Chromium OS Authors. |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| /* Tegra2 Clock control functions */ |
| |
| #include <asm/io.h> |
| #include <asm/arch/clk_rst.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/timer.h> |
| #include <asm/arch/tegra2.h> |
| #include <common.h> |
| #include <div64.h> |
| #include <fdtdec.h> |
| |
| /* |
| * This is our record of the current clock rate of each clock. We don't |
| * fill all of these in since we are only really interested in clocks which |
| * we use as parents. |
| */ |
| static unsigned pll_rate[CLOCK_ID_COUNT]; |
| |
| /* |
| * The oscillator frequency is fixed to one of four set values. Based on this |
| * the other clocks are set up appropriately. |
| */ |
| static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = { |
| 13000000, |
| 19200000, |
| 12000000, |
| 26000000, |
| }; |
| |
| /* |
| * Clock types that we can use as a source. The Tegra2 has muxes for the |
| * peripheral clocks, and in most cases there are four options for the clock |
| * source. This gives us a clock 'type' and exploits what commonality exists |
| * in the device. |
| * |
| * Letters are obvious, except for T which means CLK_M, and S which means the |
| * clock derived from 32KHz. Beware that CLK_M (also called OSC in the |
| * datasheet) and PLL_M are different things. The former is the basic |
| * clock supplied to the SOC from an external oscillator. The latter is the |
| * memory clock PLL. |
| * |
| * See definitions in clock_id in the header file. |
| */ |
| enum clock_type_id { |
| CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */ |
| CLOCK_TYPE_MCPA, /* and so on */ |
| CLOCK_TYPE_MCPT, |
| CLOCK_TYPE_PCM, |
| CLOCK_TYPE_PCMT, |
| CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */ |
| CLOCK_TYPE_PCXTS, |
| CLOCK_TYPE_PDCT, |
| |
| CLOCK_TYPE_COUNT, |
| CLOCK_TYPE_NONE = -1, /* invalid clock type */ |
| }; |
| |
| /* return 1 if a peripheral ID is in range */ |
| #define clock_type_id_isvalid(id) ((id) >= 0 && \ |
| (id) < CLOCK_TYPE_COUNT) |
| |
| char pllp_valid = 1; /* PLLP is set up correctly */ |
| |
| enum { |
| CLOCK_MAX_MUX = 4 /* number of source options for each clock */ |
| }; |
| |
| /* |
| * Clock source mux for each clock type. This just converts our enum into |
| * a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS |
| * is special as it has 5 sources. Since it also has a different number of |
| * bits in its register for the source, we just handle it with a special |
| * case in the code. |
| */ |
| #define CLK(x) CLOCK_ID_ ## x |
| static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = { |
| { CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) }, |
| { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) }, |
| { CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) }, |
| { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) }, |
| { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, |
| { CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) }, |
| { CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) }, |
| { CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) }, |
| }; |
| |
| /* |
| * Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is |
| * not in the header file since it is for purely internal use - we want |
| * callers to use the PERIPH_ID for all access to peripheral clocks to avoid |
| * confusion bewteen PERIPH_ID_... and PERIPHC_... |
| * |
| * We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be |
| * confusing. |
| * |
| * Note to SOC vendors: perhaps define a unified numbering for peripherals and |
| * use it for reset, clock enable, clock source/divider and even pinmuxing |
| * if you can. |
| */ |
| enum periphc_internal_id { |
| /* 0x00 */ |
| PERIPHC_I2S1, |
| PERIPHC_I2S2, |
| PERIPHC_SPDIF_OUT, |
| PERIPHC_SPDIF_IN, |
| PERIPHC_PWM, |
| PERIPHC_SPI1, |
| PERIPHC_SPI2, |
| PERIPHC_SPI3, |
| |
| /* 0x08 */ |
| PERIPHC_XIO, |
| PERIPHC_I2C1, |
| PERIPHC_DVC_I2C, |
| PERIPHC_TWC, |
| PERIPHC_0c, |
| PERIPHC_10, /* PERIPHC_SPI1, what is this really? */ |
| PERIPHC_DISP1, |
| PERIPHC_DISP2, |
| |
| /* 0x10 */ |
| PERIPHC_CVE, |
| PERIPHC_IDE0, |
| PERIPHC_VI, |
| PERIPHC_1c, |
| PERIPHC_SDMMC1, |
| PERIPHC_SDMMC2, |
| PERIPHC_G3D, |
| PERIPHC_G2D, |
| |
| /* 0x18 */ |
| PERIPHC_NDFLASH, |
| PERIPHC_SDMMC4, |
| PERIPHC_VFIR, |
| PERIPHC_EPP, |
| PERIPHC_MPE, |
| PERIPHC_MIPI, |
| PERIPHC_UART1, |
| PERIPHC_UART2, |
| |
| /* 0x20 */ |
| PERIPHC_HOST1X, |
| PERIPHC_21, |
| PERIPHC_TVO, |
| PERIPHC_HDMI, |
| PERIPHC_24, |
| PERIPHC_TVDAC, |
| PERIPHC_I2C2, |
| PERIPHC_EMC, |
| |
| /* 0x28 */ |
| PERIPHC_UART3, |
| PERIPHC_29, |
| PERIPHC_VI_SENSOR, |
| PERIPHC_2b, |
| PERIPHC_2c, |
| PERIPHC_SPI4, |
| PERIPHC_I2C3, |
| PERIPHC_SDMMC3, |
| |
| /* 0x30 */ |
| PERIPHC_UART4, |
| PERIPHC_UART5, |
| PERIPHC_VDE, |
| PERIPHC_OWR, |
| PERIPHC_NOR, |
| PERIPHC_CSITE, |
| |
| PERIPHC_COUNT, |
| |
| PERIPHC_NONE = -1, |
| }; |
| |
| /* return 1 if a periphc_internal_id is in range */ |
| #define periphc_internal_id_isvalid(id) ((id) >= 0 && \ |
| (id) < PERIPHC_COUNT) |
| |
| /* |
| * Clock type for each peripheral clock source. We put the name in each |
| * record just so it is easy to match things up |
| */ |
| #define TYPE(name, type) type |
| static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = { |
| /* 0x00 */ |
| TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT), |
| TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT), |
| TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT), |
| TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM), |
| TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS), |
| TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT), |
| |
| /* 0x08 */ |
| TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16), |
| TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16), |
| TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT), |
| TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT), |
| |
| /* 0x10 */ |
| TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT), |
| TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA), |
| |
| /* 0x18 */ |
| TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT), |
| |
| /* 0x20 */ |
| TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT), |
| TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT), |
| TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16), |
| TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT), |
| |
| /* 0x28 */ |
| TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE), |
| TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16), |
| TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT), |
| |
| /* 0x30 */ |
| TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT), |
| TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT), |
| }; |
| |
| /* |
| * This array translates a periph_id to a periphc_internal_id |
| * |
| * Not present/matched up: |
| * uint vi_sensor; _VI_SENSOR_0, 0x1A8 |
| * SPDIF - which is both 0x08 and 0x0c |
| * |
| */ |
| #define NONE(name) (-1) |
| #define OFFSET(name, value) PERIPHC_ ## name |
| static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = { |
| /* Low word: 31:0 */ |
| NONE(CPU), |
| NONE(RESERVED1), |
| NONE(RESERVED2), |
| NONE(AC97), |
| NONE(RTC), |
| NONE(TMR), |
| PERIPHC_UART1, |
| PERIPHC_UART2, /* and vfir 0x68 */ |
| |
| /* 0x08 */ |
| NONE(GPIO), |
| PERIPHC_SDMMC2, |
| NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */ |
| PERIPHC_I2S1, |
| PERIPHC_I2C1, |
| PERIPHC_NDFLASH, |
| PERIPHC_SDMMC1, |
| PERIPHC_SDMMC4, |
| |
| /* 0x10 */ |
| PERIPHC_TWC, |
| PERIPHC_PWM, |
| PERIPHC_I2S2, |
| PERIPHC_EPP, |
| PERIPHC_VI, |
| PERIPHC_G2D, |
| NONE(USBD), |
| NONE(ISP), |
| |
| /* 0x18 */ |
| PERIPHC_G3D, |
| PERIPHC_IDE0, |
| PERIPHC_DISP2, |
| PERIPHC_DISP1, |
| PERIPHC_HOST1X, |
| NONE(VCP), |
| NONE(RESERVED30), |
| NONE(CACHE2), |
| |
| /* Middle word: 63:32 */ |
| NONE(MEM), |
| NONE(AHBDMA), |
| NONE(APBDMA), |
| NONE(RESERVED35), |
| NONE(KBC), |
| NONE(STAT_MON), |
| NONE(PMC), |
| NONE(FUSE), |
| |
| /* 0x28 */ |
| NONE(KFUSE), |
| NONE(SBC1), /* SBC1, 0x34, is this SPI1? */ |
| PERIPHC_NOR, |
| PERIPHC_SPI1, |
| PERIPHC_SPI2, |
| PERIPHC_XIO, |
| PERIPHC_SPI3, |
| PERIPHC_DVC_I2C, |
| |
| /* 0x30 */ |
| NONE(DSI), |
| PERIPHC_TVO, /* also CVE 0x40 */ |
| PERIPHC_MIPI, |
| PERIPHC_HDMI, |
| PERIPHC_CSITE, |
| PERIPHC_TVDAC, |
| PERIPHC_I2C2, |
| PERIPHC_UART3, |
| |
| /* 0x38 */ |
| NONE(RESERVED56), |
| PERIPHC_EMC, |
| NONE(USB2), |
| NONE(USB3), |
| PERIPHC_MPE, |
| PERIPHC_VDE, |
| NONE(BSEA), |
| NONE(BSEV), |
| |
| /* Upper word 95:64 */ |
| NONE(SPEEDO), |
| PERIPHC_UART4, |
| PERIPHC_UART5, |
| PERIPHC_I2C3, |
| PERIPHC_SPI4, |
| PERIPHC_SDMMC3, |
| NONE(PCIE), |
| PERIPHC_OWR, |
| |
| /* 0x48 */ |
| NONE(AFI), |
| NONE(CORESIGHT), |
| NONE(RESERVED74), |
| NONE(AVPUCQ), |
| NONE(RESERVED76), |
| NONE(RESERVED77), |
| NONE(RESERVED78), |
| NONE(RESERVED79), |
| |
| /* 0x50 */ |
| NONE(RESERVED80), |
| NONE(RESERVED81), |
| NONE(RESERVED82), |
| NONE(RESERVED83), |
| NONE(IRAMA), |
| NONE(IRAMB), |
| NONE(IRAMC), |
| NONE(IRAMD), |
| |
| /* 0x58 */ |
| NONE(CRAM2), |
| }; |
| |
| /* |
| * Get the oscillator frequency, from the corresponding hardware configuration |
| * field. |
| */ |
| enum clock_osc_freq clock_get_osc_freq(void) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 reg; |
| |
| reg = readl(&clkrst->crc_osc_ctrl); |
| return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT; |
| } |
| |
| int clock_get_osc_bypass(void) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 reg; |
| |
| reg = readl(&clkrst->crc_osc_ctrl); |
| return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT; |
| } |
| |
| /* Returns a pointer to the registers of the given pll */ |
| static struct clk_pll *get_pll(enum clock_id clkid) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| |
| assert(clock_id_is_pll(clkid)); |
| return &clkrst->crc_pll[clkid]; |
| } |
| |
| int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn, |
| u32 *divp, u32 *cpcon, u32 *lfcon) |
| { |
| struct clk_pll *pll = get_pll(clkid); |
| u32 data; |
| |
| assert(clkid != CLOCK_ID_USB); |
| |
| /* Safety check, adds to code size but is small */ |
| if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB) |
| return -1; |
| data = readl(&pll->pll_base); |
| *divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; |
| *divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT; |
| *divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; |
| data = readl(&pll->pll_misc); |
| *cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT; |
| *lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT; |
| |
| return 0; |
| } |
| |
| unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn, |
| u32 divp, u32 cpcon, u32 lfcon) |
| { |
| struct clk_pll *pll = get_pll(clkid); |
| u32 data; |
| |
| /* |
| * We cheat by treating all PLL (except PLLU) in the same fashion. |
| * This works only because: |
| * - same fields are always mapped at same offsets, except DCCON |
| * - DCCON is always 0, doesn't conflict |
| * - M,N, P of PLLP values are ignored for PLLP |
| */ |
| data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT); |
| writel(data, &pll->pll_misc); |
| |
| data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) | |
| (0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT); |
| |
| if (clkid == CLOCK_ID_USB) |
| data |= divp << PLLU_VCO_FREQ_SHIFT; |
| else |
| data |= divp << PLL_DIVP_SHIFT; |
| writel(data, &pll->pll_base); |
| |
| /* calculate the stable time */ |
| return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US; |
| } |
| |
| /* return 1 if a peripheral ID is in range and valid */ |
| static int clock_periph_id_isvalid(enum periph_id id) |
| { |
| if (id < PERIPH_ID_FIRST || id >= PERIPH_ID_COUNT) |
| printf("Peripheral id %d out of range\n", id); |
| else { |
| switch (id) { |
| case PERIPH_ID_RESERVED1: |
| case PERIPH_ID_RESERVED2: |
| case PERIPH_ID_RESERVED30: |
| case PERIPH_ID_RESERVED35: |
| case PERIPH_ID_RESERVED56: |
| case PERIPH_ID_RESERVED74: |
| case PERIPH_ID_RESERVED76: |
| case PERIPH_ID_RESERVED77: |
| case PERIPH_ID_RESERVED78: |
| case PERIPH_ID_RESERVED79: |
| case PERIPH_ID_RESERVED80: |
| case PERIPH_ID_RESERVED81: |
| case PERIPH_ID_RESERVED82: |
| case PERIPH_ID_RESERVED83: |
| printf("Peripheral id %d is reserved\n", id); |
| break; |
| default: |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* Returns a pointer to the clock source register for a peripheral */ |
| static u32 *get_periph_source_reg(enum periph_id periph_id) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| enum periphc_internal_id internal_id; |
| |
| assert(clock_periph_id_isvalid(periph_id)); |
| internal_id = periph_id_to_internal_id[periph_id]; |
| assert(internal_id != -1); |
| return &clkrst->crc_clk_src[internal_id]; |
| } |
| |
| void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source, |
| unsigned divisor) |
| { |
| u32 *reg = get_periph_source_reg(periph_id); |
| u32 value; |
| |
| value = readl(reg); |
| |
| value &= ~OUT_CLK_SOURCE_MASK; |
| value |= source << OUT_CLK_SOURCE_SHIFT; |
| |
| value &= ~OUT_CLK_DIVISOR_MASK; |
| value |= divisor << OUT_CLK_DIVISOR_SHIFT; |
| |
| writel(value, reg); |
| } |
| |
| void clock_ll_set_source(enum periph_id periph_id, unsigned source) |
| { |
| u32 *reg = get_periph_source_reg(periph_id); |
| |
| clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, |
| source << OUT_CLK_SOURCE_SHIFT); |
| } |
| |
| /** |
| * Given the parent's rate and the required rate for the children, this works |
| * out the peripheral clock divider to use, in 7.1 binary format. |
| * |
| * @param divider_bits number of divider bits (8 or 16) |
| * @param parent_rate clock rate of parent clock in Hz |
| * @param rate required clock rate for this clock |
| * @return divider which should be used |
| */ |
| static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate, |
| unsigned long rate) |
| { |
| u64 divider = parent_rate * 2; |
| unsigned max_divider = 1 << divider_bits; |
| |
| divider += rate - 1; |
| do_div(divider, rate); |
| |
| if ((s64)divider - 2 < 0) |
| return 0; |
| |
| if ((s64)divider - 2 >= max_divider) |
| return -1; |
| |
| return divider - 2; |
| } |
| |
| /** |
| * Given the parent's rate and the divider in 7.1 format, this works out the |
| * resulting peripheral clock rate. |
| * |
| * @param parent_rate clock rate of parent clock in Hz |
| * @param divider which should be used in 7.1 format |
| * @return effective clock rate of peripheral |
| */ |
| static unsigned long get_rate_from_divider(unsigned long parent_rate, |
| int divider) |
| { |
| u64 rate; |
| |
| rate = (u64)parent_rate * 2; |
| do_div(rate, divider + 2); |
| return rate; |
| } |
| |
| unsigned long clock_get_periph_rate(enum periph_id periph_id, |
| enum clock_id parent) |
| { |
| u32 *reg = get_periph_source_reg(periph_id); |
| |
| return get_rate_from_divider(pll_rate[parent], |
| (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT); |
| } |
| |
| /** |
| * Find the best available 7.1 format divisor given a parent clock rate and |
| * required child clock rate. This function assumes that a second-stage |
| * divisor is available which can divide by powers of 2 from 1 to 256. |
| * |
| * @param divider_bits number of divider bits (8 or 16) |
| * @param parent_rate clock rate of parent clock in Hz |
| * @param rate required clock rate for this clock |
| * @param extra_div value for the second-stage divisor (not set if this |
| * function returns -1. |
| * @return divider which should be used, or -1 if nothing is valid |
| * |
| */ |
| static int find_best_divider(unsigned divider_bits, unsigned long parent_rate, |
| unsigned long rate, int *extra_div) |
| { |
| int shift; |
| int best_divider = -1; |
| int best_error = rate; |
| |
| /* try dividers from 1 to 256 and find closest match */ |
| for (shift = 0; shift <= 8 && best_error > 0; shift++) { |
| unsigned divided_parent = parent_rate >> shift; |
| int divider = clk_get_divider(divider_bits, divided_parent, |
| rate); |
| unsigned effective_rate = get_rate_from_divider(divided_parent, |
| divider); |
| int error = rate - effective_rate; |
| |
| /* Given a valid divider, look for the lowest error */ |
| if (divider != -1 && error < best_error) { |
| best_error = error; |
| *extra_div = 1 << shift; |
| best_divider = divider; |
| } |
| } |
| |
| /* return what we found - *extra_div will already be set */ |
| return best_divider; |
| } |
| |
| /** |
| * Given a peripheral ID and the required source clock, this returns which |
| * value should be programmed into the source mux for that peripheral. |
| * |
| * There is special code here to handle the one source type with 5 sources. |
| * |
| * @param periph_id peripheral to start |
| * @param source PLL id of required parent clock |
| * @param mux_bits Set to number of bits in mux register: 2 or 4 |
| * @param divider_bits Set to number of divider bits (8 or 16) |
| * @return mux value (0-4, or -1 if not found) |
| */ |
| static int get_periph_clock_source(enum periph_id periph_id, |
| enum clock_id parent, int *mux_bits, int *divider_bits) |
| { |
| enum clock_type_id type; |
| enum periphc_internal_id internal_id; |
| int mux; |
| |
| assert(clock_periph_id_isvalid(periph_id)); |
| |
| internal_id = periph_id_to_internal_id[periph_id]; |
| assert(periphc_internal_id_isvalid(internal_id)); |
| |
| type = clock_periph_type[internal_id]; |
| assert(clock_type_id_isvalid(type)); |
| |
| /* |
| * Special cases here for the clock with a 4-bit source mux and I2C |
| * with its 16-bit divisor |
| */ |
| if (type == CLOCK_TYPE_PCXTS) |
| *mux_bits = 4; |
| else |
| *mux_bits = 2; |
| if (type == CLOCK_TYPE_PCMT16) |
| *divider_bits = 16; |
| else |
| *divider_bits = 8; |
| |
| for (mux = 0; mux < CLOCK_MAX_MUX; mux++) |
| if (clock_source[type][mux] == parent) |
| return mux; |
| |
| /* |
| * Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS |
| * which is not in our table. If not, then they are asking for a |
| * source which this peripheral can't access through its mux. |
| */ |
| assert(type == CLOCK_TYPE_PCXTS); |
| assert(parent == CLOCK_ID_SFROM32KHZ); |
| if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ) |
| return 4; /* mux value for this clock */ |
| |
| /* if we get here, either us or the caller has made a mistake */ |
| printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id, |
| parent); |
| return -1; |
| } |
| |
| /** |
| * Adjust peripheral PLL to use the given divider and source. |
| * |
| * @param periph_id peripheral to adjust |
| * @param source Source number (0-3 or 0-7) |
| * @param mux_bits Number of mux bits (2 or 4) |
| * @param divider Required divider in 7.1 or 15.1 format |
| * @return 0 if ok, -1 on error (requesting a parent clock which is not valid |
| * for this peripheral) |
| */ |
| static int adjust_periph_pll(enum periph_id periph_id, int source, |
| int mux_bits, unsigned divider) |
| { |
| u32 *reg = get_periph_source_reg(periph_id); |
| |
| clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK, |
| divider << OUT_CLK_DIVISOR_SHIFT); |
| udelay(1); |
| |
| /* work out the source clock and set it */ |
| if (source < 0) |
| return -1; |
| if (mux_bits == 4) { |
| clrsetbits_le32(reg, OUT_CLK_SOURCE4_MASK, |
| source << OUT_CLK_SOURCE4_SHIFT); |
| } else { |
| clrsetbits_le32(reg, OUT_CLK_SOURCE_MASK, |
| source << OUT_CLK_SOURCE_SHIFT); |
| } |
| udelay(2); |
| return 0; |
| } |
| |
| unsigned clock_adjust_periph_pll_div(enum periph_id periph_id, |
| enum clock_id parent, unsigned rate, int *extra_div) |
| { |
| unsigned effective_rate; |
| int mux_bits, divider_bits, source; |
| int divider; |
| |
| /* work out the source clock and set it */ |
| source = get_periph_clock_source(periph_id, parent, &mux_bits, |
| ÷r_bits); |
| |
| if (extra_div) |
| divider = find_best_divider(divider_bits, pll_rate[parent], |
| rate, extra_div); |
| else |
| divider = clk_get_divider(divider_bits, pll_rate[parent], |
| rate); |
| assert(divider >= 0); |
| if (adjust_periph_pll(periph_id, source, mux_bits, divider)) |
| return -1U; |
| debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate, |
| get_periph_source_reg(periph_id), |
| readl(get_periph_source_reg(periph_id))); |
| |
| /* Check what we ended up with. This shouldn't matter though */ |
| effective_rate = clock_get_periph_rate(periph_id, parent); |
| if (extra_div) |
| effective_rate /= *extra_div; |
| if (rate != effective_rate) |
| debug("Requested clock rate %u not honored (got %u)\n", |
| rate, effective_rate); |
| return effective_rate; |
| } |
| |
| unsigned clock_start_periph_pll(enum periph_id periph_id, |
| enum clock_id parent, unsigned rate) |
| { |
| unsigned effective_rate; |
| |
| reset_set_enable(periph_id, 1); |
| clock_enable(periph_id); |
| |
| effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate, |
| NULL); |
| |
| reset_set_enable(periph_id, 0); |
| return effective_rate; |
| } |
| |
| void clock_set_enable(enum periph_id periph_id, int enable) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)]; |
| u32 reg; |
| |
| /* Enable/disable the clock to this peripheral */ |
| assert(clock_periph_id_isvalid(periph_id)); |
| reg = readl(clk); |
| if (enable) |
| reg |= PERIPH_MASK(periph_id); |
| else |
| reg &= ~PERIPH_MASK(periph_id); |
| writel(reg, clk); |
| } |
| |
| void clock_enable(enum periph_id clkid) |
| { |
| clock_set_enable(clkid, 1); |
| } |
| |
| void clock_disable(enum periph_id clkid) |
| { |
| clock_set_enable(clkid, 0); |
| } |
| |
| void reset_set_enable(enum periph_id periph_id, int enable) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)]; |
| u32 reg; |
| |
| /* Enable/disable reset to the peripheral */ |
| assert(clock_periph_id_isvalid(periph_id)); |
| reg = readl(reset); |
| if (enable) |
| reg |= PERIPH_MASK(periph_id); |
| else |
| reg &= ~PERIPH_MASK(periph_id); |
| writel(reg, reset); |
| } |
| |
| void reset_periph(enum periph_id periph_id, int us_delay) |
| { |
| /* Put peripheral into reset */ |
| reset_set_enable(periph_id, 1); |
| udelay(us_delay); |
| |
| /* Remove reset */ |
| reset_set_enable(periph_id, 0); |
| |
| udelay(us_delay); |
| } |
| |
| void reset_cmplx_set_enable(int cpu, int which, int reset) |
| { |
| struct clk_rst_ctlr *clkrst = |
| (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 mask; |
| |
| /* Form the mask, which depends on the cpu chosen. Tegra2 has 2 */ |
| assert(cpu >= 0 && cpu < 2); |
| mask = which << cpu; |
| |
| /* either enable or disable those reset for that CPU */ |
| if (reset) |
| writel(mask, &clkrst->crc_cpu_cmplx_set); |
| else |
| writel(mask, &clkrst->crc_cpu_cmplx_clr); |
| } |
| |
| unsigned clock_get_rate(enum clock_id clkid) |
| { |
| struct clk_pll *pll; |
| u32 base; |
| u32 divm; |
| u64 parent_rate; |
| u64 rate; |
| |
| parent_rate = osc_freq[clock_get_osc_freq()]; |
| if (clkid == CLOCK_ID_OSC) |
| return parent_rate; |
| |
| pll = get_pll(clkid); |
| base = readl(&pll->pll_base); |
| |
| /* Oh for bf_unpack()... */ |
| rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT); |
| divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT; |
| if (clkid == CLOCK_ID_USB) |
| divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT; |
| else |
| divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT; |
| do_div(rate, divm); |
| return rate; |
| } |
| |
| /** |
| * Set the output frequency you want for each PLL clock. |
| * PLL output frequencies are programmed by setting their N, M and P values. |
| * The governing equations are: |
| * VCO = (Fi / m) * n, Fo = VCO / (2^p) |
| * where Fo is the output frequency from the PLL. |
| * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi) |
| * 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1 |
| * Please see Tegra TRM section 5.3 to get the detail for PLL Programming |
| * |
| * @param n PLL feedback divider(DIVN) |
| * @param m PLL input divider(DIVN) |
| * @param p post divider(DIVP) |
| * @param cpcon base PLL charge pump(CPCON) |
| * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot |
| * be overriden), 1 if PLL is already correct |
| */ |
| static int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon) |
| { |
| u32 base_reg; |
| u32 misc_reg; |
| struct clk_pll *pll; |
| |
| pll = get_pll(clkid); |
| |
| base_reg = readl(&pll->pll_base); |
| |
| /* Set BYPASS, m, n and p to PLL_BASE */ |
| base_reg &= ~PLL_DIVM_MASK; |
| base_reg |= m << PLL_DIVM_SHIFT; |
| |
| base_reg &= ~PLL_DIVN_MASK; |
| base_reg |= n << PLL_DIVN_SHIFT; |
| |
| base_reg &= ~PLL_DIVP_MASK; |
| base_reg |= p << PLL_DIVP_SHIFT; |
| |
| if (clkid == CLOCK_ID_PERIPH) { |
| /* |
| * If the PLL is already set up, check that it is correct |
| * and record this info for clock_verify() to check. |
| */ |
| if (base_reg & PLL_BASE_OVRRIDE_MASK) { |
| base_reg |= PLL_ENABLE_MASK; |
| if (base_reg != readl(&pll->pll_base)) |
| pllp_valid = 0; |
| return pllp_valid ? 1 : -1; |
| } |
| base_reg |= PLL_BASE_OVRRIDE_MASK; |
| } |
| |
| base_reg |= PLL_BYPASS_MASK; |
| writel(base_reg, &pll->pll_base); |
| |
| /* Set cpcon to PLL_MISC */ |
| misc_reg = readl(&pll->pll_misc); |
| misc_reg &= ~PLL_CPCON_MASK; |
| misc_reg |= cpcon << PLL_CPCON_SHIFT; |
| writel(misc_reg, &pll->pll_misc); |
| |
| /* Enable PLL */ |
| base_reg |= PLL_ENABLE_MASK; |
| writel(base_reg, &pll->pll_base); |
| |
| /* Disable BYPASS */ |
| base_reg &= ~PLL_BYPASS_MASK; |
| writel(base_reg, &pll->pll_base); |
| |
| return 0; |
| } |
| |
| void clock_ll_start_uart(enum periph_id periph_id) |
| { |
| /* Assert UART reset and enable clock */ |
| reset_set_enable(periph_id, 1); |
| clock_enable(periph_id); |
| clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */ |
| |
| /* wait for 2us */ |
| udelay(2); |
| |
| /* De-assert reset to UART */ |
| reset_set_enable(periph_id, 0); |
| } |
| |
| #ifdef CONFIG_OF_CONTROL |
| /* |
| * Convert a device tree clock ID to our peripheral ID. They are mostly |
| * the same but we are very cautious so we check that a valid clock ID is |
| * provided. |
| * |
| * @param clk_id Clock ID according to tegra2 device tree binding |
| * @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid |
| */ |
| static enum periph_id clk_id_to_periph_id(int clk_id) |
| { |
| if (clk_id > 95) |
| return PERIPH_ID_NONE; |
| |
| switch (clk_id) { |
| case 1: |
| case 2: |
| case 7: |
| case 10: |
| case 20: |
| case 30: |
| case 35: |
| case 49: |
| case 56: |
| case 74: |
| case 76: |
| case 77: |
| case 78: |
| case 79: |
| case 80: |
| case 81: |
| case 82: |
| case 83: |
| case 91: |
| case 95: |
| return PERIPH_ID_NONE; |
| default: |
| return clk_id; |
| } |
| } |
| |
| int clock_decode_periph_id(const void *blob, int node) |
| { |
| enum periph_id id; |
| u32 cell[2]; |
| int err; |
| |
| err = fdtdec_get_int_array(blob, node, "clocks", cell, |
| ARRAY_SIZE(cell)); |
| if (err) |
| return -1; |
| id = clk_id_to_periph_id(cell[1]); |
| assert(clock_periph_id_isvalid(id)); |
| return id; |
| } |
| #endif /* CONFIG_OF_CONTROL */ |
| |
| int clock_verify(void) |
| { |
| struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH); |
| u32 reg = readl(&pll->pll_base); |
| |
| if (!pllp_valid) { |
| printf("Warning: PLLP %x is not correct\n", reg); |
| return -1; |
| } |
| debug("PLLX %x is correct\n", reg); |
| return 0; |
| } |
| |
| void clock_early_init(void) |
| { |
| /* |
| * PLLP output frequency set to 216MHz |
| * PLLC output frequency set to 600Mhz |
| * |
| * TODO: Can we calculate these values instead of hard-coding? |
| */ |
| switch (clock_get_osc_freq()) { |
| case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */ |
| clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8); |
| clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8); |
| break; |
| |
| case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */ |
| clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8); |
| clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8); |
| break; |
| |
| case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */ |
| clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8); |
| clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8); |
| break; |
| case CLOCK_OSC_FREQ_19_2: |
| default: |
| /* |
| * These are not supported. It is too early to print a |
| * message and the UART likely won't work anyway due to the |
| * oscillator being wrong. |
| */ |
| break; |
| } |
| } |
| |
| void clock_init(void) |
| { |
| pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY); |
| pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH); |
| pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL); |
| pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC); |
| pll_rate[CLOCK_ID_SFROM32KHZ] = 32768; |
| debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]); |
| debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]); |
| debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]); |
| } |