| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) ASPEED Technology Inc. |
| */ |
| #include <asm/io.h> |
| #include <asm/arch/fmc_hdr.h> |
| #include <asm/arch/scu.h> |
| #include <asm/arch/sdram.h> |
| #include <config.h> |
| #include <dm.h> |
| #include <linux/bitfield.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/sizes.h> |
| #include <ram.h> |
| |
| enum ddr_type { |
| DDR4_1600 = 0x0, |
| DDR4_2400, |
| DDR4_3200, |
| DDR5_3200, |
| |
| DDR_TYPES |
| }; |
| |
| enum ddr_size { |
| DDR_SIZE_256MB, |
| DDR_SIZE_512MB, |
| DDR_SIZE_1GB, |
| DDR_SIZE_2GB, |
| |
| DDR_SIZE_MAX, |
| }; |
| |
| #define IS_DDR4(t) \ |
| (((t) <= DDR4_3200) ? 1 : 0) |
| |
| struct sdrammc_ac_timing { |
| u32 t_cl; |
| u32 t_cwl; |
| u32 t_bl; |
| u32 t_rcd; /* ACT-to-read/write command delay */ |
| u32 t_rp; /* PRE command period */ |
| u32 t_ras; /* ACT-to-PRE command delay */ |
| u32 t_rrd; /* ACT-to-ACT delay for different BG */ |
| u32 t_rrd_l; /* ACT-to-ACT delay for same BG */ |
| u32 t_faw; /* Four active window */ |
| u32 t_rtp; /* Read-to-PRE command delay */ |
| u32 t_wtr; /* Minimum write to read command for different BG */ |
| u32 t_wtr_l; /* Minimum write to read command for same BG */ |
| u32 t_wtr_a; /* Write to read command for same BG with auto precharge */ |
| u32 t_wtp; /* Minimum write to precharge command delay */ |
| u32 t_rtw; /* minimum read to write command */ |
| u32 t_ccd_l; /* CAS-to-CAS delay for same BG */ |
| u32 t_dllk; /* DLL locking time */ |
| u32 t_cksre; /* valid clock before after self-refresh or power-down entry/exit process */ |
| u32 t_pd; /* power-down entry to exit minimum width */ |
| u32 t_xp; /* exit power-down to valid command delay */ |
| u32 t_rfc; /* refresh time period */ |
| u32 t_mrd; |
| u32 t_refsbrd; |
| u32 t_rfcsb; |
| u32 t_cshsr; |
| u32 t_zq; |
| }; |
| |
| static const struct sdrammc_ac_timing ac_table[] = { |
| [DDR4_1600] = { |
| .t_cl = 10, .t_cwl = 9, .t_bl = 8, .t_rcd = 10, |
| .t_rp = 10, .t_ras = 28, .t_rrd = 5, .t_rrd_l = 6, |
| .t_faw = 28, .t_rtp = 6, .t_wtr = 2, .t_wtr_l = 6, |
| .t_wtr_a = 0, .t_wtp = 12, .t_rtw = 0, .t_ccd_l = 5, |
| .t_dllk = 597, .t_cksre = 8, .t_pd = 4, .t_xp = 5, |
| .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, |
| .t_cshsr = 0, .t_zq = 80, |
| }, |
| [DDR4_2400] = { |
| .t_cl = 15, .t_cwl = 12, .t_bl = 8, .t_rcd = 16, |
| .t_rp = 16, .t_ras = 39, .t_rrd = 7, .t_rrd_l = 8, |
| .t_faw = 37, .t_rtp = 10, .t_wtr = 4, .t_wtr_l = 10, |
| .t_wtr_a = 0, .t_wtp = 19, .t_rtw = 0, .t_ccd_l = 7, |
| .t_dllk = 768, .t_cksre = 13, .t_pd = 7, .t_xp = 8, |
| .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, |
| .t_cshsr = 0, .t_zq = 80, |
| }, |
| [DDR4_3200] = { |
| .t_cl = 20, .t_cwl = 16, .t_bl = 8, .t_rcd = 20, |
| .t_rp = 20, .t_ras = 52, .t_rrd = 9, .t_rrd_l = 11, |
| .t_faw = 48, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 12, |
| .t_wtr_a = 0, .t_wtp = 24, .t_rtw = 0, .t_ccd_l = 8, |
| .t_dllk = 1023, .t_cksre = 16, .t_pd = 8, .t_xp = 10, |
| .t_rfc = 880, .t_mrd = 24, .t_refsbrd = 0, .t_rfcsb = 0, |
| .t_cshsr = 0, .t_zq = 80, |
| }, |
| [DDR5_3200] = { |
| .t_cl = 26, .t_cwl = 24, .t_bl = 16, .t_rcd = 26, |
| .t_rp = 26, .t_ras = 52, .t_rrd = 8, .t_rrd_l = 8, |
| .t_faw = 40, .t_rtp = 12, .t_wtr = 4, .t_wtr_l = 16, |
| .t_wtr_a = 36, .t_wtp = 48, .t_rtw = 0, .t_ccd_l = 8, |
| .t_dllk = 1024, .t_cksre = 9, .t_pd = 13, .t_xp = 13, |
| .t_rfc = 880, .t_mrd = 23, .t_refsbrd = 48, .t_rfcsb = 208, |
| .t_cshsr = 30, |
| .t_zq = 48, |
| }, |
| }; |
| |
| struct sdrammc { |
| u32 type; |
| void __iomem *regs; |
| void __iomem *phy; |
| void __iomem *scu0; |
| void __iomem *scu1; |
| const struct sdrammc_ac_timing *ac; |
| struct ram_info info; |
| }; |
| |
| static size_t ast2700_sdrammc_get_vga_mem_size(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| void *scu0 = sdrammc->scu0; |
| size_t vga_memsz[] = { |
| SZ_32M, |
| SZ_64M, |
| }; |
| u32 reg, sel, dual = 0; |
| |
| sel = readl(®s->gfmcfg) & 0x1; |
| |
| reg = readl(scu0 + SCU0_PCI_MISC70); |
| if (reg & SCU0_PCI_MISC70_EN_PCIEVGA0) { |
| debug("VGA0:%dMB\n", vga_memsz[sel] / SZ_1M); |
| dual++; |
| } |
| |
| reg = readl(scu0 + SCU0_PCI_MISC80); |
| if (reg & SCU0_PCI_MISC80_EN_PCIEVGA1) { |
| debug("VGA1:%dMB\n", vga_memsz[sel] / SZ_1M); |
| dual++; |
| } |
| |
| return vga_memsz[sel] * dual; |
| } |
| |
| static int sdrammc_calc_size(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 val, test_pattern = 0xdeadbeef; |
| size_t sz; |
| |
| struct { |
| u32 size; |
| int rfc[2]; |
| } ddr_capacity[] = { |
| { 0x10000000UL, {208, 256} }, /* 256MB */ |
| { 0x20000000UL, {208, 416} }, /* 512MB */ |
| { 0x40000000UL, {208, 560} }, /* 1GB */ |
| { 0x80000000UL, {472, 880} }, /* 2GB */ |
| }; |
| |
| /* Configure ram size to max to enable whole area */ |
| val = readl(®s->mcfg); |
| val &= ~(0x7 << 2); |
| writel(val | (DDR_SIZE_2GB << 2), ®s->mcfg); |
| |
| /* Clear basement. */ |
| writel(0, (void *)CFG_SYS_SDRAM_BASE); |
| |
| for (sz = DDR_SIZE_2GB - 1; sz > DDR_SIZE_256MB; sz--) { |
| test_pattern = (test_pattern << 4) + sz; |
| writel(test_pattern, (void *)(CFG_SYS_SDRAM_BASE + ddr_capacity[sz].size)); |
| |
| if (readl((void *)CFG_SYS_SDRAM_BASE) != test_pattern) |
| break; |
| } |
| |
| /* re-configure ram size to dramc. */ |
| val = readl(®s->mcfg); |
| val &= ~(0x7 << 2); |
| writel(val | ((sz + 1) << 2), ®s->mcfg); |
| |
| /* update rfc in ac_timing5 register. */ |
| val = readl(®s->actime5); |
| val &= ~(0x3ff); |
| val |= (ddr_capacity[sz + 1].rfc[IS_DDR4(sdrammc->type)] >> 1); |
| writel(val, ®s->actime5); |
| |
| /* report actual ram base and size to kernel */ |
| sdrammc->info.base = CFG_SYS_SDRAM_BASE; |
| sdrammc->info.size = ddr_capacity[sz + 1].size; |
| |
| /* reserve the VGA memory */ |
| sdrammc->info.size -= ast2700_sdrammc_get_vga_mem_size(sdrammc); |
| |
| return 0; |
| } |
| |
| static int sdrammc_bist(struct sdrammc *sdrammc, u32 addr, u32 size, u32 cfg, u32 timeout) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 val; |
| u32 err = 0; |
| |
| writel(0, ®s->bistcfg); |
| writel(cfg, ®s->bistcfg); |
| writel(addr >> 4, ®s->bist_addr); |
| writel(size >> 4, ®s->bist_size); |
| writel(0x89abcdef, ®s->bist_patt); |
| writel(cfg | DRAMC_BISTCFG_START, ®s->bistcfg); |
| |
| while (!(readl(®s->intr_status) & DRAMC_IRQSTA_BIST_DONE)) |
| ; |
| |
| writel(DRAMC_IRQSTA_BIST_DONE, ®s->intr_clear); |
| |
| val = readl(®s->bist_res); |
| |
| if (val & DRAMC_BISTRES_DONE) { |
| if (val & DRAMC_BISTRES_FAIL) |
| err++; |
| } else { |
| err++; |
| } |
| |
| return err; |
| } |
| |
| static void sdrammc_enable_refresh(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| |
| /* refresh update */ |
| clrbits_le32(®s->refctl, 0x8000); |
| } |
| |
| static void sdrammc_mr_send(struct sdrammc *sdrammc, u32 ctrl, u32 op) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| |
| writel(op, ®s->mrwr); |
| writel(ctrl | DRAMC_MRCTL_CMD_START, ®s->mrctl); |
| |
| while (!(readl(®s->intr_status) & DRAMC_IRQSTA_MR_DONE)) |
| ; |
| |
| writel(DRAMC_IRQSTA_MR_DONE, ®s->intr_clear); |
| } |
| |
| static void sdrammc_config_mrs(struct sdrammc *sdrammc) |
| { |
| const struct sdrammc_ac_timing *ac = sdrammc->ac; |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 mr0_cas, mr0_rtp, mr0_val; |
| u32 mr6_tccd_l, mr6_val; |
| u32 mr2_cwl, mr2_val; |
| u32 mr1_val; |
| u32 mr3_val; |
| u32 mr4_val; |
| u32 mr5_val; |
| |
| if (!IS_DDR4(sdrammc->type)) |
| return; |
| |
| //------------------------------------------------------------------- |
| // CAS Latency (Table-15) |
| //------------------------------------------------------------------- |
| switch (ac->t_cl) { |
| case 9: |
| mr0_cas = 0x00; //5'b00000; |
| break; |
| case 10: |
| mr0_cas = 0x01; //5'b00001; |
| break; |
| case 11: |
| mr0_cas = 0x02; //5'b00010; |
| break; |
| case 12: |
| mr0_cas = 0x03; //5'b00011; |
| break; |
| case 13: |
| mr0_cas = 0x04; //5'b00100; |
| break; |
| case 14: |
| mr0_cas = 0x05; //5'b00101; |
| break; |
| case 15: |
| mr0_cas = 0x06; //5'b00110; |
| break; |
| case 16: |
| mr0_cas = 0x07; //5'b00111; |
| break; |
| case 18: |
| mr0_cas = 0x08; //5'b01000; |
| break; |
| case 20: |
| mr0_cas = 0x09; //5'b01001; |
| break; |
| case 22: |
| mr0_cas = 0x0a; //5'b01010; |
| break; |
| case 24: |
| mr0_cas = 0x0b; //5'b01011; |
| break; |
| case 23: |
| mr0_cas = 0x0c; //5'b01100; |
| break; |
| case 17: |
| mr0_cas = 0x0d; //5'b01101; |
| break; |
| case 19: |
| mr0_cas = 0x0e; //5'b01110; |
| break; |
| case 21: |
| mr0_cas = 0x0f; //5'b01111; |
| break; |
| case 25: |
| mr0_cas = 0x10; //5'b10000; |
| break; |
| case 26: |
| mr0_cas = 0x11; //5'b10001; |
| break; |
| case 27: |
| mr0_cas = 0x12; //5'b10010; |
| break; |
| case 28: |
| mr0_cas = 0x13; //5'b10011; |
| break; |
| case 30: |
| mr0_cas = 0x15; //5'b10101; |
| break; |
| case 32: |
| mr0_cas = 0x17; //5'b10111; |
| break; |
| } |
| |
| //------------------------------------------------------------------- |
| // WR and RTP (Table-14) |
| //------------------------------------------------------------------- |
| switch (ac->t_rtp) { |
| case 5: |
| mr0_rtp = 0x0; //4'b0000; |
| break; |
| case 6: |
| mr0_rtp = 0x1; //4'b0001; |
| break; |
| case 7: |
| mr0_rtp = 0x2; //4'b0010; |
| break; |
| case 8: |
| mr0_rtp = 0x3; //4'b0011; |
| break; |
| case 9: |
| mr0_rtp = 0x4; //4'b0100; |
| break; |
| case 10: |
| mr0_rtp = 0x5; //4'b0101; |
| break; |
| case 12: |
| mr0_rtp = 0x6; //4'b0110; |
| break; |
| case 11: |
| mr0_rtp = 0x7; //4'b0111; |
| break; |
| case 13: |
| mr0_rtp = 0x8; //4'b1000; |
| break; |
| } |
| |
| //------------------------------------------------------------------- |
| // CAS Write Latency (Table-21) |
| //------------------------------------------------------------------- |
| switch (ac->t_cwl) { |
| case 9: |
| mr2_cwl = 0x0; // 3'b000; // 1600 |
| break; |
| case 10: |
| mr2_cwl = 0x1; // 3'b001; // 1866 |
| break; |
| case 11: |
| mr2_cwl = 0x2; // 3'b010; // 2133 |
| break; |
| case 12: |
| mr2_cwl = 0x3; // 3'b011; // 2400 |
| break; |
| case 14: |
| mr2_cwl = 0x4; // 3'b100; // 2666 |
| break; |
| case 16: |
| mr2_cwl = 0x5; // 3'b101; // 2933/3200 |
| break; |
| case 18: |
| mr2_cwl = 0x6; // 3'b110; |
| break; |
| case 20: |
| mr2_cwl = 0x7; // 3'b111; |
| break; |
| } |
| |
| //------------------------------------------------------------------- |
| // tCCD_L and tDLLK |
| //------------------------------------------------------------------- |
| switch (ac->t_ccd_l) { |
| case 4: |
| mr6_tccd_l = 0x0; //3'b000; // rate <= 1333 |
| break; |
| case 5: |
| mr6_tccd_l = 0x1; //3'b001; // 1333 < rate <= 1866 |
| break; |
| case 6: |
| mr6_tccd_l = 0x2; //3'b010; // 1866 < rate <= 2400 |
| break; |
| case 7: |
| mr6_tccd_l = 0x3; //3'b011; // 2400 < rate <= 2666 |
| break; |
| case 8: |
| mr6_tccd_l = 0x4; //3'b100; // 2666 < rate <= 3200 |
| break; |
| } |
| |
| /* |
| * mr0_val = |
| * mr0_rtp[3], // 13 |
| * mr0_cas[4], // 12 |
| * mr0_rtp[2:0], // 13,11-9: WR and RTP |
| * 1'b0, // 8: DLL reset |
| * 1'b0, // 7: TM |
| * mr0_cas[3:1], // 6-4,2: CAS latency |
| * 1'b0, // 3: sequential |
| * mr0_cas[0], |
| * 2'b00 // 1-0: burst length |
| */ |
| mr0_val = ((mr0_cas & 0x1) << 2) | |
| (((mr0_cas >> 1) & 0x7) << 4) | |
| (((mr0_cas >> 4) & 0x1) << 12) | |
| ((mr0_rtp & 0x7) << 9) | |
| (((mr0_rtp >> 3) & 0x1) << 13); |
| |
| /* |
| * 3'b2 //[10:8]: rtt_nom, 000:disable,001:rzq/4,010:rzq/2,011:rzq/6,100:rzq/1,101:rzq/5,110:rzq/3,111:rzq/7 |
| * 1'b0 //[7]: write leveling enable |
| * 2'b0 //[6:5]: reserved |
| * 2'b0 //[4:3]: additive latency |
| * 2'b0 //[2:1]: output driver impedance |
| * 1'b1 //[0]: enable dll |
| */ |
| mr1_val = 0x201; |
| |
| /* |
| * [10:9]: rtt_wr, 00:dynamic odt off, 01:rzq/2, 10:rzq/1, 11: hi-z |
| * [8]: 0 |
| */ |
| mr2_val = ((mr2_cwl & 0x7) << 3) | 0x200; |
| |
| mr3_val = 0; |
| |
| mr4_val = 0; |
| |
| /* |
| * mr5_val = { |
| * 1'b0, // 13: RFU |
| * 1'b0, // 12: read DBI |
| * 1'b0, // 11: write DBI |
| * 1'b1, // 10: Data mask |
| * 1'b0, // 9: C/A parity persistent error |
| * 3'b000, // 8-6: RTT_PARK (disable) |
| * 1'b1, // 5: ODT input buffer during power down mode |
| * 1'b0, // 4: C/A parity status |
| * 1'b0, // 3: CRC error clear |
| * 3'b0 // 2-0: C/A parity latency mode |
| * }; |
| */ |
| mr5_val = 0x420; |
| |
| /* |
| * mr6_val = { |
| * 1'b0, // 13, 9-8: RFU |
| * mr6_tccd_l[2:0], // 12-10: tCCD_L |
| * 2'b0, // 13, 9-8: RFU |
| * 1'b0, // 7: VrefDQ training enable |
| * 1'b0, // 6: VrefDQ training range |
| * 6'b0 // 5-0: VrefDQ training value |
| * }; |
| */ |
| mr6_val = ((mr6_tccd_l & 0x7) << 10); |
| |
| writel((mr1_val << 16) + mr0_val, ®s->mr01); |
| writel((mr3_val << 16) + mr2_val, ®s->mr23); |
| writel((mr5_val << 16) + mr4_val, ®s->mr45); |
| writel(mr6_val, ®s->mr67); |
| |
| /* Power-up initialization sequence */ |
| sdrammc_mr_send(sdrammc, MR_ADDR(3), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(6), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(5), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(4), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(2), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(1), 0); |
| sdrammc_mr_send(sdrammc, MR_ADDR(0), 0); |
| } |
| |
| static void sdrammc_exit_self_refresh(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| |
| /* exit self-refresh after phy init */ |
| setbits_le32(®s->mctl, DRAMC_MCTL_SELF_REF_START); |
| |
| /* query if self-ref done */ |
| while (!(readl(®s->intr_status) & DRAMC_IRQSTA_REF_DONE)) |
| ; |
| |
| /* clear status */ |
| writel(DRAMC_IRQSTA_REF_DONE, ®s->intr_clear); |
| udelay(1); |
| } |
| |
| /* user-customized functions for the vendor PHY init code */ |
| #define DWC_PHY_IMEM_OFST 0x50000 |
| #define DWC_PHY_DMEM_OFST 0x58000 |
| #define DWC_PHY_MB_START_STREAM_MSG 0x8 |
| #define DWC_PHY_MB_TRAIN_SUCCESS 0x7 |
| #define DWC_PHY_MB_TRAIN_FAIL 0xff |
| |
| #define dwc_ddrphy_apb_wr(addr, data) \ |
| writew((data), sdrammc->phy + ((addr) << 1)) |
| |
| #define dwc_ddrphy_apb_rd(addr) \ |
| readw(sdrammc->phy + ((addr) << 1)) |
| |
| #define dwc_ddrphy_apb_wr_32b(addr, data) \ |
| writel((data), sdrammc->phy + ((addr) << 1)) |
| |
| #define dwc_ddrphy_apb_rd_32b(addr) \ |
| readl(sdrammc->phy + ((addr) << 1)) |
| |
| void dwc_get_mailbox(struct sdrammc *sdrammc, const int mode, u32 *mbox) |
| { |
| u32 val; |
| |
| /* 1. Poll the UctWriteProtShadow, looking for a 0 */ |
| while (dwc_ddrphy_apb_rd(0xd0004) & BIT(0)) |
| ; |
| |
| /* 2. When a 0 is seen, read the UctWriteOnlyShadow register to get the major message number. */ |
| *mbox = dwc_ddrphy_apb_rd(0xd0032) & 0xffff; |
| |
| /* 3. If reading a streaming or SMBus message, also read the UctDatWriteOnlyShadow register. */ |
| if (mode) { |
| val = (dwc_ddrphy_apb_rd(0xd0034)) & 0xffff; |
| *mbox |= (val << 16); |
| } |
| |
| /* 4. Write the DctWriteProt to 0 to acknowledge the reception of the message */ |
| dwc_ddrphy_apb_wr(0xd0031, 0); |
| |
| /* 5. Poll the UctWriteProtShadow, looking for a 1 */ |
| while (!(dwc_ddrphy_apb_rd(0xd0004) & BIT(0))) |
| ; |
| |
| /* 6. When a 1 is seen, write the DctWriteProt to 1 to complete the protocol */ |
| dwc_ddrphy_apb_wr(0xd0031, 1); |
| } |
| |
| uint32_t dwc_readMsgBlock(struct sdrammc *sdrammc, const u32 addr_half) |
| { |
| u32 data_word; |
| |
| data_word = dwc_ddrphy_apb_rd_32b((addr_half >> 1) << 1); |
| |
| if (addr_half & 0x1) |
| data_word = data_word >> 16; |
| else |
| data_word &= 0xffff; |
| |
| return data_word; |
| } |
| |
| int dwc_ddrphy_phyinit_userCustom_H_readMsgBlock(struct sdrammc *sdrammc, int train2D) |
| { |
| u32 msg; |
| |
| if (IS_DDR4(sdrammc->type)) { |
| /* DWC_PHY_DDR4_MB_RESULT */ |
| msg = dwc_readMsgBlock(sdrammc, 0x5800a); |
| if (msg & 0xff) |
| debug("%s: Training Failure index (0x%x)\n", __func__, msg); |
| else |
| debug("%s: %dD Training Passed\n", __func__, train2D ? 2 : 1); |
| } else { |
| /* DWC_PHY_DDR5_MB_RESULT */ |
| msg = dwc_readMsgBlock(sdrammc, 0x58007); |
| if (msg & 0xff00) |
| debug("%s: Training Failure index (0x%x)\n", __func__, msg); |
| else |
| debug("%s: DDR5 1D/2D Training Passed\n", __func__); |
| |
| /* DWC_PHY_DDR5_MB_RESULT_ADR */ |
| msg = dwc_readMsgBlock(sdrammc, 0x5800a); |
| debug("%s: Result Address Offset (0x%x)\n", __func__, msg); |
| } |
| |
| return 0; |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_A_bringupPower(void) |
| { |
| /* do nothing */ |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_B_startClockResetPhy(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| |
| /* |
| * 1. Drive PwrOkIn to 0. Note: Reset, DfiClk, and APBCLK can be X. |
| * 2. Start DfiClk and APBCLK |
| * 3. Drive Reset to 1 and PRESETn_APB to 0. |
| * Note: The combination of PwrOkIn=0 and Reset=1 signals a cold reset to the PHY. |
| */ |
| writel(DRAMC_MCTL_PHY_RESET, ®s->mctl); |
| udelay(2); |
| |
| /* |
| * 5. Drive PwrOkIn to 1. Once the PwrOkIn is asserted (and Reset is still asserted), |
| * DfiClk synchronously switches to any legal input frequency. |
| */ |
| writel(DRAMC_MCTL_PHY_RESET | DRAMC_MCTL_PHY_POWER_ON, ®s->mctl); |
| udelay(2); |
| |
| /* |
| * 7. Drive Reset to 0. Note: All DFI and APB inputs must be driven at valid reset states |
| * before the deassertion of Reset. |
| */ |
| writel(DRAMC_MCTL_PHY_POWER_ON, ®s->mctl); |
| udelay(2); |
| |
| /* |
| * 9. Drive PRESETn_APB to 1 to de-assert reset on the ABP bus. |
| * 10. The PHY is now in the reset state and is ready to accept APB transactions. |
| */ |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_overrideUserInput(void) |
| { |
| /* do nothing */ |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_customPostTrain(void) |
| { |
| /* do nothing */ |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_E_setDfiClk(struct sdrammc *sdrammc) |
| { |
| dwc_ddrphy_apb_wr(0xd0031, 1); /* DWC_DCTWRITEPROT */ |
| dwc_ddrphy_apb_wr(0xd0033, 1); /* DWC_UCTWRITEPROT */ |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_G_waitFwDone(struct sdrammc *sdrammc) |
| { |
| u32 mbox, msg = 0; |
| |
| while (msg != DWC_PHY_MB_TRAIN_SUCCESS && msg != DWC_PHY_MB_TRAIN_FAIL) { |
| dwc_get_mailbox(sdrammc, 0, &mbox); |
| msg = mbox & 0xffff; |
| } |
| } |
| |
| void dwc_ddrphy_phyinit_userCustom_J_enterMissionMode(struct sdrammc *sdrammc) |
| { |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 val; |
| |
| /* |
| * 1. Set the PHY input clocks to the desired frequency. |
| * 2. Initialize the PHY to mission mode by performing DFI Initialization. |
| * Please see the DFI specification for more information. See the DFI frequency bus encoding in section <XXX>. |
| * Note: The PHY training firmware initializes the DRAM state. if skip |
| * training is used, the DRAM state is not initialized. |
| */ |
| |
| writel(0xffffffff, (void *)®s->intr_mask); |
| |
| writel(0x0, (void *)®s->dcfg); |
| |
| if (!IS_DDR4(sdrammc->type)) { |
| dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ |
| dwc_ddrphy_apb_wr(0x20240, 0x3900); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */ |
| dwc_ddrphy_apb_wr(0x900da, 8); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */ |
| dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ |
| } |
| |
| /* phy init start */ |
| val = readl((void *)®s->mctl); |
| val = val | DRAMC_MCTL_PHY_INIT_START; |
| writel(val, (void *)®s->mctl); |
| |
| /* wait phy complete */ |
| while (1) { |
| val = readl(®s->intr_status) & DRAMC_IRQSTA_PHY_INIT_DONE; |
| if (val == DRAMC_IRQSTA_PHY_INIT_DONE) |
| break; |
| } |
| |
| writel(0xffff, (void *)®s->intr_clear); |
| |
| while (readl((void *)®s->intr_status)) |
| ; |
| |
| if (!IS_DDR4(sdrammc->type)) { |
| dwc_ddrphy_apb_wr(0xd0000, 0); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ |
| dwc_ddrphy_apb_wr(0x20240, 0x4300); /* DWC_DDRPHYA_MASTER0_base0_D5ACSMPtr0lat0 */ |
| dwc_ddrphy_apb_wr(0x900da, 0); /* DWC_DDRPHYA_INITENG0_base0_SequenceReg0b59s0 */ |
| dwc_ddrphy_apb_wr(0xd0000, 1); /* DWC_DDRPHYA_APBONLY0_MicroContMuxSel */ |
| } |
| } |
| |
| int dwc_ddrphy_phyinit_userCustom_D_loadIMEM(struct sdrammc *sdrammc, const int train2D) |
| { |
| u32 imem_ofst, imem_size; |
| u32 pb_type; |
| |
| if (IS_DDR4(sdrammc->type)) |
| pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_IMEM : PBT_DDR4_PMU_TRAIN_IMEM; |
| else |
| pb_type = PBT_DDR5_PMU_TRAIN_IMEM; |
| |
| fmc_hdr_get_prebuilt(pb_type, &imem_ofst, &imem_size); |
| |
| memcpy(sdrammc->phy + (DWC_PHY_IMEM_OFST << 1), |
| (void *)(0x20000000 + imem_ofst), imem_size); |
| |
| return 0; |
| } |
| |
| int dwc_ddrphy_phyinit_userCustom_F_loadDMEM(struct sdrammc *sdrammc, |
| const int pState, const int train2D) |
| { |
| u32 dmem_ofst, dmem_size; |
| u32 pb_type; |
| |
| if (IS_DDR4(sdrammc->type)) |
| pb_type = (train2D) ? PBT_DDR4_2D_PMU_TRAIN_DMEM : PBT_DDR4_PMU_TRAIN_DMEM; |
| else |
| pb_type = PBT_DDR5_PMU_TRAIN_DMEM; |
| |
| fmc_hdr_get_prebuilt(pb_type, &dmem_ofst, &dmem_size); |
| |
| memcpy(sdrammc->phy + (DWC_PHY_DMEM_OFST << 1), |
| (void *)(0x20000000 + dmem_ofst), dmem_size); |
| |
| return 0; |
| } |
| |
| static void sdrammc_dwc_phy_init(struct sdrammc *sdrammc) |
| { |
| /* enable ddr phy free-run clock */ |
| writel(SCU0_CLKGATE1_CLR_DDRPHY, sdrammc->scu0 + SCU0_CLKGATE1_CLR); |
| |
| /* include the vendor-provided PHY init code */ |
| if (IS_DDR4(sdrammc->type)) { |
| #include "dwc_ddrphy_phyinit_ddr4-3200-nodimm-train2D.c" |
| } else { |
| #include "dwc_ddrphy_phyinit_ddr5-3200-nodimm-train2D.c" |
| } |
| } |
| |
| static void sdrammc_config_ac_timing(struct sdrammc *sdrammc) |
| { |
| const struct sdrammc_ac_timing *ac = sdrammc->ac; |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 actime; |
| |
| #define ACTIME1(ccd, rrd_l, rrd, mrd) \ |
| (((ccd) << 24) | \ |
| (((rrd_l) >> 1) << 16) | \ |
| (((rrd) >> 1) << 8) | \ |
| ((mrd) >> 1)) |
| |
| #define ACTIME2(faw, rp, ras, rcd) \ |
| ((((faw) >> 1) << 24) | \ |
| (((rp) >> 1) << 16) | \ |
| (((ras) >> 1) << 8) | \ |
| ((rcd) >> 1)) |
| |
| #define ACTIME3(wtr, rtw, wtp, rtp) \ |
| ((((wtr) >> 1) << 24) | \ |
| (((rtw) >> 1) << 16) | \ |
| (((wtp) >> 1) << 8) | \ |
| ((rtp) >> 1)) |
| |
| #define ACTIME4(wtr_a, wtr_l) \ |
| ((((wtr_a) >> 1) << 8) | \ |
| ((wtr_l) >> 1)) |
| |
| #define ACTIME5(refsbrd, rfcsb, rfc) \ |
| ((((refsbrd) >> 1) << 20) | \ |
| (((rfcsb) >> 1) << 10) | \ |
| ((rfc) >> 1)) |
| |
| #define ACTIME6(cshsr, pd, xp, cksre) \ |
| ((((cshsr) >> 1) << 24) | \ |
| (((pd) >> 1) << 16) | \ |
| (((xp) >> 1) << 8) | \ |
| ((cksre) >> 1)) |
| |
| #define ACTIME7(zqcs, dllk) \ |
| ((((zqcs) >> 1) << 10) | \ |
| ((dllk) >> 1)) |
| |
| actime = ACTIME1(ac->t_ccd_l, ac->t_rrd_l, ac->t_rrd, ac->t_mrd); |
| writel(actime, ®s->actime1); |
| |
| actime = ACTIME2(ac->t_faw, ac->t_rp, ac->t_ras, ac->t_rcd); |
| writel(actime, ®s->actime2); |
| |
| actime = ACTIME3(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr, |
| ac->t_cl - ac->t_cwl + (ac->t_bl / 2) + 2, |
| ac->t_cwl + ac->t_bl / 2 + ac->t_wtp, |
| ac->t_rtp); |
| writel(actime, ®s->actime3); |
| |
| actime = ACTIME4(ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_a, |
| ac->t_cwl + ac->t_bl / 2 + ac->t_wtr_l); |
| writel(actime, ®s->actime4); |
| |
| actime = ACTIME5(ac->t_refsbrd, ac->t_rfcsb, ac->t_rfc); |
| writel(actime, ®s->actime5); |
| |
| actime = ACTIME6(ac->t_cshsr, ac->t_pd, ac->t_xp, ac->t_cksre); |
| writel(actime, ®s->actime6); |
| |
| actime = ACTIME7(ac->t_zq, ac->t_dllk); |
| writel(actime, ®s->actime7); |
| } |
| |
| static void sdrammc_config_registers(struct sdrammc *sdrammc) |
| { |
| const struct sdrammc_ac_timing *ac = sdrammc->ac; |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 reg; |
| |
| u32 dram_size = 5; |
| u32 t_phy_wrdata; |
| u32 t_phy_wrlat; |
| u32 t_phy_rddata_en; |
| u32 t_phy_odtlat; |
| u32 t_phy_odtext; |
| |
| if (IS_DDR4(sdrammc->type)) { |
| t_phy_wrlat = ac->t_cwl - 5 - 4; |
| t_phy_rddata_en = ac->t_cl - 5 - 4; |
| t_phy_wrdata = 2; |
| t_phy_odtlat = ac->t_cwl - 5 - 4; |
| t_phy_odtext = 0; |
| } else { |
| t_phy_wrlat = ac->t_cwl - 13 - 3; |
| t_phy_rddata_en = ac->t_cl - 13 - 3; |
| t_phy_wrdata = 6; |
| t_phy_odtlat = 0; |
| t_phy_odtext = 0; |
| } |
| |
| writel(0x20 + (dram_size << 2) + !!!IS_DDR4(sdrammc->type), ®s->mcfg); |
| |
| reg = (t_phy_odtext << 20) + (t_phy_odtlat << 16) + |
| (t_phy_rddata_en << 10) + (t_phy_wrdata << 6) + |
| t_phy_wrlat; |
| writel(reg, ®s->dfi_timing); |
| writel(0, ®s->dctl); |
| |
| writel(0x40b48200, ®s->refctl); |
| |
| writel(0x42aa1800, ®s->zqctl); |
| |
| writel(0, ®s->arbctl); |
| |
| if (!IS_DDR4(sdrammc->type)) |
| writel(0, ®s->refmng_ctl); |
| |
| writel(0xffffffff, ®s->intr_mask); |
| } |
| |
| static void sdrammc_init(struct sdrammc *sdrammc) |
| { |
| u32 reg; |
| |
| reg = readl(sdrammc->scu1 + SCU1_HWSTRAP1); |
| |
| if (reg & SCU1_HWSTRAP1_DDR4) { |
| if (IS_ENABLED(CONFIG_ASPEED_DDR_1600)) |
| sdrammc->type = DDR4_1600; |
| else if (IS_ENABLED(CONFIG_ASPEED_DDR_2400)) |
| sdrammc->type = DDR4_2400; |
| else if (IS_ENABLED(CONFIG_ASPEED_DDR_3200)) |
| sdrammc->type = DDR4_3200; |
| } else { |
| sdrammc->type = DDR5_3200; |
| } |
| |
| sdrammc->ac = &ac_table[sdrammc->type]; |
| |
| sdrammc_config_ac_timing(sdrammc); |
| sdrammc_config_registers(sdrammc); |
| } |
| |
| static int ast2700_sdrammc_probe(struct udevice *dev) |
| { |
| struct sdrammc *sdrammc = dev_get_priv(dev); |
| struct sdrammc_regs *regs = sdrammc->regs; |
| u32 bistcfg; |
| u32 reg; |
| int rc; |
| |
| /* skip DRAM init if already done */ |
| reg = readl(sdrammc->scu0 + SCU0_VGA0_SCRATCH); |
| if (reg & SCU0_VGA0_SCRATCH_DRAM_INIT) |
| goto out; |
| |
| /* unlock DRAM controller */ |
| writel(DRAMC_UNLK_KEY, ®s->prot_key); |
| |
| sdrammc_init(sdrammc); |
| |
| sdrammc_dwc_phy_init(sdrammc); |
| |
| sdrammc_exit_self_refresh(sdrammc); |
| |
| sdrammc_config_mrs(sdrammc); |
| |
| sdrammc_enable_refresh(sdrammc); |
| |
| bistcfg = FIELD_PREP(DRAMC_BISTCFG_PMODE, BIST_PMODE_CRC) | |
| FIELD_PREP(DRAMC_BISTCFG_BMODE, BIST_BMODE_RW_SWITCH) | |
| DRAMC_BISTCFG_ENABLE; |
| |
| rc = sdrammc_bist(sdrammc, 0, 0x10000, bistcfg, 0x200000); |
| if (rc) { |
| debug("bist test failed, type=%d\n", sdrammc->type); |
| return rc; |
| } |
| |
| /* set DRAM init flag */ |
| reg |= SCU0_VGA0_SCRATCH_DRAM_INIT; |
| writel(reg, sdrammc->scu0 + SCU0_VGA0_SCRATCH); |
| |
| out: |
| sdrammc_calc_size(sdrammc); |
| |
| return 0; |
| } |
| |
| static int ast2700_sdrammc_of_to_plat(struct udevice *dev) |
| { |
| struct sdrammc *sdrammc = dev_get_priv(dev); |
| u32 phandle; |
| ofnode node; |
| int rc; |
| |
| sdrammc->regs = (struct sdrammc_regs *)devfdt_get_addr_index(dev, 0); |
| if (sdrammc->regs == (void *)FDT_ADDR_T_NONE) { |
| debug("cannot map DRAM register\n"); |
| return -ENODEV; |
| } |
| |
| sdrammc->phy = (void *)devfdt_get_addr_index(dev, 1); |
| if (sdrammc->phy == (void *)FDT_ADDR_T_NONE) { |
| debug("cannot map PHY memory\n"); |
| return -ENODEV; |
| } |
| |
| rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu0", &phandle); |
| if (rc) { |
| debug("cannot find SCU0 handle\n"); |
| return -ENODEV; |
| } |
| |
| node = ofnode_get_by_phandle(phandle); |
| if (!ofnode_valid(node)) { |
| debug("cannot get SCU0 node\n"); |
| return -ENODEV; |
| } |
| |
| sdrammc->scu0 = (void *)ofnode_get_addr(node); |
| if (sdrammc->scu0 == (void *)FDT_ADDR_T_NONE) { |
| debug("cannot map SCU0 register\n"); |
| return -ENODEV; |
| } |
| |
| rc = ofnode_read_u32(dev_ofnode(dev), "aspeed,scu1", &phandle); |
| if (rc) { |
| debug("cannot find SCU1 handle\n"); |
| return -ENODEV; |
| } |
| |
| node = ofnode_get_by_phandle(phandle); |
| if (!ofnode_valid(node)) { |
| debug("cannot get SCU1 node\n"); |
| return -ENODEV; |
| } |
| |
| sdrammc->scu1 = (void *)ofnode_get_addr(node); |
| if (sdrammc->scu1 == (void *)FDT_ADDR_T_NONE) { |
| debug("cannot map SCU1 register\n"); |
| return -ENODEV; |
| } |
| |
| return 0; |
| } |
| |
| static int ast2700_sdrammc_get_info(struct udevice *dev, struct ram_info *info) |
| { |
| struct sdrammc *sdrammc = dev_get_priv(dev); |
| |
| *info = sdrammc->info; |
| |
| return 0; |
| } |
| |
| static struct ram_ops ast2700_sdrammc_ops = { |
| .get_info = ast2700_sdrammc_get_info, |
| }; |
| |
| static const struct udevice_id ast2700_sdrammc_ids[] = { |
| { .compatible = "aspeed,ast2700-sdrammc" }, |
| { } |
| }; |
| |
| U_BOOT_DRIVER(sdrammc_ast2700) = { |
| .name = "aspeed_ast2700_sdrammc", |
| .id = UCLASS_RAM, |
| .of_match = ast2700_sdrammc_ids, |
| .ops = &ast2700_sdrammc_ops, |
| .of_to_plat = ast2700_sdrammc_of_to_plat, |
| .probe = ast2700_sdrammc_probe, |
| .priv_auto = sizeof(struct sdrammc), |
| }; |