blob: 5fe0c8e1237e26f89a9712f951b43a875a0f2756 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2022 Microchip Technology Inc.
* Padmarao Begari <padmarao.begari@microchip.com>
* Naga Sureshkumar Relli <nagasuresh.relli@microchip.com>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <log.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <asm/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/sizes.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* QSPI Control register mask defines
*/
#define CONTROL_ENABLE BIT(0)
#define CONTROL_MASTER BIT(1)
#define CONTROL_XIP BIT(2)
#define CONTROL_XIPADDR BIT(3)
#define CONTROL_CLKIDLE BIT(10)
#define CONTROL_SAMPLE_MASK GENMASK(12, 11)
#define CONTROL_MODE0 BIT(13)
#define CONTROL_MODE12_MASK GENMASK(15, 14)
#define CONTROL_MODE12_EX_RO BIT(14)
#define CONTROL_MODE12_EX_RW BIT(15)
#define CONTROL_MODE12_FULL GENMASK(15, 14)
#define CONTROL_FLAGSX4 BIT(16)
#define CONTROL_CLKRATE_MASK GENMASK(27, 24)
#define CONTROL_CLKRATE_SHIFT 24
/*
* QSPI Frames register mask defines
*/
#define FRAMES_TOTALBYTES_MASK GENMASK(15, 0)
#define FRAMES_CMDBYTES_MASK GENMASK(24, 16)
#define FRAMES_CMDBYTES_SHIFT 16
#define FRAMES_SHIFT 25
#define FRAMES_IDLE_MASK GENMASK(29, 26)
#define FRAMES_IDLE_SHIFT 26
#define FRAMES_FLAGBYTE BIT(30)
#define FRAMES_FLAGWORD BIT(31)
/*
* QSPI Interrupt Enable register mask defines
*/
#define IEN_TXDONE BIT(0)
#define IEN_RXDONE BIT(1)
#define IEN_RXAVAILABLE BIT(2)
#define IEN_TXAVAILABLE BIT(3)
#define IEN_RXFIFOEMPTY BIT(4)
#define IEN_TXFIFOFULL BIT(5)
/*
* QSPI Status register mask defines
*/
#define STATUS_TXDONE BIT(0)
#define STATUS_RXDONE BIT(1)
#define STATUS_RXAVAILABLE BIT(2)
#define STATUS_TXAVAILABLE BIT(3)
#define STATUS_RXFIFOEMPTY BIT(4)
#define STATUS_TXFIFOFULL BIT(5)
#define STATUS_READY BIT(7)
#define STATUS_FLAGSX4 BIT(8)
#define STATUS_MASK GENMASK(8, 0)
#define BYTESUPPER_MASK GENMASK(31, 16)
#define BYTESLOWER_MASK GENMASK(15, 0)
#define MAX_DIVIDER 16
#define MIN_DIVIDER 0
#define MAX_DATA_CMD_LEN 256
/* QSPI ready time out value */
#define TIMEOUT_MS (1000 * 500)
/*
* QSPI Register offsets.
*/
#define REG_CONTROL (0x00)
#define REG_FRAMES (0x04)
#define REG_IEN (0x0c)
#define REG_STATUS (0x10)
#define REG_DIRECT_ACCESS (0x14)
#define REG_UPPER_ACCESS (0x18)
#define REG_RX_DATA (0x40)
#define REG_TX_DATA (0x44)
#define REG_X4_RX_DATA (0x48)
#define REG_X4_TX_DATA (0x4c)
#define REG_FRAMESUP (0x50)
/**
* struct mchp_coreqspi - Defines qspi driver instance
* @regs: Address of the QSPI controller registers
* @freq: QSPI Input frequency
* @txbuf: TX buffer
* @rxbuf: RX buffer
* @tx_len: Number of bytes left to transfer
* @rx_len: Number of bytes left to receive
*/
struct mchp_coreqspi {
void __iomem *regs;
u32 freq;
u8 *txbuf;
u8 *rxbuf;
int tx_len;
int rx_len;
};
static void mchp_coreqspi_init_hw(struct mchp_coreqspi *qspi)
{
u32 control;
control = CONTROL_CLKIDLE | CONTROL_ENABLE;
writel(control, qspi->regs + REG_CONTROL);
writel(0, qspi->regs + REG_IEN);
}
static inline void mchp_coreqspi_read_op(struct mchp_coreqspi *qspi)
{
u32 control, data;
if (!qspi->rx_len)
return;
control = readl(qspi->regs + REG_CONTROL);
/*
* Read 4-bytes from the SPI FIFO in single transaction and then read
* the reamaining data byte wise.
*/
control |= CONTROL_FLAGSX4;
writel(control, qspi->regs + REG_CONTROL);
while (qspi->rx_len >= 4) {
while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
;
data = readl(qspi->regs + REG_X4_RX_DATA);
*(u32 *)qspi->rxbuf = data;
qspi->rxbuf += 4;
qspi->rx_len -= 4;
}
control &= ~CONTROL_FLAGSX4;
writel(control, qspi->regs + REG_CONTROL);
while (qspi->rx_len--) {
while (readl(qspi->regs + REG_STATUS) & STATUS_RXFIFOEMPTY)
;
data = readl(qspi->regs + REG_RX_DATA);
*qspi->rxbuf++ = (data & 0xFF);
}
}
static inline void mchp_coreqspi_write_op(struct mchp_coreqspi *qspi, bool word)
{
u32 control, data;
control = readl(qspi->regs + REG_CONTROL);
control |= CONTROL_FLAGSX4;
writel(control, qspi->regs + REG_CONTROL);
while (qspi->tx_len >= 4) {
while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
;
data = *(u32 *)qspi->txbuf;
qspi->txbuf += 4;
qspi->tx_len -= 4;
writel(data, qspi->regs + REG_X4_TX_DATA);
}
control &= ~CONTROL_FLAGSX4;
writel(control, qspi->regs + REG_CONTROL);
while (qspi->tx_len--) {
while (readl(qspi->regs + REG_STATUS) & STATUS_TXFIFOFULL)
;
data = *qspi->txbuf++;
writel(data, qspi->regs + REG_TX_DATA);
}
}
static inline void mchp_coreqspi_config_op(struct mchp_coreqspi *qspi,
const struct spi_mem_op *op)
{
u32 idle_cycles = 0;
int total_bytes, cmd_bytes, frames, ctrl;
cmd_bytes = op->cmd.nbytes + op->addr.nbytes;
total_bytes = cmd_bytes + op->data.nbytes;
/*
* As per the coreQSPI IP spec,the number of command and data bytes are
* controlled by the frames register for each SPI sequence. This supports
* the SPI flash memory read and writes sequences as below. so configure
* the cmd and total bytes accordingly.
* ---------------------------------------------------------------------
* TOTAL BYTES | CMD BYTES | What happens |
* ______________________________________________________________________
* | | |
* 1 | 1 | The SPI core will transmit a single byte |
* | | and receive data is discarded |
* | | |
* 1 | 0 | The SPI core will transmit a single byte |
* | | and return a single byte |
* | | |
* 10 | 4 | The SPI core will transmit 4 command |
* | | bytes discarding the receive data and |
* | | transmits 6 dummy bytes returning the 6 |
* | | received bytes and return a single byte |
* | | |
* 10 | 10 | The SPI core will transmit 10 command |
* | | |
* 10 | 0 | The SPI core will transmit 10 command |
* | | bytes and returning 10 received bytes |
* ______________________________________________________________________
*/
if (!(op->data.dir == SPI_MEM_DATA_IN))
cmd_bytes = total_bytes;
frames = total_bytes & BYTESUPPER_MASK;
writel(frames, qspi->regs + REG_FRAMESUP);
frames = total_bytes & BYTESLOWER_MASK;
frames |= cmd_bytes << FRAMES_CMDBYTES_SHIFT;
if (op->dummy.buswidth)
idle_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
frames |= idle_cycles << FRAMES_IDLE_SHIFT;
ctrl = readl(qspi->regs + REG_CONTROL);
if (ctrl & CONTROL_MODE12_MASK)
frames |= (1 << FRAMES_SHIFT);
frames |= FRAMES_FLAGWORD;
writel(frames, qspi->regs + REG_FRAMES);
}
static int mchp_coreqspi_wait_for_ready(struct spi_slave *slave)
{
struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent);
unsigned long count = 0;
while (1) {
if (readl(qspi->regs + REG_STATUS) & STATUS_READY)
return 0;
udelay(1);
count += 1;
if (count == TIMEOUT_MS)
return -ETIMEDOUT;
}
}
static int mchp_coreqspi_set_operate_mode(struct mchp_coreqspi *qspi,
const struct spi_mem_op *op)
{
u32 control = readl(qspi->regs + REG_CONTROL);
/*
* The operating mode can be configured based on the command that needs
* to be send.
* bits[15:14]: Sets whether multiple bit SPI operates in normal,
* extended or full modes.
* 00: Normal (single DQ0 TX and single DQ1 RX lines)
* 01: Extended RO (command and address bytes on DQ0 only)
* 10: Extended RW (command byte on DQ0 only)
* 11: Full. (command and address are on all DQ lines)
* bit[13]: Sets whether multiple bit SPI uses 2 or 4 bits of data
* 0: 2-bits (BSPI)
* 1: 4-bits (QSPI)
*/
if (op->data.buswidth == 4 || op->data.buswidth == 2) {
control &= ~CONTROL_MODE12_MASK;
if (op->cmd.buswidth == 1 && (op->addr.buswidth == 1 ||
op->addr.buswidth == 0))
control |= CONTROL_MODE12_EX_RO;
else if (op->cmd.buswidth == 1)
control |= CONTROL_MODE12_EX_RW;
else
control |= CONTROL_MODE12_FULL;
control |= CONTROL_MODE0;
} else {
control &= ~(CONTROL_MODE12_MASK | CONTROL_MODE0);
}
writel(control, qspi->regs + REG_CONTROL);
return 0;
}
static int mchp_coreqspi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct mchp_coreqspi *qspi = dev_get_priv(slave->dev->parent);
u32 address = op->addr.val;
u8 opcode = op->cmd.opcode;
u8 opaddr[5];
int err = 0, i;
err = mchp_coreqspi_wait_for_ready(slave);
if (err)
return err;
err = mchp_coreqspi_set_operate_mode(qspi, op);
if (err)
return err;
mchp_coreqspi_config_op(qspi, op);
if (op->cmd.opcode) {
qspi->txbuf = &opcode;
qspi->rxbuf = NULL;
qspi->tx_len = op->cmd.nbytes;
qspi->rx_len = 0;
mchp_coreqspi_write_op(qspi, false);
}
qspi->txbuf = &opaddr[0];
if (op->addr.nbytes) {
for (i = 0; i < op->addr.nbytes; i++)
qspi->txbuf[i] = address >> (8 * (op->addr.nbytes - i - 1));
qspi->rxbuf = NULL;
qspi->tx_len = op->addr.nbytes;
qspi->rx_len = 0;
mchp_coreqspi_write_op(qspi, false);
}
if (op->data.nbytes) {
if (op->data.dir == SPI_MEM_DATA_OUT) {
qspi->txbuf = (u8 *)op->data.buf.out;
qspi->rxbuf = NULL;
qspi->rx_len = 0;
qspi->tx_len = op->data.nbytes;
mchp_coreqspi_write_op(qspi, true);
} else {
qspi->txbuf = NULL;
qspi->rxbuf = (u8 *)op->data.buf.in;
qspi->rx_len = op->data.nbytes;
qspi->tx_len = 0;
mchp_coreqspi_read_op(qspi);
}
}
return 0;
}
static bool mchp_coreqspi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(slave, op))
return false;
if ((op->data.buswidth == 4 || op->data.buswidth == 2) &&
(op->cmd.buswidth == 1 && (op->addr.buswidth == 1 ||
op->addr.buswidth == 0))) {
/*
* If the command and address are on DQ0 only, then this
* controller doesn't support sending data on dual and
* quad lines. but it supports reading data on dual and
* quad lines with same configuration as command and
* address on DQ0.
* i.e. The control register[15:13] :EX_RO(read only) is
* meant only for the command and address are on DQ0 but
* not to write data, it is just to read.
* Ex: 0x34h is Quad Load Program Data which is not
* supported. Then the spi-mem layer will iterate over
* each command and it will chose the supported one.
*/
if (op->data.dir == SPI_MEM_DATA_OUT)
return false;
}
return true;
}
static int mchp_coreqspi_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
if (op->data.dir == SPI_MEM_DATA_OUT) {
if (op->data.nbytes > MAX_DATA_CMD_LEN)
op->data.nbytes = MAX_DATA_CMD_LEN;
}
return 0;
}
static int mchp_coreqspi_set_speed(struct udevice *dev, uint speed)
{
struct mchp_coreqspi *qspi = dev_get_priv(dev);
u32 control, baud_rate_val = 0;
if (speed > (qspi->freq / 2))
speed = qspi->freq / 2;
baud_rate_val = DIV_ROUND_UP(qspi->freq, 2 * speed);
if (baud_rate_val >= MAX_DIVIDER || baud_rate_val <= MIN_DIVIDER)
return -EINVAL;
control = readl(qspi->regs + REG_CONTROL);
control &= ~CONTROL_CLKRATE_MASK;
control |= baud_rate_val << CONTROL_CLKRATE_SHIFT;
writel(control, qspi->regs + REG_CONTROL);
return 0;
}
static int mchp_coreqspi_set_mode(struct udevice *dev, uint mode)
{
struct mchp_coreqspi *qspi = dev_get_priv(dev);
u32 control;
control = readl(qspi->regs + REG_CONTROL);
if ((mode & SPI_CPOL) && (mode & SPI_CPHA))
control |= CONTROL_CLKIDLE;
else
control &= ~CONTROL_CLKIDLE;
writel(control, qspi->regs + REG_CONTROL);
return 0;
}
static int mchp_coreqspi_claim_bus(struct udevice *dev)
{
return 0;
}
static int mchp_coreqspi_release_bus(struct udevice *dev)
{
return 0;
}
static int mchp_coreqspi_probe(struct udevice *dev)
{
struct mchp_coreqspi *qspi = dev_get_priv(dev);
struct clk clk;
ulong clk_rate;
int ret;
ret = clk_get_by_index(dev, 0, &clk);
if (ret)
return -EINVAL;
ret = clk_enable(&clk);
if (ret)
return ret;
clk_rate = clk_get_rate(&clk);
if (!clk_rate)
return -EINVAL;
qspi->freq = clk_rate;
qspi->regs = dev_read_addr_ptr(dev);
if (!qspi->regs)
return -EINVAL;
/* Init the mpfs qspi hw */
mchp_coreqspi_init_hw(qspi);
return 0;
}
static const struct spi_controller_mem_ops mchp_coreqspi_mem_ops = {
.adjust_op_size = mchp_coreqspi_adjust_op_size,
.supports_op = mchp_coreqspi_supports_op,
.exec_op = mchp_coreqspi_exec_op,
};
static const struct dm_spi_ops mchp_coreqspi_ops = {
.claim_bus = mchp_coreqspi_claim_bus,
.release_bus = mchp_coreqspi_release_bus,
.set_speed = mchp_coreqspi_set_speed,
.set_mode = mchp_coreqspi_set_mode,
.mem_ops = &mchp_coreqspi_mem_ops,
};
static const struct udevice_id mchp_coreqspi_ids[] = {
{ .compatible = "microchip,mpfs-coreqspi-rtl-v2" },
{ .compatible = "microchip,mpfs-qspi" },
{ }
};
U_BOOT_DRIVER(mchp_coreqspi) = {
.name = "mchp_coreqspi",
.id = UCLASS_SPI,
.of_match = mchp_coreqspi_ids,
.ops = &mchp_coreqspi_ops,
.priv_auto = sizeof(struct mchp_coreqspi),
.probe = mchp_coreqspi_probe,
};