| /* |
| * (C) Copyright 2003 |
| * Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #undef DEBUG |
| |
| #include <common.h> |
| #include <command.h> |
| #include <s3c2400.h> |
| #include <rtc.h> |
| |
| /* |
| * TRAB board specific commands. Especially commands for burn-in and function |
| * test. |
| */ |
| #if defined(CONFIG_CMD_BSP) |
| |
| /* limits for valid range of VCC5V in mV */ |
| #define VCC5V_MIN 4500 |
| #define VCC5V_MAX 5500 |
| |
| /* |
| * Test strings for EEPROM test. Length of string 2 must not exceed length of |
| * string 1. Otherwise a buffer overrun could occur! |
| */ |
| #define EEPROM_TEST_STRING_1 "0987654321 :tset a si siht" |
| #define EEPROM_TEST_STRING_2 "this is a test: 1234567890" |
| |
| /* |
| * min/max limits for valid contact temperature during burn in test (in |
| * degree Centigrade * 100) |
| */ |
| #define MIN_CONTACT_TEMP -1000 |
| #define MAX_CONTACT_TEMP +9000 |
| |
| /* blinking frequency of status LED */ |
| #define LED_BLINK_FREQ 5 |
| |
| /* delay time between burn in cycles in seconds */ |
| #ifndef BURN_IN_CYCLE_DELAY /* if not defined in include/configs/trab.h */ |
| #define BURN_IN_CYCLE_DELAY 5 |
| #endif |
| |
| /* physical SRAM parameters */ |
| #define SRAM_ADDR 0x02000000 /* GCS1 */ |
| #define SRAM_SIZE 0x40000 /* 256 kByte */ |
| |
| /* CPLD-Register for controlling TRAB hardware functions */ |
| #define CPLD_BUTTONS ((volatile unsigned long *)0x04020000) |
| #define CPLD_FILL_LEVEL ((volatile unsigned long *)0x04008000) |
| #define CPLD_ROTARY_SWITCH ((volatile unsigned long *)0x04018000) |
| #define CPLD_RS485_RE ((volatile unsigned long *)0x04028000) |
| |
| /* I2C EEPROM device address */ |
| #define I2C_EEPROM_DEV_ADDR 0x54 |
| |
| /* EEPROM address map */ |
| #define EE_ADDR_TEST 192 |
| #define EE_ADDR_MAX_CYCLES 256 |
| #define EE_ADDR_STATUS 258 |
| #define EE_ADDR_PASS_CYCLES 259 |
| #define EE_ADDR_FIRST_ERROR_CYCLE 261 |
| #define EE_ADDR_FIRST_ERROR_NUM 263 |
| #define EE_ADDR_FIRST_ERROR_NAME 264 |
| #define EE_ADDR_ACT_CYCLE 280 |
| |
| /* Bit definitions for ADCCON */ |
| #define ADC_ENABLE_START 0x1 |
| #define ADC_READ_START 0x2 |
| #define ADC_STDBM 0x4 |
| #define ADC_INP_AIN0 (0x0 << 3) |
| #define ADC_INP_AIN1 (0x1 << 3) |
| #define ADC_INP_AIN2 (0x2 << 3) |
| #define ADC_INP_AIN3 (0x3 << 3) |
| #define ADC_INP_AIN4 (0x4 << 3) |
| #define ADC_INP_AIN5 (0x5 << 3) |
| #define ADC_INP_AIN6 (0x6 << 3) |
| #define ADC_INP_AIN7 (0x7 << 3) |
| #define ADC_PRSCEN 0x4000 |
| #define ADC_ECFLG 0x800 |
| |
| /* misc */ |
| |
| /* externals */ |
| extern int memory_post_tests (unsigned long start, unsigned long size); |
| extern int i2c_write (uchar, uint, int , uchar* , int); |
| extern int i2c_read (uchar, uint, int , uchar* , int); |
| extern void tsc2000_reg_init (void); |
| extern s32 tsc2000_contact_temp (void); |
| extern void tsc2000_spi_init(void); |
| |
| /* function declarations */ |
| int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| int i2c_write_multiple (uchar chip, uint addr, int alen, |
| uchar *buffer, int len); |
| int i2c_read_multiple (uchar chip, uint addr, int alen, |
| uchar *buffer, int len); |
| int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); |
| |
| /* helper functions */ |
| static void adc_init (void); |
| static int adc_read (unsigned int channel); |
| static int read_dip (void); |
| static int read_vcc5v (void); |
| static int test_dip (void); |
| static int test_vcc5v (void); |
| static int test_rotary_switch (void); |
| static int test_sram (void); |
| static int test_eeprom (void); |
| static int test_contact_temp (void); |
| static void led_set (unsigned int); |
| static void led_blink (void); |
| static void led_init (void); |
| static void sdelay (unsigned long seconds); /* delay in seconds */ |
| static int dummy (void); |
| static int read_max_cycles(void); |
| static void test_function_table_init (void); |
| static void global_vars_init (void); |
| static int global_vars_write_to_eeprom (void); |
| |
| /* globals */ |
| u16 max_cycles; |
| u8 status; |
| u16 pass_cycles; |
| u16 first_error_cycle; |
| u8 first_error_num; |
| char first_error_name[16]; |
| u16 act_cycle; |
| |
| typedef struct test_function_s { |
| char *name; |
| int (*pf)(void); |
| } test_function_t; |
| |
| /* max number of Burn In Functions */ |
| #define BIF_MAX 6 |
| |
| /* table with burn in functions */ |
| test_function_t test_function[BIF_MAX]; |
| |
| |
| int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int i; |
| int cycle_status; |
| |
| if (argc > 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| led_init (); |
| global_vars_init (); |
| test_function_table_init (); |
| tsc2000_spi_init (); |
| |
| if (global_vars_write_to_eeprom () != 0) { |
| printf ("%s: error writing global_vars to eeprom\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| if (read_max_cycles () != 0) { |
| printf ("%s: error reading max_cycles from eeprom\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| if (max_cycles == 0) { |
| printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__); |
| return (1); |
| } |
| |
| status = 0; |
| for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) { |
| |
| cycle_status = 0; |
| |
| /* |
| * avoid timestamp overflow problem after about 68 minutes of |
| * udelay() time. |
| */ |
| reset_timer_masked (); |
| for (i = 0; i < BIF_MAX; i++) { |
| |
| /* call test function */ |
| if ((*test_function[i].pf)() != 0) { |
| printf ("error in %s test\n", |
| test_function[i].name); |
| |
| /* is it the first error? */ |
| if (status == 0) { |
| status = 1; |
| first_error_cycle = act_cycle; |
| |
| /* do not use error_num 0 */ |
| first_error_num = i+1; |
| strncpy (first_error_name, |
| test_function[i].name, |
| sizeof (first_error_name)); |
| led_set (0); |
| } |
| cycle_status = 1; |
| } |
| } |
| /* were all tests of actual cycle OK? */ |
| if (cycle_status == 0) |
| pass_cycles++; |
| |
| /* set status LED if no error is occoured since yet */ |
| if (status == 0) |
| led_set (1); |
| |
| printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle); |
| |
| /* pause between cycles */ |
| sdelay (BURN_IN_CYCLE_DELAY); |
| } |
| |
| if (global_vars_write_to_eeprom () != 0) { |
| led_set (0); |
| printf ("%s: error writing global_vars to eeprom\n", |
| __FUNCTION__); |
| status = 1; |
| } |
| |
| if (status == 0) { |
| led_blink (); /* endless loop!! */ |
| return (0); |
| } else { |
| led_set (0); |
| return (1); |
| } |
| } |
| |
| U_BOOT_CMD( |
| burn_in, 1, 1, do_burn_in, |
| "start burn-in test application on TRAB", |
| "\n" |
| " - start burn-in test application\n" |
| " The burn-in test could took a while to finish!\n" |
| " The content of the onboard EEPROM is modified!" |
| ); |
| |
| |
| int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int i, dip; |
| |
| if (argc > 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| if ((dip = read_dip ()) == -1) { |
| return 1; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| if ((dip & (1 << i)) == 0) |
| printf("0"); |
| else |
| printf("1"); |
| } |
| printf("\n"); |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| dip, 1, 1, do_dip, |
| "read dip switch on TRAB", |
| "\n" |
| " - read state of dip switch (S1) on TRAB board\n" |
| " read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\"" |
| ); |
| |
| |
| int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int vcc5v; |
| |
| if (argc > 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| if ((vcc5v = read_vcc5v ()) == -1) { |
| return (1); |
| } |
| |
| printf ("%d", (vcc5v / 1000)); |
| printf (".%d", (vcc5v % 1000) / 100); |
| printf ("%d V\n", (vcc5v % 100) / 10) ; |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| vcc5v, 1, 1, do_vcc5v, |
| "read VCC5V on TRAB", |
| "\n" |
| " - read actual value of voltage VCC5V" |
| ); |
| |
| |
| int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int contact_temp; |
| |
| if (argc > 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| tsc2000_spi_init (); |
| |
| contact_temp = tsc2000_contact_temp(); |
| printf ("%d degree C * 100\n", contact_temp) ; |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| c_temp, 1, 1, do_contact_temp, |
| "read contact temperature on TRAB", |
| "" |
| " - reads the onboard temperature (=contact temperature)\n" |
| ); |
| |
| |
| int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| if (argc > 1) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1, |
| (unsigned char*) &status, 1)) { |
| return (1); |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1, |
| (unsigned char*) &pass_cycles, 2)) { |
| return (1); |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE, |
| 1, (unsigned char*) &first_error_cycle, 2)) { |
| return (1); |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM, |
| 1, (unsigned char*) &first_error_num, 1)) { |
| return (1); |
| } |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME, |
| 1, (unsigned char*)first_error_name, |
| sizeof (first_error_name))) { |
| return (1); |
| } |
| |
| if (read_max_cycles () != 0) { |
| return (1); |
| } |
| |
| printf ("max_cycles = %d\n", max_cycles); |
| printf ("status = %d\n", status); |
| printf ("pass_cycles = %d\n", pass_cycles); |
| printf ("first_error_cycle = %d\n", first_error_cycle); |
| printf ("first_error_num = %d\n", first_error_num); |
| printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name), |
| first_error_name); |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| bis, 1, 1, do_burn_in_status, |
| "print burn in status on TRAB", |
| "\n" |
| " - prints the status variables of the last burn in test\n" |
| " stored in the onboard EEPROM on TRAB board" |
| ); |
| |
| static int read_dip (void) |
| { |
| unsigned int result = 0; |
| int adc_val; |
| int i; |
| |
| /*********************************************************** |
| DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3): |
| SW1 - AIN4 |
| SW2 - AIN5 |
| SW3 - AIN6 |
| SW4 - AIN7 |
| |
| "On" DIP switch position short-circuits the voltage from |
| the input channel (i.e. '0' conversion result means "on"). |
| *************************************************************/ |
| |
| for (i = 7; i > 3; i--) { |
| |
| if ((adc_val = adc_read (i)) == -1) { |
| printf ("%s: Channel %d could not be read\n", |
| __FUNCTION__, i); |
| return (-1); |
| } |
| |
| /* |
| * Input voltage (switch open) is 1.8 V. |
| * (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736 |
| * Set trigger at halve that value. |
| */ |
| if (adc_val < 368) |
| result |= (1 << (i-4)); |
| } |
| return (result); |
| } |
| |
| |
| static int read_vcc5v (void) |
| { |
| s32 result; |
| |
| /* VCC5V is connected to channel 2 */ |
| |
| if ((result = adc_read (2)) == -1) { |
| printf ("%s: VCC5V could not be read\n", __FUNCTION__); |
| return (-1); |
| } |
| /* |
| * Calculate voltage value. Split in two parts because there is no |
| * floating point support. VCC5V is connected over an resistor divider: |
| * VCC5V=ADCval*2,5V/1023*(10K+30K)/10K. |
| */ |
| result = result * 10 * 1000 / 1023; /* result in mV */ |
| |
| return (result); |
| } |
| |
| |
| static int test_dip (void) |
| { |
| static int first_run = 1; |
| static int first_dip; |
| |
| if (first_run) { |
| if ((first_dip = read_dip ()) == -1) { |
| return (1); |
| } |
| first_run = 0; |
| debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip); |
| } |
| if (first_dip != read_dip ()) { |
| return (1); |
| } else { |
| return (0); |
| } |
| } |
| |
| |
| static int test_vcc5v (void) |
| { |
| int vcc5v; |
| |
| if ((vcc5v = read_vcc5v ()) == -1) { |
| return (1); |
| } |
| |
| if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) { |
| printf ("%s: vcc5v[V/100]=%d\n", __FUNCTION__, vcc5v); |
| return (1); |
| } else { |
| return (0); |
| } |
| } |
| |
| |
| static int test_rotary_switch (void) |
| { |
| static int first_run = 1; |
| static int first_rs; |
| |
| if (first_run) { |
| /* |
| * clear bits in CPLD, because they have random values after |
| * power-up or reset. |
| */ |
| *CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17); |
| |
| first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7); |
| first_run = 0; |
| debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs); |
| } |
| |
| if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) { |
| return (1); |
| } else { |
| return (0); |
| } |
| } |
| |
| |
| static int test_sram (void) |
| { |
| return (memory_post_tests (SRAM_ADDR, SRAM_SIZE)); |
| } |
| |
| |
| static int test_eeprom (void) |
| { |
| unsigned char temp[sizeof (EEPROM_TEST_STRING_1)]; |
| int result = 0; |
| |
| /* write test string 1, read back and verify */ |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, |
| (unsigned char*)EEPROM_TEST_STRING_1, |
| sizeof (EEPROM_TEST_STRING_1))) { |
| return (1); |
| } |
| |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, |
| temp, sizeof (EEPROM_TEST_STRING_1))) { |
| return (1); |
| } |
| |
| if (strcmp ((char *)temp, EEPROM_TEST_STRING_1) != 0) { |
| result = 1; |
| printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp); |
| } |
| |
| /* write test string 2, read back and verify */ |
| if (result == 0) { |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, |
| (unsigned char*)EEPROM_TEST_STRING_2, |
| sizeof (EEPROM_TEST_STRING_2))) { |
| return (1); |
| } |
| |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1, |
| temp, sizeof (EEPROM_TEST_STRING_2))) { |
| return (1); |
| } |
| |
| if (strcmp ((char *)temp, EEPROM_TEST_STRING_2) != 0) { |
| result = 1; |
| printf ("%s: error; read str = \"%s\"\n", |
| __FUNCTION__, temp); |
| } |
| } |
| return (result); |
| } |
| |
| |
| static int test_contact_temp (void) |
| { |
| int contact_temp; |
| |
| contact_temp = tsc2000_contact_temp (); |
| |
| if ((contact_temp < MIN_CONTACT_TEMP) |
| || (contact_temp > MAX_CONTACT_TEMP)) |
| return (1); |
| else |
| return (0); |
| } |
| |
| |
| int i2c_write_multiple (uchar chip, uint addr, int alen, |
| uchar *buffer, int len) |
| { |
| int i; |
| |
| if (alen != 1) { |
| printf ("%s: addr len other than 1 not supported\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (i2c_write (chip, addr+i, alen, buffer+i, 1)) { |
| printf ("%s: could not write to i2c device %d" |
| ", addr %d\n", __FUNCTION__, chip, addr); |
| return (1); |
| } |
| #if 0 |
| printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i=" |
| "%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i, |
| alen, buffer, i, buffer+i, buffer+i); |
| #endif |
| |
| udelay (30000); |
| } |
| return (0); |
| } |
| |
| |
| int i2c_read_multiple ( uchar chip, uint addr, int alen, |
| uchar *buffer, int len) |
| { |
| int i; |
| |
| if (alen != 1) { |
| printf ("%s: addr len other than 1 not supported\n", |
| __FUNCTION__); |
| return (1); |
| } |
| |
| for (i = 0; i < len; i++) { |
| if (i2c_read (chip, addr+i, alen, buffer+i, 1)) { |
| printf ("%s: could not read from i2c device %#x" |
| ", addr %d\n", __FUNCTION__, chip, addr); |
| return (1); |
| } |
| } |
| return (0); |
| } |
| |
| |
| static int adc_read (unsigned int channel) |
| { |
| int j = 1000; /* timeout value for wait loop in us */ |
| int result; |
| struct s3c2400_adc *padc; |
| |
| padc = s3c2400_get_base_adc(); |
| channel &= 0x7; |
| |
| adc_init (); |
| |
| padc->ADCCON &= ~ADC_STDBM; /* select normal mode */ |
| padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */ |
| padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START); |
| |
| while (j--) { |
| if ((padc->ADCCON & ADC_ENABLE_START) == 0) |
| break; |
| udelay (1); |
| } |
| |
| if (j == 0) { |
| printf("%s: ADC timeout\n", __FUNCTION__); |
| padc->ADCCON |= ADC_STDBM; /* select standby mode */ |
| return -1; |
| } |
| |
| result = padc->ADCDAT & 0x3FF; |
| |
| padc->ADCCON |= ADC_STDBM; /* select standby mode */ |
| |
| debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__, |
| (padc->ADCCON >> 3) & 0x7, result); |
| |
| /* |
| * Wait for ADC to be ready for next conversion. This delay value was |
| * estimated, because the datasheet does not specify a value. |
| */ |
| udelay (1000); |
| |
| return (result); |
| } |
| |
| |
| static void adc_init (void) |
| { |
| struct s3c2400_adc *padc; |
| |
| padc = s3c2400_get_base_adc(); |
| |
| padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */ |
| padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */ |
| |
| /* |
| * Wait some time to avoid problem with very first call of |
| * adc_read(). Without this delay, sometimes the first read |
| * adc value is 0. Perhaps because the adjustment of prescaler |
| * takes some clock cycles? |
| */ |
| udelay (1000); |
| |
| return; |
| } |
| |
| |
| static void led_set (unsigned int state) |
| { |
| struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio(); |
| |
| led_init (); |
| |
| switch (state) { |
| case 0: /* turn LED off */ |
| gpio->PADAT |= (1 << 12); |
| break; |
| case 1: /* turn LED on */ |
| gpio->PADAT &= ~(1 << 12); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void led_blink (void) |
| { |
| led_init (); |
| |
| /* blink LED. This function does not return! */ |
| while (1) { |
| reset_timer_masked (); |
| led_set (1); |
| udelay (1000000 / LED_BLINK_FREQ / 2); |
| led_set (0); |
| udelay (1000000 / LED_BLINK_FREQ / 2); |
| } |
| } |
| |
| |
| static void led_init (void) |
| { |
| struct s3c24x0_gpio * const gpio = s3c24x0_get_base_gpio(); |
| |
| /* configure GPA12 as output and set to High -> LED off */ |
| gpio->PACON &= ~(1 << 12); |
| gpio->PADAT |= (1 << 12); |
| } |
| |
| |
| static void sdelay (unsigned long seconds) |
| { |
| unsigned long i; |
| |
| for (i = 0; i < seconds; i++) { |
| udelay (1000000); |
| } |
| } |
| |
| |
| static int global_vars_write_to_eeprom (void) |
| { |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1, |
| (unsigned char*) &status, 1)) { |
| return (1); |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1, |
| (unsigned char*) &pass_cycles, 2)) { |
| return (1); |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE, |
| 1, (unsigned char*) &first_error_cycle, 2)) { |
| return (1); |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM, |
| 1, (unsigned char*) &first_error_num, 1)) { |
| return (1); |
| } |
| if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME, |
| 1, (unsigned char*) first_error_name, |
| sizeof(first_error_name))) { |
| return (1); |
| } |
| return (0); |
| } |
| |
| static void global_vars_init (void) |
| { |
| status = 1; /* error */ |
| pass_cycles = 0; |
| first_error_cycle = 0; |
| first_error_num = 0; |
| first_error_name[0] = '\0'; |
| act_cycle = 0; |
| max_cycles = 0; |
| } |
| |
| |
| static void test_function_table_init (void) |
| { |
| int i; |
| |
| for (i = 0; i < BIF_MAX; i++) |
| test_function[i].pf = dummy; |
| |
| /* |
| * the length of "name" must not exceed 16, including the '\0' |
| * termination. See also the EEPROM address map. |
| */ |
| test_function[0].pf = test_dip; |
| test_function[0].name = "dip"; |
| |
| test_function[1].pf = test_vcc5v; |
| test_function[1].name = "vcc5v"; |
| |
| test_function[2].pf = test_rotary_switch; |
| test_function[2].name = "rotary_switch"; |
| |
| test_function[3].pf = test_sram; |
| test_function[3].name = "sram"; |
| |
| test_function[4].pf = test_eeprom; |
| test_function[4].name = "eeprom"; |
| |
| test_function[5].pf = test_contact_temp; |
| test_function[5].name = "contact_temp"; |
| } |
| |
| |
| static int read_max_cycles (void) |
| { |
| if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1, |
| (unsigned char *) &max_cycles, 2) != 0) { |
| return (1); |
| } |
| |
| return (0); |
| } |
| |
| static int dummy(void) |
| { |
| return (0); |
| } |
| |
| int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) |
| { |
| int contact_temp; |
| int delay = 0; |
| #if defined(CONFIG_CMD_DATE) |
| struct rtc_time tm; |
| #endif |
| |
| if (argc > 2) { |
| cmd_usage(cmdtp); |
| return 1; |
| } |
| |
| if (argc > 1) { |
| delay = simple_strtoul(argv[1], NULL, 10); |
| } |
| |
| tsc2000_spi_init (); |
| while (1) { |
| |
| #if defined(CONFIG_CMD_DATE) |
| rtc_get (&tm); |
| printf ("%4d-%02d-%02d %2d:%02d:%02d - ", |
| tm.tm_year, tm.tm_mon, tm.tm_mday, |
| tm.tm_hour, tm.tm_min, tm.tm_sec); |
| #endif |
| |
| contact_temp = tsc2000_contact_temp(); |
| printf ("%d\n", contact_temp) ; |
| |
| if (delay != 0) |
| /* |
| * reset timer to avoid timestamp overflow problem |
| * after about 68 minutes of udelay() time. |
| */ |
| reset_timer_masked (); |
| sdelay (delay); |
| } |
| |
| return 0; |
| } |
| |
| U_BOOT_CMD( |
| tlog, 2, 1, do_temp_log, |
| "log contact temperature [1/100 C] to console (endlessly)", |
| "delay\n" |
| " - contact temperature [1/100 C] is printed endlessly to console\n" |
| " <delay> specifies the seconds to wait between two measurements\n" |
| " For each measurment a timestamp is printeted" |
| ); |
| |
| #endif |