| /* |
| * (C) Copyright 2002-2004 |
| * Brad Kemp, Seranoa Networks, Brad.Kemp@seranoa.com |
| * |
| * Copyright (C) 2003 Arabella Software Ltd. |
| * Yuli Barcohen <yuli@arabellasw.com> |
| * |
| * Copyright (C) 2004 |
| * Ed Okerson |
| * |
| * Copyright (C) 2006 |
| * Tolunay Orkun <listmember@orkun.us> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| */ |
| |
| /* The DEBUG define must be before common to enable debugging */ |
| /* #define DEBUG */ |
| |
| #include <common.h> |
| #include <asm/processor.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| #include <environment.h> |
| #include <mtd/cfi_flash.h> |
| #include <watchdog.h> |
| |
| /* |
| * This file implements a Common Flash Interface (CFI) driver for |
| * U-Boot. |
| * |
| * The width of the port and the width of the chips are determined at |
| * initialization. These widths are used to calculate the address for |
| * access CFI data structures. |
| * |
| * References |
| * JEDEC Standard JESD68 - Common Flash Interface (CFI) |
| * JEDEC Standard JEP137-A Common Flash Interface (CFI) ID Codes |
| * Intel Application Note 646 Common Flash Interface (CFI) and Command Sets |
| * Intel 290667-008 3 Volt Intel StrataFlash Memory datasheet |
| * AMD CFI Specification, Release 2.0 December 1, 2001 |
| * AMD/Spansion Application Note: Migration from Single-byte to Three-byte |
| * Device IDs, Publication Number 25538 Revision A, November 8, 2001 |
| * |
| * Define CONFIG_SYS_WRITE_SWAPPED_DATA, if you have to swap the Bytes between |
| * reading and writing ... (yes there is such a Hardware). |
| */ |
| |
| static uint flash_offset_cfi[2] = { FLASH_OFFSET_CFI, FLASH_OFFSET_CFI_ALT }; |
| #ifdef CONFIG_FLASH_CFI_MTD |
| static uint flash_verbose = 1; |
| #else |
| #define flash_verbose 1 |
| #endif |
| |
| flash_info_t flash_info[CFI_MAX_FLASH_BANKS]; /* FLASH chips info */ |
| |
| /* |
| * Check if chip width is defined. If not, start detecting with 8bit. |
| */ |
| #ifndef CONFIG_SYS_FLASH_CFI_WIDTH |
| #define CONFIG_SYS_FLASH_CFI_WIDTH FLASH_CFI_8BIT |
| #endif |
| |
| /* |
| * 0xffff is an undefined value for the configuration register. When |
| * this value is returned, the configuration register shall not be |
| * written at all (default mode). |
| */ |
| static u16 cfi_flash_config_reg(int i) |
| { |
| #ifdef CONFIG_SYS_CFI_FLASH_CONFIG_REGS |
| return ((u16 [])CONFIG_SYS_CFI_FLASH_CONFIG_REGS)[i]; |
| #else |
| return 0xffff; |
| #endif |
| } |
| |
| #if defined(CONFIG_SYS_MAX_FLASH_BANKS_DETECT) |
| int cfi_flash_num_flash_banks = CONFIG_SYS_MAX_FLASH_BANKS_DETECT; |
| #endif |
| |
| static phys_addr_t __cfi_flash_bank_addr(int i) |
| { |
| return ((phys_addr_t [])CONFIG_SYS_FLASH_BANKS_LIST)[i]; |
| } |
| phys_addr_t cfi_flash_bank_addr(int i) |
| __attribute__((weak, alias("__cfi_flash_bank_addr"))); |
| |
| static unsigned long __cfi_flash_bank_size(int i) |
| { |
| #ifdef CONFIG_SYS_FLASH_BANKS_SIZES |
| return ((unsigned long [])CONFIG_SYS_FLASH_BANKS_SIZES)[i]; |
| #else |
| return 0; |
| #endif |
| } |
| unsigned long cfi_flash_bank_size(int i) |
| __attribute__((weak, alias("__cfi_flash_bank_size"))); |
| |
| static void __flash_write8(u8 value, void *addr) |
| { |
| __raw_writeb(value, addr); |
| } |
| |
| static void __flash_write16(u16 value, void *addr) |
| { |
| __raw_writew(value, addr); |
| } |
| |
| static void __flash_write32(u32 value, void *addr) |
| { |
| __raw_writel(value, addr); |
| } |
| |
| static void __flash_write64(u64 value, void *addr) |
| { |
| /* No architectures currently implement __raw_writeq() */ |
| *(volatile u64 *)addr = value; |
| } |
| |
| static u8 __flash_read8(void *addr) |
| { |
| return __raw_readb(addr); |
| } |
| |
| static u16 __flash_read16(void *addr) |
| { |
| return __raw_readw(addr); |
| } |
| |
| static u32 __flash_read32(void *addr) |
| { |
| return __raw_readl(addr); |
| } |
| |
| static u64 __flash_read64(void *addr) |
| { |
| /* No architectures currently implement __raw_readq() */ |
| return *(volatile u64 *)addr; |
| } |
| |
| #ifdef CONFIG_CFI_FLASH_USE_WEAK_ACCESSORS |
| void flash_write8(u8 value, void *addr)__attribute__((weak, alias("__flash_write8"))); |
| void flash_write16(u16 value, void *addr)__attribute__((weak, alias("__flash_write16"))); |
| void flash_write32(u32 value, void *addr)__attribute__((weak, alias("__flash_write32"))); |
| void flash_write64(u64 value, void *addr)__attribute__((weak, alias("__flash_write64"))); |
| u8 flash_read8(void *addr)__attribute__((weak, alias("__flash_read8"))); |
| u16 flash_read16(void *addr)__attribute__((weak, alias("__flash_read16"))); |
| u32 flash_read32(void *addr)__attribute__((weak, alias("__flash_read32"))); |
| u64 flash_read64(void *addr)__attribute__((weak, alias("__flash_read64"))); |
| #else |
| #define flash_write8 __flash_write8 |
| #define flash_write16 __flash_write16 |
| #define flash_write32 __flash_write32 |
| #define flash_write64 __flash_write64 |
| #define flash_read8 __flash_read8 |
| #define flash_read16 __flash_read16 |
| #define flash_read32 __flash_read32 |
| #define flash_read64 __flash_read64 |
| #endif |
| |
| /*----------------------------------------------------------------------- |
| */ |
| #if defined(CONFIG_ENV_IS_IN_FLASH) || defined(CONFIG_ENV_ADDR_REDUND) || (CONFIG_SYS_MONITOR_BASE >= CONFIG_SYS_FLASH_BASE) |
| flash_info_t *flash_get_info(ulong base) |
| { |
| int i; |
| flash_info_t *info = NULL; |
| |
| for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; i++) { |
| info = & flash_info[i]; |
| if (info->size && info->start[0] <= base && |
| base <= info->start[0] + info->size - 1) |
| break; |
| } |
| |
| return info; |
| } |
| #endif |
| |
| unsigned long flash_sector_size(flash_info_t *info, flash_sect_t sect) |
| { |
| if (sect != (info->sector_count - 1)) |
| return info->start[sect + 1] - info->start[sect]; |
| else |
| return info->start[0] + info->size - info->start[sect]; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * create an address based on the offset and the port width |
| */ |
| static inline void * |
| flash_map (flash_info_t * info, flash_sect_t sect, uint offset) |
| { |
| unsigned int byte_offset = offset * info->portwidth / info->chipwidth; |
| unsigned int addr = (info->start[sect] + byte_offset); |
| unsigned int mask = 0xffffffff << (info->portwidth - 1); |
| |
| return (void *)(uintptr_t)(addr & mask); |
| } |
| |
| static inline void flash_unmap(flash_info_t *info, flash_sect_t sect, |
| unsigned int offset, void *addr) |
| { |
| } |
| |
| /*----------------------------------------------------------------------- |
| * make a proper sized command based on the port and chip widths |
| */ |
| static void flash_make_cmd(flash_info_t *info, u32 cmd, void *cmdbuf) |
| { |
| int i; |
| int cword_offset; |
| int cp_offset; |
| #if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| u32 cmd_le = cpu_to_le32(cmd); |
| #endif |
| uchar val; |
| uchar *cp = (uchar *) cmdbuf; |
| |
| for (i = info->portwidth; i > 0; i--){ |
| cword_offset = (info->portwidth-i)%info->chipwidth; |
| #if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| cp_offset = info->portwidth - i; |
| val = *((uchar*)&cmd_le + cword_offset); |
| #else |
| cp_offset = i - 1; |
| val = *((uchar*)&cmd + sizeof(u32) - cword_offset - 1); |
| #endif |
| cp[cp_offset] = (cword_offset >= sizeof(u32)) ? 0x00 : val; |
| } |
| } |
| |
| #ifdef DEBUG |
| /*----------------------------------------------------------------------- |
| * Debug support |
| */ |
| static void print_longlong (char *str, unsigned long long data) |
| { |
| int i; |
| char *cp; |
| |
| cp = (char *) &data; |
| for (i = 0; i < 8; i++) |
| sprintf (&str[i * 2], "%2.2x", *cp++); |
| } |
| |
| static void flash_printqry (struct cfi_qry *qry) |
| { |
| u8 *p = (u8 *)qry; |
| int x, y; |
| |
| for (x = 0; x < sizeof(struct cfi_qry); x += 16) { |
| debug("%02x : ", x); |
| for (y = 0; y < 16; y++) |
| debug("%2.2x ", p[x + y]); |
| debug(" "); |
| for (y = 0; y < 16; y++) { |
| unsigned char c = p[x + y]; |
| if (c >= 0x20 && c <= 0x7e) |
| debug("%c", c); |
| else |
| debug("."); |
| } |
| debug("\n"); |
| } |
| } |
| #endif |
| |
| |
| /*----------------------------------------------------------------------- |
| * read a character at a port width address |
| */ |
| static inline uchar flash_read_uchar (flash_info_t * info, uint offset) |
| { |
| uchar *cp; |
| uchar retval; |
| |
| cp = flash_map (info, 0, offset); |
| #if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| retval = flash_read8(cp); |
| #else |
| retval = flash_read8(cp + info->portwidth - 1); |
| #endif |
| flash_unmap (info, 0, offset, cp); |
| return retval; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * read a word at a port width address, assume 16bit bus |
| */ |
| static inline ushort flash_read_word (flash_info_t * info, uint offset) |
| { |
| ushort *addr, retval; |
| |
| addr = flash_map (info, 0, offset); |
| retval = flash_read16 (addr); |
| flash_unmap (info, 0, offset, addr); |
| return retval; |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * read a long word by picking the least significant byte of each maximum |
| * port size word. Swap for ppc format. |
| */ |
| static ulong flash_read_long (flash_info_t * info, flash_sect_t sect, |
| uint offset) |
| { |
| uchar *addr; |
| ulong retval; |
| |
| #ifdef DEBUG |
| int x; |
| #endif |
| addr = flash_map (info, sect, offset); |
| |
| #ifdef DEBUG |
| debug ("long addr is at %p info->portwidth = %d\n", addr, |
| info->portwidth); |
| for (x = 0; x < 4 * info->portwidth; x++) { |
| debug ("addr[%x] = 0x%x\n", x, flash_read8(addr + x)); |
| } |
| #endif |
| #if defined(__LITTLE_ENDIAN) || defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| retval = ((flash_read8(addr) << 16) | |
| (flash_read8(addr + info->portwidth) << 24) | |
| (flash_read8(addr + 2 * info->portwidth)) | |
| (flash_read8(addr + 3 * info->portwidth) << 8)); |
| #else |
| retval = ((flash_read8(addr + 2 * info->portwidth - 1) << 24) | |
| (flash_read8(addr + info->portwidth - 1) << 16) | |
| (flash_read8(addr + 4 * info->portwidth - 1) << 8) | |
| (flash_read8(addr + 3 * info->portwidth - 1))); |
| #endif |
| flash_unmap(info, sect, offset, addr); |
| |
| return retval; |
| } |
| |
| /* |
| * Write a proper sized command to the correct address |
| */ |
| void flash_write_cmd (flash_info_t * info, flash_sect_t sect, |
| uint offset, u32 cmd) |
| { |
| |
| void *addr; |
| cfiword_t cword; |
| |
| addr = flash_map (info, sect, offset); |
| flash_make_cmd (info, cmd, &cword); |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| debug ("fwc addr %p cmd %x %x 8bit x %d bit\n", addr, cmd, |
| cword.c, info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| flash_write8(cword.c, addr); |
| break; |
| case FLASH_CFI_16BIT: |
| debug ("fwc addr %p cmd %x %4.4x 16bit x %d bit\n", addr, |
| cmd, cword.w, |
| info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| flash_write16(cword.w, addr); |
| break; |
| case FLASH_CFI_32BIT: |
| debug ("fwc addr %p cmd %x %8.8lx 32bit x %d bit\n", addr, |
| cmd, cword.l, |
| info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| flash_write32(cword.l, addr); |
| break; |
| case FLASH_CFI_64BIT: |
| #ifdef DEBUG |
| { |
| char str[20]; |
| |
| print_longlong (str, cword.ll); |
| |
| debug ("fwrite addr %p cmd %x %s 64 bit x %d bit\n", |
| addr, cmd, str, |
| info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| } |
| #endif |
| flash_write64(cword.ll, addr); |
| break; |
| default: |
| printf("fwc: Unknown port width %d\n", info->portwidth); |
| } |
| |
| /* Ensure all the instructions are fully finished */ |
| sync(); |
| |
| flash_unmap(info, sect, offset, addr); |
| } |
| |
| static void flash_unlock_seq (flash_info_t * info, flash_sect_t sect) |
| { |
| flash_write_cmd (info, sect, info->addr_unlock1, AMD_CMD_UNLOCK_START); |
| flash_write_cmd (info, sect, info->addr_unlock2, AMD_CMD_UNLOCK_ACK); |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| static int flash_isequal (flash_info_t * info, flash_sect_t sect, |
| uint offset, uchar cmd) |
| { |
| void *addr; |
| cfiword_t cword; |
| int retval; |
| |
| addr = flash_map (info, sect, offset); |
| flash_make_cmd (info, cmd, &cword); |
| |
| debug ("is= cmd %x(%c) addr %p ", cmd, cmd, addr); |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| debug ("is= %x %x\n", flash_read8(addr), cword.c); |
| retval = (flash_read8(addr) == cword.c); |
| break; |
| case FLASH_CFI_16BIT: |
| debug ("is= %4.4x %4.4x\n", flash_read16(addr), cword.w); |
| retval = (flash_read16(addr) == cword.w); |
| break; |
| case FLASH_CFI_32BIT: |
| debug ("is= %8.8x %8.8lx\n", flash_read32(addr), cword.l); |
| retval = (flash_read32(addr) == cword.l); |
| break; |
| case FLASH_CFI_64BIT: |
| #ifdef DEBUG |
| { |
| char str1[20]; |
| char str2[20]; |
| |
| print_longlong (str1, flash_read64(addr)); |
| print_longlong (str2, cword.ll); |
| debug ("is= %s %s\n", str1, str2); |
| } |
| #endif |
| retval = (flash_read64(addr) == cword.ll); |
| break; |
| default: |
| retval = 0; |
| break; |
| } |
| flash_unmap(info, sect, offset, addr); |
| |
| return retval; |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| static int flash_isset (flash_info_t * info, flash_sect_t sect, |
| uint offset, uchar cmd) |
| { |
| void *addr; |
| cfiword_t cword; |
| int retval; |
| |
| addr = flash_map (info, sect, offset); |
| flash_make_cmd (info, cmd, &cword); |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| retval = ((flash_read8(addr) & cword.c) == cword.c); |
| break; |
| case FLASH_CFI_16BIT: |
| retval = ((flash_read16(addr) & cword.w) == cword.w); |
| break; |
| case FLASH_CFI_32BIT: |
| retval = ((flash_read32(addr) & cword.l) == cword.l); |
| break; |
| case FLASH_CFI_64BIT: |
| retval = ((flash_read64(addr) & cword.ll) == cword.ll); |
| break; |
| default: |
| retval = 0; |
| break; |
| } |
| flash_unmap(info, sect, offset, addr); |
| |
| return retval; |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| static int flash_toggle (flash_info_t * info, flash_sect_t sect, |
| uint offset, uchar cmd) |
| { |
| void *addr; |
| cfiword_t cword; |
| int retval; |
| |
| addr = flash_map (info, sect, offset); |
| flash_make_cmd (info, cmd, &cword); |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| retval = flash_read8(addr) != flash_read8(addr); |
| break; |
| case FLASH_CFI_16BIT: |
| retval = flash_read16(addr) != flash_read16(addr); |
| break; |
| case FLASH_CFI_32BIT: |
| retval = flash_read32(addr) != flash_read32(addr); |
| break; |
| case FLASH_CFI_64BIT: |
| retval = ( (flash_read32( addr ) != flash_read32( addr )) || |
| (flash_read32(addr+4) != flash_read32(addr+4)) ); |
| break; |
| default: |
| retval = 0; |
| break; |
| } |
| flash_unmap(info, sect, offset, addr); |
| |
| return retval; |
| } |
| |
| /* |
| * flash_is_busy - check to see if the flash is busy |
| * |
| * This routine checks the status of the chip and returns true if the |
| * chip is busy. |
| */ |
| static int flash_is_busy (flash_info_t * info, flash_sect_t sect) |
| { |
| int retval; |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| retval = !flash_isset (info, sect, 0, FLASH_STATUS_DONE); |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| case CFI_CMDSET_AMD_LEGACY: |
| #endif |
| retval = flash_toggle (info, sect, 0, AMD_STATUS_TOGGLE); |
| break; |
| default: |
| retval = 0; |
| } |
| debug ("flash_is_busy: %d\n", retval); |
| return retval; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * wait for XSR.7 to be set. Time out with an error if it does not. |
| * This routine does not set the flash to read-array mode. |
| */ |
| static int flash_status_check (flash_info_t * info, flash_sect_t sector, |
| ulong tout, char *prompt) |
| { |
| ulong start; |
| |
| #if CONFIG_SYS_HZ != 1000 |
| if ((ulong)CONFIG_SYS_HZ > 100000) |
| tout *= (ulong)CONFIG_SYS_HZ / 1000; /* for a big HZ, avoid overflow */ |
| else |
| tout = DIV_ROUND_UP(tout * (ulong)CONFIG_SYS_HZ, 1000); |
| #endif |
| |
| /* Wait for command completion */ |
| #ifdef CONFIG_SYS_LOW_RES_TIMER |
| reset_timer(); |
| #endif |
| start = get_timer (0); |
| WATCHDOG_RESET(); |
| while (flash_is_busy (info, sector)) { |
| if (get_timer (start) > tout) { |
| printf ("Flash %s timeout at address %lx data %lx\n", |
| prompt, info->start[sector], |
| flash_read_long (info, sector, 0)); |
| flash_write_cmd (info, sector, 0, info->cmd_reset); |
| return ERR_TIMOUT; |
| } |
| udelay (1); /* also triggers watchdog */ |
| } |
| return ERR_OK; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Wait for XSR.7 to be set, if it times out print an error, otherwise |
| * do a full status check. |
| * |
| * This routine sets the flash to read-array mode. |
| */ |
| static int flash_full_status_check (flash_info_t * info, flash_sect_t sector, |
| ulong tout, char *prompt) |
| { |
| int retcode; |
| |
| retcode = flash_status_check (info, sector, tout, prompt); |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| case CFI_CMDSET_INTEL_STANDARD: |
| if ((retcode != ERR_OK) |
| && !flash_isequal (info, sector, 0, FLASH_STATUS_DONE)) { |
| retcode = ERR_INVAL; |
| printf ("Flash %s error at address %lx\n", prompt, |
| info->start[sector]); |
| if (flash_isset (info, sector, 0, FLASH_STATUS_ECLBS | |
| FLASH_STATUS_PSLBS)) { |
| puts ("Command Sequence Error.\n"); |
| } else if (flash_isset (info, sector, 0, |
| FLASH_STATUS_ECLBS)) { |
| puts ("Block Erase Error.\n"); |
| retcode = ERR_NOT_ERASED; |
| } else if (flash_isset (info, sector, 0, |
| FLASH_STATUS_PSLBS)) { |
| puts ("Locking Error\n"); |
| } |
| if (flash_isset (info, sector, 0, FLASH_STATUS_DPS)) { |
| puts ("Block locked.\n"); |
| retcode = ERR_PROTECTED; |
| } |
| if (flash_isset (info, sector, 0, FLASH_STATUS_VPENS)) |
| puts ("Vpp Low Error.\n"); |
| } |
| flash_write_cmd (info, sector, 0, info->cmd_reset); |
| udelay(1); |
| break; |
| default: |
| break; |
| } |
| return retcode; |
| } |
| |
| static int use_flash_status_poll(flash_info_t *info) |
| { |
| #ifdef CONFIG_SYS_CFI_FLASH_STATUS_POLL |
| if (info->vendor == CFI_CMDSET_AMD_EXTENDED || |
| info->vendor == CFI_CMDSET_AMD_STANDARD) |
| return 1; |
| #endif |
| return 0; |
| } |
| |
| static int flash_status_poll(flash_info_t *info, void *src, void *dst, |
| ulong tout, char *prompt) |
| { |
| #ifdef CONFIG_SYS_CFI_FLASH_STATUS_POLL |
| ulong start; |
| int ready; |
| |
| #if CONFIG_SYS_HZ != 1000 |
| if ((ulong)CONFIG_SYS_HZ > 100000) |
| tout *= (ulong)CONFIG_SYS_HZ / 1000; /* for a big HZ, avoid overflow */ |
| else |
| tout = DIV_ROUND_UP(tout * (ulong)CONFIG_SYS_HZ, 1000); |
| #endif |
| |
| /* Wait for command completion */ |
| #ifdef CONFIG_SYS_LOW_RES_TIMER |
| reset_timer(); |
| #endif |
| start = get_timer(0); |
| WATCHDOG_RESET(); |
| while (1) { |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| ready = flash_read8(dst) == flash_read8(src); |
| break; |
| case FLASH_CFI_16BIT: |
| ready = flash_read16(dst) == flash_read16(src); |
| break; |
| case FLASH_CFI_32BIT: |
| ready = flash_read32(dst) == flash_read32(src); |
| break; |
| case FLASH_CFI_64BIT: |
| ready = flash_read64(dst) == flash_read64(src); |
| break; |
| default: |
| ready = 0; |
| break; |
| } |
| if (ready) |
| break; |
| if (get_timer(start) > tout) { |
| printf("Flash %s timeout at address %lx data %lx\n", |
| prompt, (ulong)dst, (ulong)flash_read8(dst)); |
| return ERR_TIMOUT; |
| } |
| udelay(1); /* also triggers watchdog */ |
| } |
| #endif /* CONFIG_SYS_CFI_FLASH_STATUS_POLL */ |
| return ERR_OK; |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| static void flash_add_byte (flash_info_t * info, cfiword_t * cword, uchar c) |
| { |
| #if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| unsigned short w; |
| unsigned int l; |
| unsigned long long ll; |
| #endif |
| |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| cword->c = c; |
| break; |
| case FLASH_CFI_16BIT: |
| #if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| w = c; |
| w <<= 8; |
| cword->w = (cword->w >> 8) | w; |
| #else |
| cword->w = (cword->w << 8) | c; |
| #endif |
| break; |
| case FLASH_CFI_32BIT: |
| #if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| l = c; |
| l <<= 24; |
| cword->l = (cword->l >> 8) | l; |
| #else |
| cword->l = (cword->l << 8) | c; |
| #endif |
| break; |
| case FLASH_CFI_64BIT: |
| #if defined(__LITTLE_ENDIAN) && !defined(CONFIG_SYS_WRITE_SWAPPED_DATA) |
| ll = c; |
| ll <<= 56; |
| cword->ll = (cword->ll >> 8) | ll; |
| #else |
| cword->ll = (cword->ll << 8) | c; |
| #endif |
| break; |
| } |
| } |
| |
| /* |
| * Loop through the sector table starting from the previously found sector. |
| * Searches forwards or backwards, dependent on the passed address. |
| */ |
| static flash_sect_t find_sector (flash_info_t * info, ulong addr) |
| { |
| static flash_sect_t saved_sector; /* previously found sector */ |
| flash_sect_t sector = saved_sector; |
| |
| while ((info->start[sector] < addr) |
| && (sector < info->sector_count - 1)) |
| sector++; |
| while ((info->start[sector] > addr) && (sector > 0)) |
| /* |
| * also decrements the sector in case of an overshot |
| * in the first loop |
| */ |
| sector--; |
| |
| saved_sector = sector; |
| return sector; |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| static int flash_write_cfiword (flash_info_t * info, ulong dest, |
| cfiword_t cword) |
| { |
| void *dstaddr = (void *)dest; |
| int flag; |
| flash_sect_t sect = 0; |
| char sect_found = 0; |
| |
| /* Check if Flash is (sufficiently) erased */ |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| debug("%s: 8-bit 0x%02x\n", __func__, cword.c); |
| flag = ((flash_read8(dstaddr) & cword.c) == cword.c); |
| break; |
| case FLASH_CFI_16BIT: |
| debug("%s: 16-bit 0x%04x\n", __func__, cword.w); |
| flag = ((flash_read16(dstaddr) & cword.w) == cword.w); |
| break; |
| case FLASH_CFI_32BIT: |
| debug("%s: 32-bit 0x%08lx\n", __func__, cword.l); |
| flag = ((flash_read32(dstaddr) & cword.l) == cword.l); |
| break; |
| case FLASH_CFI_64BIT: |
| flag = ((flash_read64(dstaddr) & cword.ll) == cword.ll); |
| break; |
| default: |
| flag = 0; |
| break; |
| } |
| if (!flag) |
| return ERR_NOT_ERASED; |
| |
| /* Disable interrupts which might cause a timeout here */ |
| flag = disable_interrupts (); |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| case CFI_CMDSET_INTEL_STANDARD: |
| flash_write_cmd (info, 0, 0, FLASH_CMD_CLEAR_STATUS); |
| flash_write_cmd (info, 0, 0, FLASH_CMD_WRITE); |
| break; |
| case CFI_CMDSET_AMD_EXTENDED: |
| case CFI_CMDSET_AMD_STANDARD: |
| sect = find_sector(info, dest); |
| flash_unlock_seq (info, sect); |
| flash_write_cmd (info, sect, info->addr_unlock1, AMD_CMD_WRITE); |
| sect_found = 1; |
| break; |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| case CFI_CMDSET_AMD_LEGACY: |
| sect = find_sector(info, dest); |
| flash_unlock_seq (info, 0); |
| flash_write_cmd (info, 0, info->addr_unlock1, AMD_CMD_WRITE); |
| sect_found = 1; |
| break; |
| #endif |
| } |
| |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| flash_write8(cword.c, dstaddr); |
| break; |
| case FLASH_CFI_16BIT: |
| flash_write16(cword.w, dstaddr); |
| break; |
| case FLASH_CFI_32BIT: |
| flash_write32(cword.l, dstaddr); |
| break; |
| case FLASH_CFI_64BIT: |
| flash_write64(cword.ll, dstaddr); |
| break; |
| } |
| |
| /* re-enable interrupts if necessary */ |
| if (flag) |
| enable_interrupts (); |
| |
| if (!sect_found) |
| sect = find_sector (info, dest); |
| |
| if (use_flash_status_poll(info)) |
| return flash_status_poll(info, &cword, dstaddr, |
| info->write_tout, "write"); |
| else |
| return flash_full_status_check(info, sect, |
| info->write_tout, "write"); |
| } |
| |
| #ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE |
| |
| static int flash_write_cfibuffer (flash_info_t * info, ulong dest, uchar * cp, |
| int len) |
| { |
| flash_sect_t sector; |
| int cnt; |
| int retcode; |
| void *src = cp; |
| void *dst = (void *)dest; |
| void *dst2 = dst; |
| int flag = 1; |
| uint offset = 0; |
| unsigned int shift; |
| uchar write_cmd; |
| |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| shift = 0; |
| break; |
| case FLASH_CFI_16BIT: |
| shift = 1; |
| break; |
| case FLASH_CFI_32BIT: |
| shift = 2; |
| break; |
| case FLASH_CFI_64BIT: |
| shift = 3; |
| break; |
| default: |
| retcode = ERR_INVAL; |
| goto out_unmap; |
| } |
| |
| cnt = len >> shift; |
| |
| while ((cnt-- > 0) && (flag == 1)) { |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| flag = ((flash_read8(dst2) & flash_read8(src)) == |
| flash_read8(src)); |
| src += 1, dst2 += 1; |
| break; |
| case FLASH_CFI_16BIT: |
| flag = ((flash_read16(dst2) & flash_read16(src)) == |
| flash_read16(src)); |
| src += 2, dst2 += 2; |
| break; |
| case FLASH_CFI_32BIT: |
| flag = ((flash_read32(dst2) & flash_read32(src)) == |
| flash_read32(src)); |
| src += 4, dst2 += 4; |
| break; |
| case FLASH_CFI_64BIT: |
| flag = ((flash_read64(dst2) & flash_read64(src)) == |
| flash_read64(src)); |
| src += 8, dst2 += 8; |
| break; |
| } |
| } |
| if (!flag) { |
| retcode = ERR_NOT_ERASED; |
| goto out_unmap; |
| } |
| |
| src = cp; |
| sector = find_sector (info, dest); |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| write_cmd = (info->vendor == CFI_CMDSET_INTEL_PROG_REGIONS) ? |
| FLASH_CMD_WRITE_BUFFER_PROG : FLASH_CMD_WRITE_TO_BUFFER; |
| flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS); |
| flash_write_cmd (info, sector, 0, FLASH_CMD_READ_STATUS); |
| flash_write_cmd (info, sector, 0, write_cmd); |
| retcode = flash_status_check (info, sector, |
| info->buffer_write_tout, |
| "write to buffer"); |
| if (retcode == ERR_OK) { |
| /* reduce the number of loops by the width of |
| * the port */ |
| cnt = len >> shift; |
| flash_write_cmd (info, sector, 0, cnt - 1); |
| while (cnt-- > 0) { |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| flash_write8(flash_read8(src), dst); |
| src += 1, dst += 1; |
| break; |
| case FLASH_CFI_16BIT: |
| flash_write16(flash_read16(src), dst); |
| src += 2, dst += 2; |
| break; |
| case FLASH_CFI_32BIT: |
| flash_write32(flash_read32(src), dst); |
| src += 4, dst += 4; |
| break; |
| case FLASH_CFI_64BIT: |
| flash_write64(flash_read64(src), dst); |
| src += 8, dst += 8; |
| break; |
| default: |
| retcode = ERR_INVAL; |
| goto out_unmap; |
| } |
| } |
| flash_write_cmd (info, sector, 0, |
| FLASH_CMD_WRITE_BUFFER_CONFIRM); |
| retcode = flash_full_status_check ( |
| info, sector, info->buffer_write_tout, |
| "buffer write"); |
| } |
| |
| break; |
| |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| flash_unlock_seq(info,0); |
| |
| #ifdef CONFIG_FLASH_SPANSION_S29WS_N |
| offset = ((unsigned long)dst - info->start[sector]) >> shift; |
| #endif |
| flash_write_cmd(info, sector, offset, AMD_CMD_WRITE_TO_BUFFER); |
| cnt = len >> shift; |
| flash_write_cmd(info, sector, offset, cnt - 1); |
| |
| switch (info->portwidth) { |
| case FLASH_CFI_8BIT: |
| while (cnt-- > 0) { |
| flash_write8(flash_read8(src), dst); |
| src += 1, dst += 1; |
| } |
| break; |
| case FLASH_CFI_16BIT: |
| while (cnt-- > 0) { |
| flash_write16(flash_read16(src), dst); |
| src += 2, dst += 2; |
| } |
| break; |
| case FLASH_CFI_32BIT: |
| while (cnt-- > 0) { |
| flash_write32(flash_read32(src), dst); |
| src += 4, dst += 4; |
| } |
| break; |
| case FLASH_CFI_64BIT: |
| while (cnt-- > 0) { |
| flash_write64(flash_read64(src), dst); |
| src += 8, dst += 8; |
| } |
| break; |
| default: |
| retcode = ERR_INVAL; |
| goto out_unmap; |
| } |
| |
| flash_write_cmd (info, sector, 0, AMD_CMD_WRITE_BUFFER_CONFIRM); |
| if (use_flash_status_poll(info)) |
| retcode = flash_status_poll(info, src - (1 << shift), |
| dst - (1 << shift), |
| info->buffer_write_tout, |
| "buffer write"); |
| else |
| retcode = flash_full_status_check(info, sector, |
| info->buffer_write_tout, |
| "buffer write"); |
| break; |
| |
| default: |
| debug ("Unknown Command Set\n"); |
| retcode = ERR_INVAL; |
| break; |
| } |
| |
| out_unmap: |
| return retcode; |
| } |
| #endif /* CONFIG_SYS_FLASH_USE_BUFFER_WRITE */ |
| |
| |
| /*----------------------------------------------------------------------- |
| */ |
| int flash_erase (flash_info_t * info, int s_first, int s_last) |
| { |
| int rcode = 0; |
| int prot; |
| flash_sect_t sect; |
| int st; |
| |
| debug("%s: erasing sectors %d to %d\n", __func__, s_first, s_last); |
| |
| if (info->flash_id != FLASH_MAN_CFI) { |
| puts ("Can't erase unknown flash type - aborted\n"); |
| return 1; |
| } |
| if ((s_first < 0) || (s_first > s_last)) { |
| puts ("- no sectors to erase\n"); |
| return 1; |
| } |
| |
| prot = 0; |
| for (sect = s_first; sect <= s_last; ++sect) { |
| if (info->protect[sect]) { |
| prot++; |
| } |
| } |
| if (prot) { |
| printf ("- Warning: %d protected sectors will not be erased!\n", |
| prot); |
| } else if (flash_verbose) { |
| putc ('\n'); |
| } |
| |
| |
| for (sect = s_first; sect <= s_last; sect++) { |
| if (ctrlc()) { |
| printf("\n"); |
| return 1; |
| } |
| |
| if (info->protect[sect] == 0) { /* not protected */ |
| #ifdef CONFIG_SYS_FLASH_CHECK_BLANK_BEFORE_ERASE |
| int k; |
| int size; |
| int erased; |
| u32 *flash; |
| |
| /* |
| * Check if whole sector is erased |
| */ |
| size = flash_sector_size(info, sect); |
| erased = 1; |
| flash = (u32 *)info->start[sect]; |
| /* divide by 4 for longword access */ |
| size = size >> 2; |
| for (k = 0; k < size; k++) { |
| if (flash_read32(flash++) != 0xffffffff) { |
| erased = 0; |
| break; |
| } |
| } |
| if (erased) { |
| if (flash_verbose) |
| putc(','); |
| continue; |
| } |
| #endif |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| flash_write_cmd (info, sect, 0, |
| FLASH_CMD_CLEAR_STATUS); |
| flash_write_cmd (info, sect, 0, |
| FLASH_CMD_BLOCK_ERASE); |
| flash_write_cmd (info, sect, 0, |
| FLASH_CMD_ERASE_CONFIRM); |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| flash_unlock_seq (info, sect); |
| flash_write_cmd (info, sect, |
| info->addr_unlock1, |
| AMD_CMD_ERASE_START); |
| flash_unlock_seq (info, sect); |
| flash_write_cmd (info, sect, 0, |
| info->cmd_erase_sector); |
| break; |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| case CFI_CMDSET_AMD_LEGACY: |
| flash_unlock_seq (info, 0); |
| flash_write_cmd (info, 0, info->addr_unlock1, |
| AMD_CMD_ERASE_START); |
| flash_unlock_seq (info, 0); |
| flash_write_cmd (info, sect, 0, |
| AMD_CMD_ERASE_SECTOR); |
| break; |
| #endif |
| default: |
| debug ("Unkown flash vendor %d\n", |
| info->vendor); |
| break; |
| } |
| |
| if (use_flash_status_poll(info)) { |
| cfiword_t cword; |
| void *dest; |
| cword.ll = 0xffffffffffffffffULL; |
| dest = flash_map(info, sect, 0); |
| st = flash_status_poll(info, &cword, dest, |
| info->erase_blk_tout, "erase"); |
| flash_unmap(info, sect, 0, dest); |
| } else |
| st = flash_full_status_check(info, sect, |
| info->erase_blk_tout, |
| "erase"); |
| if (st) |
| rcode = 1; |
| else if (flash_verbose) |
| putc ('.'); |
| } else { |
| debug("\nSector %d is protected.\n", |
| info->protect[sect]); |
| } |
| } |
| |
| if (flash_verbose) |
| puts (" done\n"); |
| |
| return rcode; |
| } |
| |
| #ifdef CONFIG_SYS_FLASH_EMPTY_INFO |
| static int sector_erased(flash_info_t *info, int i) |
| { |
| int k; |
| int size; |
| u32 *flash; |
| |
| /* |
| * Check if whole sector is erased |
| */ |
| size = flash_sector_size(info, i); |
| flash = (u32 *)info->start[i]; |
| /* divide by 4 for longword access */ |
| size = size >> 2; |
| |
| for (k = 0; k < size; k++) { |
| if (flash_read32(flash++) != 0xffffffff) |
| return 0; /* not erased */ |
| } |
| |
| return 1; /* erased */ |
| } |
| #endif /* CONFIG_SYS_FLASH_EMPTY_INFO */ |
| |
| void flash_print_info (flash_info_t * info) |
| { |
| int i; |
| |
| if (info->flash_id != FLASH_MAN_CFI) { |
| puts ("missing or unknown FLASH type\n"); |
| return; |
| } |
| |
| printf ("%s flash (%d x %d)", |
| info->name, |
| (info->portwidth << 3), (info->chipwidth << 3)); |
| if (info->size < 1024*1024) |
| printf (" Size: %ld kB in %d Sectors\n", |
| info->size >> 10, info->sector_count); |
| else |
| printf (" Size: %ld MB in %d Sectors\n", |
| info->size >> 20, info->sector_count); |
| printf (" "); |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| printf ("Intel Prog Regions"); |
| break; |
| case CFI_CMDSET_INTEL_STANDARD: |
| printf ("Intel Standard"); |
| break; |
| case CFI_CMDSET_INTEL_EXTENDED: |
| printf ("Intel Extended"); |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| printf ("AMD Standard"); |
| break; |
| case CFI_CMDSET_AMD_EXTENDED: |
| printf ("AMD Extended"); |
| break; |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| case CFI_CMDSET_AMD_LEGACY: |
| printf ("AMD Legacy"); |
| break; |
| #endif |
| default: |
| printf ("Unknown (%d)", info->vendor); |
| break; |
| } |
| printf (" command set, Manufacturer ID: 0x%02X, Device ID: 0x", |
| info->manufacturer_id); |
| printf (info->chipwidth == FLASH_CFI_16BIT ? "%04X" : "%02X", |
| info->device_id); |
| if ((info->device_id & 0xff) == 0x7E) { |
| printf(info->chipwidth == FLASH_CFI_16BIT ? "%04X" : "%02X", |
| info->device_id2); |
| } |
| if ((info->vendor == CFI_CMDSET_AMD_STANDARD) && (info->legacy_unlock)) |
| printf("\n Advanced Sector Protection (PPB) enabled"); |
| printf ("\n Erase timeout: %ld ms, write timeout: %ld ms\n", |
| info->erase_blk_tout, |
| info->write_tout); |
| if (info->buffer_size > 1) { |
| printf (" Buffer write timeout: %ld ms, " |
| "buffer size: %d bytes\n", |
| info->buffer_write_tout, |
| info->buffer_size); |
| } |
| |
| puts ("\n Sector Start Addresses:"); |
| for (i = 0; i < info->sector_count; ++i) { |
| if (ctrlc()) |
| break; |
| if ((i % 5) == 0) |
| putc('\n'); |
| #ifdef CONFIG_SYS_FLASH_EMPTY_INFO |
| /* print empty and read-only info */ |
| printf (" %08lX %c %s ", |
| info->start[i], |
| sector_erased(info, i) ? 'E' : ' ', |
| info->protect[i] ? "RO" : " "); |
| #else /* ! CONFIG_SYS_FLASH_EMPTY_INFO */ |
| printf (" %08lX %s ", |
| info->start[i], |
| info->protect[i] ? "RO" : " "); |
| #endif |
| } |
| putc ('\n'); |
| return; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * This is used in a few places in write_buf() to show programming |
| * progress. Making it a function is nasty because it needs to do side |
| * effect updates to digit and dots. Repeated code is nasty too, so |
| * we define it once here. |
| */ |
| #ifdef CONFIG_FLASH_SHOW_PROGRESS |
| #define FLASH_SHOW_PROGRESS(scale, dots, digit, dots_sub) \ |
| if (flash_verbose) { \ |
| dots -= dots_sub; \ |
| if ((scale > 0) && (dots <= 0)) { \ |
| if ((digit % 5) == 0) \ |
| printf ("%d", digit / 5); \ |
| else \ |
| putc ('.'); \ |
| digit--; \ |
| dots += scale; \ |
| } \ |
| } |
| #else |
| #define FLASH_SHOW_PROGRESS(scale, dots, digit, dots_sub) |
| #endif |
| |
| /*----------------------------------------------------------------------- |
| * Copy memory to flash, returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| */ |
| int write_buff (flash_info_t * info, uchar * src, ulong addr, ulong cnt) |
| { |
| ulong wp; |
| uchar *p; |
| int aln; |
| cfiword_t cword; |
| int i, rc; |
| #ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE |
| int buffered_size; |
| #endif |
| #ifdef CONFIG_FLASH_SHOW_PROGRESS |
| int digit = CONFIG_FLASH_SHOW_PROGRESS; |
| int scale = 0; |
| int dots = 0; |
| |
| /* |
| * Suppress if there are fewer than CONFIG_FLASH_SHOW_PROGRESS writes. |
| */ |
| if (cnt >= CONFIG_FLASH_SHOW_PROGRESS) { |
| scale = (int)((cnt + CONFIG_FLASH_SHOW_PROGRESS - 1) / |
| CONFIG_FLASH_SHOW_PROGRESS); |
| } |
| #endif |
| |
| /* get lower aligned address */ |
| wp = (addr & ~(info->portwidth - 1)); |
| |
| /* handle unaligned start */ |
| if ((aln = addr - wp) != 0) { |
| cword.l = 0; |
| p = (uchar *)wp; |
| for (i = 0; i < aln; ++i) |
| flash_add_byte (info, &cword, flash_read8(p + i)); |
| |
| for (; (i < info->portwidth) && (cnt > 0); i++) { |
| flash_add_byte (info, &cword, *src++); |
| cnt--; |
| } |
| for (; (cnt == 0) && (i < info->portwidth); ++i) |
| flash_add_byte (info, &cword, flash_read8(p + i)); |
| |
| rc = flash_write_cfiword (info, wp, cword); |
| if (rc != 0) |
| return rc; |
| |
| wp += i; |
| FLASH_SHOW_PROGRESS(scale, dots, digit, i); |
| } |
| |
| /* handle the aligned part */ |
| #ifdef CONFIG_SYS_FLASH_USE_BUFFER_WRITE |
| buffered_size = (info->portwidth / info->chipwidth); |
| buffered_size *= info->buffer_size; |
| while (cnt >= info->portwidth) { |
| /* prohibit buffer write when buffer_size is 1 */ |
| if (info->buffer_size == 1) { |
| cword.l = 0; |
| for (i = 0; i < info->portwidth; i++) |
| flash_add_byte (info, &cword, *src++); |
| if ((rc = flash_write_cfiword (info, wp, cword)) != 0) |
| return rc; |
| wp += info->portwidth; |
| cnt -= info->portwidth; |
| continue; |
| } |
| |
| /* write buffer until next buffered_size aligned boundary */ |
| i = buffered_size - (wp % buffered_size); |
| if (i > cnt) |
| i = cnt; |
| if ((rc = flash_write_cfibuffer (info, wp, src, i)) != ERR_OK) |
| return rc; |
| i -= i & (info->portwidth - 1); |
| wp += i; |
| src += i; |
| cnt -= i; |
| FLASH_SHOW_PROGRESS(scale, dots, digit, i); |
| /* Only check every once in a while */ |
| if ((cnt & 0xFFFF) < buffered_size && ctrlc()) |
| return ERR_ABORTED; |
| } |
| #else |
| while (cnt >= info->portwidth) { |
| cword.l = 0; |
| for (i = 0; i < info->portwidth; i++) { |
| flash_add_byte (info, &cword, *src++); |
| } |
| if ((rc = flash_write_cfiword (info, wp, cword)) != 0) |
| return rc; |
| wp += info->portwidth; |
| cnt -= info->portwidth; |
| FLASH_SHOW_PROGRESS(scale, dots, digit, info->portwidth); |
| /* Only check every once in a while */ |
| if ((cnt & 0xFFFF) < info->portwidth && ctrlc()) |
| return ERR_ABORTED; |
| } |
| #endif /* CONFIG_SYS_FLASH_USE_BUFFER_WRITE */ |
| |
| if (cnt == 0) { |
| return (0); |
| } |
| |
| /* |
| * handle unaligned tail bytes |
| */ |
| cword.l = 0; |
| p = (uchar *)wp; |
| for (i = 0; (i < info->portwidth) && (cnt > 0); ++i) { |
| flash_add_byte (info, &cword, *src++); |
| --cnt; |
| } |
| for (; i < info->portwidth; ++i) |
| flash_add_byte (info, &cword, flash_read8(p + i)); |
| |
| return flash_write_cfiword (info, wp, cword); |
| } |
| |
| static inline int manufact_match(flash_info_t *info, u32 manu) |
| { |
| return info->manufacturer_id == ((manu & FLASH_VENDMASK) >> 16); |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| |
| static int cfi_protect_bugfix(flash_info_t *info, long sector, int prot) |
| { |
| if (manufact_match(info, INTEL_MANUFACT) |
| && info->device_id == NUMONYX_256MBIT) { |
| /* |
| * see errata called |
| * "Numonyx Axcell P33/P30 Specification Update" :) |
| */ |
| flash_write_cmd(info, sector, 0, FLASH_CMD_READ_ID); |
| if (!flash_isequal(info, sector, FLASH_OFFSET_PROTECT, |
| prot)) { |
| /* |
| * cmd must come before FLASH_CMD_PROTECT + 20us |
| * Disable interrupts which might cause a timeout here. |
| */ |
| int flag = disable_interrupts(); |
| unsigned short cmd; |
| |
| if (prot) |
| cmd = FLASH_CMD_PROTECT_SET; |
| else |
| cmd = FLASH_CMD_PROTECT_CLEAR; |
| flash_write_cmd(info, sector, 0, |
| FLASH_CMD_PROTECT); |
| flash_write_cmd(info, sector, 0, cmd); |
| /* re-enable interrupts if necessary */ |
| if (flag) |
| enable_interrupts(); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| int flash_real_protect (flash_info_t * info, long sector, int prot) |
| { |
| int retcode = 0; |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| if (!cfi_protect_bugfix(info, sector, prot)) { |
| flash_write_cmd(info, sector, 0, |
| FLASH_CMD_CLEAR_STATUS); |
| flash_write_cmd(info, sector, 0, |
| FLASH_CMD_PROTECT); |
| if (prot) |
| flash_write_cmd(info, sector, 0, |
| FLASH_CMD_PROTECT_SET); |
| else |
| flash_write_cmd(info, sector, 0, |
| FLASH_CMD_PROTECT_CLEAR); |
| |
| } |
| break; |
| case CFI_CMDSET_AMD_EXTENDED: |
| case CFI_CMDSET_AMD_STANDARD: |
| /* U-Boot only checks the first byte */ |
| if (manufact_match(info, ATM_MANUFACT)) { |
| if (prot) { |
| flash_unlock_seq (info, 0); |
| flash_write_cmd (info, 0, |
| info->addr_unlock1, |
| ATM_CMD_SOFTLOCK_START); |
| flash_unlock_seq (info, 0); |
| flash_write_cmd (info, sector, 0, |
| ATM_CMD_LOCK_SECT); |
| } else { |
| flash_write_cmd (info, 0, |
| info->addr_unlock1, |
| AMD_CMD_UNLOCK_START); |
| if (info->device_id == ATM_ID_BV6416) |
| flash_write_cmd (info, sector, |
| 0, ATM_CMD_UNLOCK_SECT); |
| } |
| } |
| if (info->legacy_unlock) { |
| int flag = disable_interrupts(); |
| int lock_flag; |
| |
| flash_unlock_seq(info, 0); |
| flash_write_cmd(info, 0, info->addr_unlock1, |
| AMD_CMD_SET_PPB_ENTRY); |
| lock_flag = flash_isset(info, sector, 0, 0x01); |
| if (prot) { |
| if (lock_flag) { |
| flash_write_cmd(info, sector, 0, |
| AMD_CMD_PPB_LOCK_BC1); |
| flash_write_cmd(info, sector, 0, |
| AMD_CMD_PPB_LOCK_BC2); |
| } |
| debug("sector %ld %slocked\n", sector, |
| lock_flag ? "" : "already "); |
| } else { |
| if (!lock_flag) { |
| debug("unlock %ld\n", sector); |
| flash_write_cmd(info, 0, 0, |
| AMD_CMD_PPB_UNLOCK_BC1); |
| flash_write_cmd(info, 0, 0, |
| AMD_CMD_PPB_UNLOCK_BC2); |
| } |
| debug("sector %ld %sunlocked\n", sector, |
| !lock_flag ? "" : "already "); |
| } |
| if (flag) |
| enable_interrupts(); |
| |
| if (flash_status_check(info, sector, |
| info->erase_blk_tout, |
| prot ? "protect" : "unprotect")) |
| printf("status check error\n"); |
| |
| flash_write_cmd(info, 0, 0, |
| AMD_CMD_SET_PPB_EXIT_BC1); |
| flash_write_cmd(info, 0, 0, |
| AMD_CMD_SET_PPB_EXIT_BC2); |
| } |
| break; |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| case CFI_CMDSET_AMD_LEGACY: |
| flash_write_cmd (info, sector, 0, FLASH_CMD_CLEAR_STATUS); |
| flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT); |
| if (prot) |
| flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_SET); |
| else |
| flash_write_cmd (info, sector, 0, FLASH_CMD_PROTECT_CLEAR); |
| #endif |
| }; |
| |
| /* |
| * Flash needs to be in status register read mode for |
| * flash_full_status_check() to work correctly |
| */ |
| flash_write_cmd(info, sector, 0, FLASH_CMD_READ_STATUS); |
| if ((retcode = |
| flash_full_status_check (info, sector, info->erase_blk_tout, |
| prot ? "protect" : "unprotect")) == 0) { |
| |
| info->protect[sector] = prot; |
| |
| /* |
| * On some of Intel's flash chips (marked via legacy_unlock) |
| * unprotect unprotects all locking. |
| */ |
| if ((prot == 0) && (info->legacy_unlock)) { |
| flash_sect_t i; |
| |
| for (i = 0; i < info->sector_count; i++) { |
| if (info->protect[i]) |
| flash_real_protect (info, i, 1); |
| } |
| } |
| } |
| return retcode; |
| } |
| |
| /*----------------------------------------------------------------------- |
| * flash_read_user_serial - read the OneTimeProgramming cells |
| */ |
| void flash_read_user_serial (flash_info_t * info, void *buffer, int offset, |
| int len) |
| { |
| uchar *src; |
| uchar *dst; |
| |
| dst = buffer; |
| src = flash_map (info, 0, FLASH_OFFSET_USER_PROTECTION); |
| flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID); |
| memcpy (dst, src + offset, len); |
| flash_write_cmd (info, 0, 0, info->cmd_reset); |
| udelay(1); |
| flash_unmap(info, 0, FLASH_OFFSET_USER_PROTECTION, src); |
| } |
| |
| /* |
| * flash_read_factory_serial - read the device Id from the protection area |
| */ |
| void flash_read_factory_serial (flash_info_t * info, void *buffer, int offset, |
| int len) |
| { |
| uchar *src; |
| |
| src = flash_map (info, 0, FLASH_OFFSET_INTEL_PROTECTION); |
| flash_write_cmd (info, 0, 0, FLASH_CMD_READ_ID); |
| memcpy (buffer, src + offset, len); |
| flash_write_cmd (info, 0, 0, info->cmd_reset); |
| udelay(1); |
| flash_unmap(info, 0, FLASH_OFFSET_INTEL_PROTECTION, src); |
| } |
| |
| #endif /* CONFIG_SYS_FLASH_PROTECTION */ |
| |
| /*----------------------------------------------------------------------- |
| * Reverse the order of the erase regions in the CFI QRY structure. |
| * This is needed for chips that are either a) correctly detected as |
| * top-boot, or b) buggy. |
| */ |
| static void cfi_reverse_geometry(struct cfi_qry *qry) |
| { |
| unsigned int i, j; |
| u32 tmp; |
| |
| for (i = 0, j = qry->num_erase_regions - 1; i < j; i++, j--) { |
| tmp = qry->erase_region_info[i]; |
| qry->erase_region_info[i] = qry->erase_region_info[j]; |
| qry->erase_region_info[j] = tmp; |
| } |
| } |
| |
| /*----------------------------------------------------------------------- |
| * read jedec ids from device and set corresponding fields in info struct |
| * |
| * Note: assume cfi->vendor, cfi->portwidth and cfi->chipwidth are correct |
| * |
| */ |
| static void cmdset_intel_read_jedec_ids(flash_info_t *info) |
| { |
| flash_write_cmd(info, 0, 0, FLASH_CMD_RESET); |
| udelay(1); |
| flash_write_cmd(info, 0, 0, FLASH_CMD_READ_ID); |
| udelay(1000); /* some flash are slow to respond */ |
| info->manufacturer_id = flash_read_uchar (info, |
| FLASH_OFFSET_MANUFACTURER_ID); |
| info->device_id = (info->chipwidth == FLASH_CFI_16BIT) ? |
| flash_read_word (info, FLASH_OFFSET_DEVICE_ID) : |
| flash_read_uchar (info, FLASH_OFFSET_DEVICE_ID); |
| flash_write_cmd(info, 0, 0, FLASH_CMD_RESET); |
| } |
| |
| static int cmdset_intel_init(flash_info_t *info, struct cfi_qry *qry) |
| { |
| info->cmd_reset = FLASH_CMD_RESET; |
| |
| cmdset_intel_read_jedec_ids(info); |
| flash_write_cmd(info, 0, info->cfi_offset, FLASH_CMD_CFI); |
| |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| /* read legacy lock/unlock bit from intel flash */ |
| if (info->ext_addr) { |
| info->legacy_unlock = flash_read_uchar (info, |
| info->ext_addr + 5) & 0x08; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static void cmdset_amd_read_jedec_ids(flash_info_t *info) |
| { |
| ushort bankId = 0; |
| uchar manuId; |
| |
| flash_write_cmd(info, 0, 0, AMD_CMD_RESET); |
| flash_unlock_seq(info, 0); |
| flash_write_cmd(info, 0, info->addr_unlock1, FLASH_CMD_READ_ID); |
| udelay(1000); /* some flash are slow to respond */ |
| |
| manuId = flash_read_uchar (info, FLASH_OFFSET_MANUFACTURER_ID); |
| /* JEDEC JEP106Z specifies ID codes up to bank 7 */ |
| while (manuId == FLASH_CONTINUATION_CODE && bankId < 0x800) { |
| bankId += 0x100; |
| manuId = flash_read_uchar (info, |
| bankId | FLASH_OFFSET_MANUFACTURER_ID); |
| } |
| info->manufacturer_id = manuId; |
| |
| switch (info->chipwidth){ |
| case FLASH_CFI_8BIT: |
| info->device_id = flash_read_uchar (info, |
| FLASH_OFFSET_DEVICE_ID); |
| if (info->device_id == 0x7E) { |
| /* AMD 3-byte (expanded) device ids */ |
| info->device_id2 = flash_read_uchar (info, |
| FLASH_OFFSET_DEVICE_ID2); |
| info->device_id2 <<= 8; |
| info->device_id2 |= flash_read_uchar (info, |
| FLASH_OFFSET_DEVICE_ID3); |
| } |
| break; |
| case FLASH_CFI_16BIT: |
| info->device_id = flash_read_word (info, |
| FLASH_OFFSET_DEVICE_ID); |
| if ((info->device_id & 0xff) == 0x7E) { |
| /* AMD 3-byte (expanded) device ids */ |
| info->device_id2 = flash_read_uchar (info, |
| FLASH_OFFSET_DEVICE_ID2); |
| info->device_id2 <<= 8; |
| info->device_id2 |= flash_read_uchar (info, |
| FLASH_OFFSET_DEVICE_ID3); |
| } |
| break; |
| default: |
| break; |
| } |
| flash_write_cmd(info, 0, 0, AMD_CMD_RESET); |
| udelay(1); |
| } |
| |
| static int cmdset_amd_init(flash_info_t *info, struct cfi_qry *qry) |
| { |
| info->cmd_reset = AMD_CMD_RESET; |
| info->cmd_erase_sector = AMD_CMD_ERASE_SECTOR; |
| |
| cmdset_amd_read_jedec_ids(info); |
| flash_write_cmd(info, 0, info->cfi_offset, FLASH_CMD_CFI); |
| |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| if (info->ext_addr) { |
| /* read sector protect/unprotect scheme (at 0x49) */ |
| if (flash_read_uchar(info, info->ext_addr + 9) == 0x8) |
| info->legacy_unlock = 1; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_FLASH_CFI_LEGACY |
| static void flash_read_jedec_ids (flash_info_t * info) |
| { |
| info->manufacturer_id = 0; |
| info->device_id = 0; |
| info->device_id2 = 0; |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| cmdset_intel_read_jedec_ids(info); |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| cmdset_amd_read_jedec_ids(info); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /*----------------------------------------------------------------------- |
| * Call board code to request info about non-CFI flash. |
| * board_flash_get_legacy needs to fill in at least: |
| * info->portwidth, info->chipwidth and info->interface for Jedec probing. |
| */ |
| static int flash_detect_legacy(phys_addr_t base, int banknum) |
| { |
| flash_info_t *info = &flash_info[banknum]; |
| |
| if (board_flash_get_legacy(base, banknum, info)) { |
| /* board code may have filled info completely. If not, we |
| use JEDEC ID probing. */ |
| if (!info->vendor) { |
| int modes[] = { |
| CFI_CMDSET_AMD_STANDARD, |
| CFI_CMDSET_INTEL_STANDARD |
| }; |
| int i; |
| |
| for (i = 0; i < sizeof(modes) / sizeof(modes[0]); i++) { |
| info->vendor = modes[i]; |
| info->start[0] = |
| (ulong)map_physmem(base, |
| info->portwidth, |
| MAP_NOCACHE); |
| if (info->portwidth == FLASH_CFI_8BIT |
| && info->interface == FLASH_CFI_X8X16) { |
| info->addr_unlock1 = 0x2AAA; |
| info->addr_unlock2 = 0x5555; |
| } else { |
| info->addr_unlock1 = 0x5555; |
| info->addr_unlock2 = 0x2AAA; |
| } |
| flash_read_jedec_ids(info); |
| debug("JEDEC PROBE: ID %x %x %x\n", |
| info->manufacturer_id, |
| info->device_id, |
| info->device_id2); |
| if (jedec_flash_match(info, info->start[0])) |
| break; |
| else |
| unmap_physmem((void *)info->start[0], |
| MAP_NOCACHE); |
| } |
| } |
| |
| switch(info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| info->cmd_reset = FLASH_CMD_RESET; |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| case CFI_CMDSET_AMD_LEGACY: |
| info->cmd_reset = AMD_CMD_RESET; |
| break; |
| } |
| info->flash_id = FLASH_MAN_CFI; |
| return 1; |
| } |
| return 0; /* use CFI */ |
| } |
| #else |
| static inline int flash_detect_legacy(phys_addr_t base, int banknum) |
| { |
| return 0; /* use CFI */ |
| } |
| #endif |
| |
| /*----------------------------------------------------------------------- |
| * detect if flash is compatible with the Common Flash Interface (CFI) |
| * http://www.jedec.org/download/search/jesd68.pdf |
| */ |
| static void flash_read_cfi (flash_info_t *info, void *buf, |
| unsigned int start, size_t len) |
| { |
| u8 *p = buf; |
| unsigned int i; |
| |
| for (i = 0; i < len; i++) |
| p[i] = flash_read_uchar(info, start + (i * 2)); |
| } |
| |
| static void __flash_cmd_reset(flash_info_t *info) |
| { |
| /* |
| * We do not yet know what kind of commandset to use, so we issue |
| * the reset command in both Intel and AMD variants, in the hope |
| * that AMD flash roms ignore the Intel command. |
| */ |
| flash_write_cmd(info, 0, 0, AMD_CMD_RESET); |
| udelay(1); |
| flash_write_cmd(info, 0, 0, FLASH_CMD_RESET); |
| } |
| void flash_cmd_reset(flash_info_t *info) |
| __attribute__((weak,alias("__flash_cmd_reset"))); |
| |
| static int __flash_detect_cfi (flash_info_t * info, struct cfi_qry *qry) |
| { |
| int cfi_offset; |
| |
| for (cfi_offset=0; |
| cfi_offset < sizeof(flash_offset_cfi) / sizeof(uint); |
| cfi_offset++) { |
| /* Issue FLASH reset command */ |
| flash_cmd_reset(info); |
| flash_write_cmd (info, 0, flash_offset_cfi[cfi_offset], |
| FLASH_CMD_CFI); |
| if (flash_isequal(info, 0, FLASH_OFFSET_CFI_RESP, 'Q') && |
| flash_isequal(info, 0, |
| FLASH_OFFSET_CFI_RESP + 2, 'R') && |
| flash_isequal(info, 0, |
| FLASH_OFFSET_CFI_RESP + 4, 'Y')) { |
| flash_read_cfi(info, qry, FLASH_OFFSET_CFI_RESP, |
| sizeof(struct cfi_qry)); |
| #ifdef CONFIG_SYS_FLASH_INTERFACE_WIDTH |
| info->interface = CONFIG_SYS_FLASH_INTERFACE_WIDTH; |
| #else |
| info->interface = le16_to_cpu(qry->interface_desc); |
| /* Some flash chips can support multiple bus widths. |
| * In this case, override the interface width and |
| * limit it to the port width. |
| */ |
| if ((info->interface == FLASH_CFI_X8X16) && |
| (info->portwidth == FLASH_CFI_8BIT)) { |
| debug("Overriding 16-bit interface" |
| " width to 8-bit port width.\n"); |
| info->interface = FLASH_CFI_X8; |
| } else if ((info->interface == FLASH_CFI_X16X32) && |
| (info->portwidth == FLASH_CFI_16BIT)) { |
| debug("Overriding 16-bit interface" |
| " width to 16-bit port width.\n"); |
| info->interface = FLASH_CFI_X16; |
| } |
| #endif |
| info->cfi_offset = flash_offset_cfi[cfi_offset]; |
| debug ("device interface is %d\n", |
| info->interface); |
| debug ("found port %d chip %d ", |
| info->portwidth, info->chipwidth); |
| debug ("port %d bits chip %d bits\n", |
| info->portwidth << CFI_FLASH_SHIFT_WIDTH, |
| info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| |
| /* calculate command offsets as in the Linux driver */ |
| info->addr_unlock1 = 0xaaa; |
| info->addr_unlock2 = 0x555; |
| |
| /* |
| * modify the unlock address if we are |
| * in compatibility mode |
| */ |
| if ( /* x8/x16 in x8 mode */ |
| ((info->chipwidth == FLASH_CFI_BY8) && |
| (info->interface == FLASH_CFI_X8X16)) || |
| /* x16/x32 in x16 mode */ |
| ((info->chipwidth == FLASH_CFI_BY16) && |
| (info->interface == FLASH_CFI_X16X32))) |
| { |
| info->addr_unlock1 = 0xaaa; |
| info->addr_unlock2 = 0x555; |
| } |
| |
| info->name = "CFI conformant"; |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int flash_detect_cfi (flash_info_t * info, struct cfi_qry *qry) |
| { |
| debug ("flash detect cfi\n"); |
| |
| for (info->portwidth = CONFIG_SYS_FLASH_CFI_WIDTH; |
| info->portwidth <= FLASH_CFI_64BIT; info->portwidth <<= 1) { |
| for (info->chipwidth = FLASH_CFI_BY8; |
| info->chipwidth <= info->portwidth; |
| info->chipwidth <<= 1) |
| if (__flash_detect_cfi(info, qry)) { |
| debug("Found CFI flash, portwidth %d," |
| " chipwidth %d\n", |
| info->portwidth, info->chipwidth); |
| return 1; |
| } |
| } |
| debug ("not found\n"); |
| return 0; |
| } |
| |
| /* |
| * Manufacturer-specific quirks. Add workarounds for geometry |
| * reversal, etc. here. |
| */ |
| static void flash_fixup_amd(flash_info_t *info, struct cfi_qry *qry) |
| { |
| /* check if flash geometry needs reversal */ |
| if (qry->num_erase_regions > 1) { |
| /* reverse geometry if top boot part */ |
| if (info->cfi_version < 0x3131) { |
| /* CFI < 1.1, try to guess from device id */ |
| if ((info->device_id & 0x80) != 0) |
| cfi_reverse_geometry(qry); |
| } else if (flash_read_uchar(info, info->ext_addr + 0x1e) == 3) { |
| /* CFI >= 1.1, deduct from top/bottom flag */ |
| /* note: ext_addr is valid since cfi_version > 0 */ |
| cfi_reverse_geometry(qry); |
| } |
| } |
| } |
| |
| static void flash_fixup_atmel(flash_info_t *info, struct cfi_qry *qry) |
| { |
| int reverse_geometry = 0; |
| |
| /* Check the "top boot" bit in the PRI */ |
| if (info->ext_addr && !(flash_read_uchar(info, info->ext_addr + 6) & 1)) |
| reverse_geometry = 1; |
| |
| /* AT49BV6416(T) list the erase regions in the wrong order. |
| * However, the device ID is identical with the non-broken |
| * AT49BV642D they differ in the high byte. |
| */ |
| if (info->device_id == 0xd6 || info->device_id == 0xd2) |
| reverse_geometry = !reverse_geometry; |
| |
| if (reverse_geometry) |
| cfi_reverse_geometry(qry); |
| } |
| |
| static void flash_fixup_stm(flash_info_t *info, struct cfi_qry *qry) |
| { |
| /* check if flash geometry needs reversal */ |
| if (qry->num_erase_regions > 1) { |
| /* reverse geometry if top boot part */ |
| if (info->cfi_version < 0x3131) { |
| /* CFI < 1.1, guess by device id */ |
| if (info->device_id == 0x22CA || /* M29W320DT */ |
| info->device_id == 0x2256 || /* M29W320ET */ |
| info->device_id == 0x22D7) { /* M29W800DT */ |
| cfi_reverse_geometry(qry); |
| } |
| } else if (flash_read_uchar(info, info->ext_addr + 0xf) == 3) { |
| /* CFI >= 1.1, deduct from top/bottom flag */ |
| /* note: ext_addr is valid since cfi_version > 0 */ |
| cfi_reverse_geometry(qry); |
| } |
| } |
| } |
| |
| static void flash_fixup_sst(flash_info_t *info, struct cfi_qry *qry) |
| { |
| /* |
| * SST, for many recent nor parallel flashes, says they are |
| * CFI-conformant. This is not true, since qry struct. |
| * reports a std. AMD command set (0x0002), while SST allows to |
| * erase two different sector sizes for the same memory. |
| * 64KB sector (SST call it block) needs 0x30 to be erased. |
| * 4KB sector (SST call it sector) needs 0x50 to be erased. |
| * Since CFI query detect the 4KB number of sectors, users expects |
| * a sector granularity of 4KB, and it is here set. |
| */ |
| if (info->device_id == 0x5D23 || /* SST39VF3201B */ |
| info->device_id == 0x5C23) { /* SST39VF3202B */ |
| /* set sector granularity to 4KB */ |
| info->cmd_erase_sector=0x50; |
| } |
| } |
| |
| static void flash_fixup_num(flash_info_t *info, struct cfi_qry *qry) |
| { |
| /* |
| * The M29EW devices seem to report the CFI information wrong |
| * when it's in 8 bit mode. |
| * There's an app note from Numonyx on this issue. |
| * So adjust the buffer size for M29EW while operating in 8-bit mode |
| */ |
| if (((qry->max_buf_write_size) > 0x8) && |
| (info->device_id == 0x7E) && |
| (info->device_id2 == 0x2201 || |
| info->device_id2 == 0x2301 || |
| info->device_id2 == 0x2801 || |
| info->device_id2 == 0x4801)) { |
| debug("Adjusted buffer size on Numonyx flash" |
| " M29EW family in 8 bit mode\n"); |
| qry->max_buf_write_size = 0x8; |
| } |
| } |
| |
| /* |
| * The following code cannot be run from FLASH! |
| * |
| */ |
| ulong flash_get_size (phys_addr_t base, int banknum) |
| { |
| flash_info_t *info = &flash_info[banknum]; |
| int i, j; |
| flash_sect_t sect_cnt; |
| phys_addr_t sector; |
| unsigned long tmp; |
| int size_ratio; |
| uchar num_erase_regions; |
| int erase_region_size; |
| int erase_region_count; |
| struct cfi_qry qry; |
| unsigned long max_size; |
| |
| memset(&qry, 0, sizeof(qry)); |
| |
| info->ext_addr = 0; |
| info->cfi_version = 0; |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| info->legacy_unlock = 0; |
| #endif |
| |
| info->start[0] = (ulong)map_physmem(base, info->portwidth, MAP_NOCACHE); |
| |
| if (flash_detect_cfi (info, &qry)) { |
| info->vendor = le16_to_cpu(qry.p_id); |
| info->ext_addr = le16_to_cpu(qry.p_adr) * 2; |
| debug("extended address is 0x%x\n", info->ext_addr); |
| num_erase_regions = qry.num_erase_regions; |
| |
| if (info->ext_addr) { |
| info->cfi_version = (ushort) flash_read_uchar (info, |
| info->ext_addr + 6) << 8; |
| info->cfi_version |= (ushort) flash_read_uchar (info, |
| info->ext_addr + 8); |
| } |
| |
| #ifdef DEBUG |
| flash_printqry (&qry); |
| #endif |
| |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_STANDARD: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| cmdset_intel_init(info, &qry); |
| break; |
| case CFI_CMDSET_AMD_STANDARD: |
| case CFI_CMDSET_AMD_EXTENDED: |
| cmdset_amd_init(info, &qry); |
| break; |
| default: |
| printf("CFI: Unknown command set 0x%x\n", |
| info->vendor); |
| /* |
| * Unfortunately, this means we don't know how |
| * to get the chip back to Read mode. Might |
| * as well try an Intel-style reset... |
| */ |
| flash_write_cmd(info, 0, 0, FLASH_CMD_RESET); |
| return 0; |
| } |
| |
| /* Do manufacturer-specific fixups */ |
| switch (info->manufacturer_id) { |
| case 0x0001: /* AMD */ |
| case 0x0037: /* AMIC */ |
| flash_fixup_amd(info, &qry); |
| break; |
| case 0x001f: |
| flash_fixup_atmel(info, &qry); |
| break; |
| case 0x0020: |
| flash_fixup_stm(info, &qry); |
| break; |
| case 0x00bf: /* SST */ |
| flash_fixup_sst(info, &qry); |
| break; |
| case 0x0089: /* Numonyx */ |
| flash_fixup_num(info, &qry); |
| break; |
| } |
| |
| debug ("manufacturer is %d\n", info->vendor); |
| debug ("manufacturer id is 0x%x\n", info->manufacturer_id); |
| debug ("device id is 0x%x\n", info->device_id); |
| debug ("device id2 is 0x%x\n", info->device_id2); |
| debug ("cfi version is 0x%04x\n", info->cfi_version); |
| debug("port width: %d, chipwidth: %d, interface: %d\n", |
| info->portwidth, info->chipwidth, info->interface); |
| |
| size_ratio = info->portwidth / info->chipwidth; |
| /* if the chip is x8/x16 reduce the ratio by half */ |
| if ((info->interface == FLASH_CFI_X8X16) |
| && (info->chipwidth == FLASH_CFI_BY8)) { |
| size_ratio >>= 1; |
| } |
| debug ("size_ratio %d port %d bits chip %d bits\n", |
| size_ratio, info->portwidth << CFI_FLASH_SHIFT_WIDTH, |
| info->chipwidth << CFI_FLASH_SHIFT_WIDTH); |
| info->size = 1 << qry.dev_size; |
| /* multiply the size by the number of chips */ |
| info->size *= size_ratio; |
| max_size = cfi_flash_bank_size(banknum); |
| if (max_size && (info->size > max_size)) { |
| debug("[truncated from %ldMiB]", info->size >> 20); |
| info->size = max_size; |
| } |
| debug ("found %d erase regions\n", num_erase_regions); |
| sect_cnt = 0; |
| sector = base; |
| for (i = 0; i < num_erase_regions; i++) { |
| if (i > NUM_ERASE_REGIONS) { |
| printf ("%d erase regions found, only %d used\n", |
| num_erase_regions, NUM_ERASE_REGIONS); |
| break; |
| } |
| |
| tmp = le32_to_cpu(qry.erase_region_info[i]); |
| debug("erase region %u: 0x%08lx\n", i, tmp); |
| |
| erase_region_count = (tmp & 0xffff) + 1; |
| tmp >>= 16; |
| erase_region_size = |
| (tmp & 0xffff) ? ((tmp & 0xffff) * 256) : 128; |
| debug ("erase_region_count = %d erase_region_size = %d\n", |
| erase_region_count, erase_region_size); |
| for (j = 0; j < erase_region_count; j++) { |
| if (sector - base >= info->size) |
| break; |
| if (sect_cnt >= CONFIG_SYS_MAX_FLASH_SECT) { |
| printf("ERROR: too many flash sectors\n"); |
| break; |
| } |
| info->start[sect_cnt] = |
| (ulong)map_physmem(sector, |
| info->portwidth, |
| MAP_NOCACHE); |
| sector += (erase_region_size * size_ratio); |
| |
| /* |
| * Only read protection status from |
| * supported devices (intel...) |
| */ |
| switch (info->vendor) { |
| case CFI_CMDSET_INTEL_PROG_REGIONS: |
| case CFI_CMDSET_INTEL_EXTENDED: |
| case CFI_CMDSET_INTEL_STANDARD: |
| /* |
| * Set flash to read-id mode. Otherwise |
| * reading protected status is not |
| * guaranteed. |
| */ |
| flash_write_cmd(info, sect_cnt, 0, |
| FLASH_CMD_READ_ID); |
| info->protect[sect_cnt] = |
| flash_isset (info, sect_cnt, |
| FLASH_OFFSET_PROTECT, |
| FLASH_STATUS_PROTECT); |
| break; |
| case CFI_CMDSET_AMD_EXTENDED: |
| case CFI_CMDSET_AMD_STANDARD: |
| if (!info->legacy_unlock) { |
| /* default: not protected */ |
| info->protect[sect_cnt] = 0; |
| break; |
| } |
| |
| /* Read protection (PPB) from sector */ |
| flash_write_cmd(info, 0, 0, |
| info->cmd_reset); |
| flash_unlock_seq(info, 0); |
| flash_write_cmd(info, 0, |
| info->addr_unlock1, |
| FLASH_CMD_READ_ID); |
| info->protect[sect_cnt] = |
| flash_isset( |
| info, sect_cnt, |
| FLASH_OFFSET_PROTECT, |
| FLASH_STATUS_PROTECT); |
| break; |
| default: |
| /* default: not protected */ |
| info->protect[sect_cnt] = 0; |
| } |
| |
| sect_cnt++; |
| } |
| } |
| |
| info->sector_count = sect_cnt; |
| info->buffer_size = 1 << le16_to_cpu(qry.max_buf_write_size); |
| tmp = 1 << qry.block_erase_timeout_typ; |
| info->erase_blk_tout = tmp * |
| (1 << qry.block_erase_timeout_max); |
| tmp = (1 << qry.buf_write_timeout_typ) * |
| (1 << qry.buf_write_timeout_max); |
| |
| /* round up when converting to ms */ |
| info->buffer_write_tout = (tmp + 999) / 1000; |
| tmp = (1 << qry.word_write_timeout_typ) * |
| (1 << qry.word_write_timeout_max); |
| /* round up when converting to ms */ |
| info->write_tout = (tmp + 999) / 1000; |
| info->flash_id = FLASH_MAN_CFI; |
| if ((info->interface == FLASH_CFI_X8X16) && |
| (info->chipwidth == FLASH_CFI_BY8)) { |
| /* XXX - Need to test on x8/x16 in parallel. */ |
| info->portwidth >>= 1; |
| } |
| |
| flash_write_cmd (info, 0, 0, info->cmd_reset); |
| } |
| |
| return (info->size); |
| } |
| |
| #ifdef CONFIG_FLASH_CFI_MTD |
| void flash_set_verbose(uint v) |
| { |
| flash_verbose = v; |
| } |
| #endif |
| |
| static void cfi_flash_set_config_reg(u32 base, u16 val) |
| { |
| #ifdef CONFIG_SYS_CFI_FLASH_CONFIG_REGS |
| /* |
| * Only set this config register if really defined |
| * to a valid value (0xffff is invalid) |
| */ |
| if (val == 0xffff) |
| return; |
| |
| /* |
| * Set configuration register. Data is "encrypted" in the 16 lower |
| * address bits. |
| */ |
| flash_write16(FLASH_CMD_SETUP, (void *)(base + (val << 1))); |
| flash_write16(FLASH_CMD_SET_CR_CONFIRM, (void *)(base + (val << 1))); |
| |
| /* |
| * Finally issue reset-command to bring device back to |
| * read-array mode |
| */ |
| flash_write16(FLASH_CMD_RESET, (void *)base); |
| #endif |
| } |
| |
| /*----------------------------------------------------------------------- |
| */ |
| |
| void flash_protect_default(void) |
| { |
| #if defined(CONFIG_SYS_FLASH_AUTOPROTECT_LIST) |
| int i; |
| struct apl_s { |
| ulong start; |
| ulong size; |
| } apl[] = CONFIG_SYS_FLASH_AUTOPROTECT_LIST; |
| #endif |
| |
| /* Monitor protection ON by default */ |
| #if (CONFIG_SYS_MONITOR_BASE >= CONFIG_SYS_FLASH_BASE) && \ |
| (!defined(CONFIG_MONITOR_IS_IN_RAM)) |
| flash_protect(FLAG_PROTECT_SET, |
| CONFIG_SYS_MONITOR_BASE, |
| CONFIG_SYS_MONITOR_BASE + monitor_flash_len - 1, |
| flash_get_info(CONFIG_SYS_MONITOR_BASE)); |
| #endif |
| |
| /* Environment protection ON by default */ |
| #ifdef CONFIG_ENV_IS_IN_FLASH |
| flash_protect(FLAG_PROTECT_SET, |
| CONFIG_ENV_ADDR, |
| CONFIG_ENV_ADDR + CONFIG_ENV_SECT_SIZE - 1, |
| flash_get_info(CONFIG_ENV_ADDR)); |
| #endif |
| |
| /* Redundant environment protection ON by default */ |
| #ifdef CONFIG_ENV_ADDR_REDUND |
| flash_protect(FLAG_PROTECT_SET, |
| CONFIG_ENV_ADDR_REDUND, |
| CONFIG_ENV_ADDR_REDUND + CONFIG_ENV_SECT_SIZE - 1, |
| flash_get_info(CONFIG_ENV_ADDR_REDUND)); |
| #endif |
| |
| #if defined(CONFIG_SYS_FLASH_AUTOPROTECT_LIST) |
| for (i = 0; i < (sizeof(apl) / sizeof(struct apl_s)); i++) { |
| debug("autoprotecting from %08lx to %08lx\n", |
| apl[i].start, apl[i].start + apl[i].size - 1); |
| flash_protect(FLAG_PROTECT_SET, |
| apl[i].start, |
| apl[i].start + apl[i].size - 1, |
| flash_get_info(apl[i].start)); |
| } |
| #endif |
| } |
| |
| unsigned long flash_init (void) |
| { |
| unsigned long size = 0; |
| int i; |
| |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| /* read environment from EEPROM */ |
| char s[64]; |
| getenv_f("unlock", s, sizeof(s)); |
| #endif |
| |
| /* Init: no FLASHes known */ |
| for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i) { |
| flash_info[i].flash_id = FLASH_UNKNOWN; |
| |
| /* Optionally write flash configuration register */ |
| cfi_flash_set_config_reg(cfi_flash_bank_addr(i), |
| cfi_flash_config_reg(i)); |
| |
| if (!flash_detect_legacy(cfi_flash_bank_addr(i), i)) |
| flash_get_size(cfi_flash_bank_addr(i), i); |
| size += flash_info[i].size; |
| if (flash_info[i].flash_id == FLASH_UNKNOWN) { |
| #ifndef CONFIG_SYS_FLASH_QUIET_TEST |
| printf ("## Unknown flash on Bank %d " |
| "- Size = 0x%08lx = %ld MB\n", |
| i+1, flash_info[i].size, |
| flash_info[i].size >> 20); |
| #endif /* CONFIG_SYS_FLASH_QUIET_TEST */ |
| } |
| #ifdef CONFIG_SYS_FLASH_PROTECTION |
| else if ((s != NULL) && (strcmp(s, "yes") == 0)) { |
| /* |
| * Only the U-Boot image and it's environment |
| * is protected, all other sectors are |
| * unprotected (unlocked) if flash hardware |
| * protection is used (CONFIG_SYS_FLASH_PROTECTION) |
| * and the environment variable "unlock" is |
| * set to "yes". |
| */ |
| if (flash_info[i].legacy_unlock) { |
| int k; |
| |
| /* |
| * Disable legacy_unlock temporarily, |
| * since flash_real_protect would |
| * relock all other sectors again |
| * otherwise. |
| */ |
| flash_info[i].legacy_unlock = 0; |
| |
| /* |
| * Legacy unlocking (e.g. Intel J3) -> |
| * unlock only one sector. This will |
| * unlock all sectors. |
| */ |
| flash_real_protect (&flash_info[i], 0, 0); |
| |
| flash_info[i].legacy_unlock = 1; |
| |
| /* |
| * Manually mark other sectors as |
| * unlocked (unprotected) |
| */ |
| for (k = 1; k < flash_info[i].sector_count; k++) |
| flash_info[i].protect[k] = 0; |
| } else { |
| /* |
| * No legancy unlocking -> unlock all sectors |
| */ |
| flash_protect (FLAG_PROTECT_CLEAR, |
| flash_info[i].start[0], |
| flash_info[i].start[0] |
| + flash_info[i].size - 1, |
| &flash_info[i]); |
| } |
| } |
| #endif /* CONFIG_SYS_FLASH_PROTECTION */ |
| } |
| |
| flash_protect_default(); |
| #ifdef CONFIG_FLASH_CFI_MTD |
| cfi_mtd_init(); |
| #endif |
| |
| return (size); |
| } |