blob: b835b5c383582bfe592f971136e0d6fe1b61c9dc [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2012 Samsung Electronics
*
* Author: Donghwa Lee <dh09.lee@samsung.com>
*/
#include <config.h>
#include <common.h>
#include <log.h>
#include <linux/err.h>
#include <asm/arch/cpu.h>
#include <asm/arch/dp_info.h>
#include <asm/arch/dp.h>
#include <fdtdec.h>
#include <linux/libfdt.h>
#include "exynos_dp_lowlevel.h"
/* Declare global data pointer */
static void exynos_dp_enable_video_input(struct exynos_dp *dp_regs,
unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->video_ctl1);
reg &= ~VIDEO_EN_MASK;
/* enable video input */
if (enable)
reg |= VIDEO_EN_MASK;
writel(reg, &dp_regs->video_ctl1);
return;
}
void exynos_dp_enable_video_bist(struct exynos_dp *dp_regs, unsigned int enable)
{
/* enable video bist */
unsigned int reg;
reg = readl(&dp_regs->video_ctl4);
reg &= ~VIDEO_BIST_MASK;
/* enable video bist */
if (enable)
reg |= VIDEO_BIST_MASK;
writel(reg, &dp_regs->video_ctl4);
return;
}
void exynos_dp_enable_video_mute(struct exynos_dp *dp_regs, unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->video_ctl1);
reg &= ~(VIDEO_MUTE_MASK);
if (enable)
reg |= VIDEO_MUTE_MASK;
writel(reg, &dp_regs->video_ctl1);
return;
}
static void exynos_dp_init_analog_param(struct exynos_dp *dp_regs)
{
unsigned int reg;
/*
* Set termination
* Normal bandgap, Normal swing, Tx terminal registor 61 ohm
* 24M Phy clock, TX digital logic power is 100:1.0625V
*/
reg = SEL_BG_NEW_BANDGAP | TX_TERMINAL_CTRL_61_OHM |
SWING_A_30PER_G_NORMAL;
writel(reg, &dp_regs->analog_ctl1);
reg = SEL_24M | TX_DVDD_BIT_1_0625V;
writel(reg, &dp_regs->analog_ctl2);
/*
* Set power source for internal clk driver to 1.0625v.
* Select current reference of TX driver current to 00:Ipp/2+Ic/2.
* Set VCO range of PLL +- 0uA
*/
reg = DRIVE_DVDD_BIT_1_0625V | SEL_CURRENT_DEFAULT | VCO_BIT_000_MICRO;
writel(reg, &dp_regs->analog_ctl3);
/*
* Set AUX TX terminal resistor to 102 ohm
* Set AUX channel amplitude control
*/
reg = PD_RING_OSC | AUX_TERMINAL_CTRL_52_OHM | TX_CUR1_2X | TX_CUR_4_MA;
writel(reg, &dp_regs->pll_filter_ctl1);
/*
* PLL loop filter bandwidth
* For 2.7Gbps: 175KHz, For 1.62Gbps: 234KHz
* PLL digital power select: 1.2500V
*/
reg = CH3_AMP_0_MV | CH2_AMP_0_MV | CH1_AMP_0_MV | CH0_AMP_0_MV;
writel(reg, &dp_regs->amp_tuning_ctl);
/*
* PLL loop filter bandwidth
* For 2.7Gbps: 175KHz, For 1.62Gbps: 234KHz
* PLL digital power select: 1.1250V
*/
reg = DP_PLL_LOOP_BIT_DEFAULT | DP_PLL_REF_BIT_1_1250V;
writel(reg, &dp_regs->pll_ctl);
}
static void exynos_dp_init_interrupt(struct exynos_dp *dp_regs)
{
/* Set interrupt registers to initial states */
/*
* Disable interrupt
* INT pin assertion polarity. It must be configured
* correctly according to ICU setting.
* 1 = assert high, 0 = assert low
*/
writel(INT_POL, &dp_regs->int_ctl);
/* Clear pending registers */
writel(0xff, &dp_regs->common_int_sta1);
writel(0xff, &dp_regs->common_int_sta2);
writel(0xff, &dp_regs->common_int_sta3);
writel(0xff, &dp_regs->common_int_sta4);
writel(0xff, &dp_regs->int_sta);
/* 0:mask,1: unmask */
writel(0x00, &dp_regs->int_sta_mask1);
writel(0x00, &dp_regs->int_sta_mask2);
writel(0x00, &dp_regs->int_sta_mask3);
writel(0x00, &dp_regs->int_sta_mask4);
writel(0x00, &dp_regs->int_sta_mask);
}
void exynos_dp_reset(struct exynos_dp *dp_regs)
{
unsigned int reg_func_1;
/* dp tx sw reset */
writel(RESET_DP_TX, &dp_regs->tx_sw_reset);
exynos_dp_enable_video_input(dp_regs, DP_DISABLE);
exynos_dp_enable_video_bist(dp_regs, DP_DISABLE);
exynos_dp_enable_video_mute(dp_regs, DP_DISABLE);
/* software reset */
reg_func_1 = MASTER_VID_FUNC_EN_N | SLAVE_VID_FUNC_EN_N |
AUD_FIFO_FUNC_EN_N | AUD_FUNC_EN_N |
HDCP_FUNC_EN_N | SW_FUNC_EN_N;
writel(reg_func_1, &dp_regs->func_en1);
writel(reg_func_1, &dp_regs->func_en2);
mdelay(1);
exynos_dp_init_analog_param(dp_regs);
exynos_dp_init_interrupt(dp_regs);
return;
}
void exynos_dp_enable_sw_func(struct exynos_dp *dp_regs, unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->func_en1);
reg &= ~(SW_FUNC_EN_N);
if (!enable)
reg |= SW_FUNC_EN_N;
writel(reg, &dp_regs->func_en1);
return;
}
unsigned int exynos_dp_set_analog_power_down(struct exynos_dp *dp_regs,
unsigned int block, u32 enable)
{
unsigned int reg;
reg = readl(&dp_regs->phy_pd);
switch (block) {
case AUX_BLOCK:
reg &= ~(AUX_PD);
if (enable)
reg |= AUX_PD;
break;
case CH0_BLOCK:
reg &= ~(CH0_PD);
if (enable)
reg |= CH0_PD;
break;
case CH1_BLOCK:
reg &= ~(CH1_PD);
if (enable)
reg |= CH1_PD;
break;
case CH2_BLOCK:
reg &= ~(CH2_PD);
if (enable)
reg |= CH2_PD;
break;
case CH3_BLOCK:
reg &= ~(CH3_PD);
if (enable)
reg |= CH3_PD;
break;
case ANALOG_TOTAL:
reg &= ~PHY_PD;
if (enable)
reg |= PHY_PD;
break;
case POWER_ALL:
reg &= ~(PHY_PD | AUX_PD | CH0_PD | CH1_PD | CH2_PD |
CH3_PD);
if (enable)
reg |= (PHY_PD | AUX_PD | CH0_PD | CH1_PD |
CH2_PD | CH3_PD);
break;
default:
printf("DP undefined block number : %d\n", block);
return -1;
}
writel(reg, &dp_regs->phy_pd);
return 0;
}
unsigned int exynos_dp_get_pll_lock_status(struct exynos_dp *dp_regs)
{
unsigned int reg;
reg = readl(&dp_regs->debug_ctl);
if (reg & PLL_LOCK)
return PLL_LOCKED;
else
return PLL_UNLOCKED;
}
static void exynos_dp_set_pll_power(struct exynos_dp *dp_regs,
unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->pll_ctl);
reg &= ~(DP_PLL_PD);
if (!enable)
reg |= DP_PLL_PD;
writel(reg, &dp_regs->pll_ctl);
}
int exynos_dp_init_analog_func(struct exynos_dp *dp_regs)
{
int ret = EXYNOS_DP_SUCCESS;
unsigned int retry_cnt = 10;
unsigned int reg;
/* Power On All Analog block */
exynos_dp_set_analog_power_down(dp_regs, POWER_ALL, DP_DISABLE);
reg = PLL_LOCK_CHG;
writel(reg, &dp_regs->common_int_sta1);
reg = readl(&dp_regs->debug_ctl);
reg &= ~(F_PLL_LOCK | PLL_LOCK_CTRL);
writel(reg, &dp_regs->debug_ctl);
/* Assert DP PLL Reset */
reg = readl(&dp_regs->pll_ctl);
reg |= DP_PLL_RESET;
writel(reg, &dp_regs->pll_ctl);
mdelay(1);
/* Deassert DP PLL Reset */
reg = readl(&dp_regs->pll_ctl);
reg &= ~(DP_PLL_RESET);
writel(reg, &dp_regs->pll_ctl);
exynos_dp_set_pll_power(dp_regs, DP_ENABLE);
while (exynos_dp_get_pll_lock_status(dp_regs) == PLL_UNLOCKED) {
mdelay(1);
retry_cnt--;
if (retry_cnt == 0) {
printf("DP dp's pll lock failed : retry : %d\n",
retry_cnt);
return -EINVAL;
}
}
debug("dp's pll lock success(%d)\n", retry_cnt);
/* Enable Serdes FIFO function and Link symbol clock domain module */
reg = readl(&dp_regs->func_en2);
reg &= ~(SERDES_FIFO_FUNC_EN_N | LS_CLK_DOMAIN_FUNC_EN_N
| AUX_FUNC_EN_N);
writel(reg, &dp_regs->func_en2);
return ret;
}
void exynos_dp_init_hpd(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Clear interrupts related to Hot Plug Detect */
reg = HOTPLUG_CHG | HPD_LOST | PLUG;
writel(reg, &dp_regs->common_int_sta4);
reg = INT_HPD;
writel(reg, &dp_regs->int_sta);
reg = readl(&dp_regs->sys_ctl3);
reg &= ~(F_HPD | HPD_CTRL);
writel(reg, &dp_regs->sys_ctl3);
return;
}
static inline void exynos_dp_reset_aux(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Disable AUX channel module */
reg = readl(&dp_regs->func_en2);
reg |= AUX_FUNC_EN_N;
writel(reg, &dp_regs->func_en2);
return;
}
void exynos_dp_init_aux(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Clear interrupts related to AUX channel */
reg = RPLY_RECEIV | AUX_ERR;
writel(reg, &dp_regs->int_sta);
exynos_dp_reset_aux(dp_regs);
/* Disable AUX transaction H/W retry */
reg = AUX_BIT_PERIOD_EXPECTED_DELAY(3) | AUX_HW_RETRY_COUNT_SEL(3)|
AUX_HW_RETRY_INTERVAL_600_MICROSECONDS;
writel(reg, &dp_regs->aux_hw_retry_ctl);
/* Receive AUX Channel DEFER commands equal to DEFER_COUNT*64 */
reg = DEFER_CTRL_EN | DEFER_COUNT(1);
writel(reg, &dp_regs->aux_ch_defer_ctl);
/* Enable AUX channel module */
reg = readl(&dp_regs->func_en2);
reg &= ~AUX_FUNC_EN_N;
writel(reg, &dp_regs->func_en2);
return;
}
void exynos_dp_config_interrupt(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* 0: mask, 1: unmask */
reg = COMMON_INT_MASK_1;
writel(reg, &dp_regs->common_int_mask1);
reg = COMMON_INT_MASK_2;
writel(reg, &dp_regs->common_int_mask2);
reg = COMMON_INT_MASK_3;
writel(reg, &dp_regs->common_int_mask3);
reg = COMMON_INT_MASK_4;
writel(reg, &dp_regs->common_int_mask4);
reg = INT_STA_MASK;
writel(reg, &dp_regs->int_sta_mask);
return;
}
unsigned int exynos_dp_get_plug_in_status(struct exynos_dp *dp_regs)
{
unsigned int reg;
reg = readl(&dp_regs->sys_ctl3);
if (reg & HPD_STATUS)
return 0;
return -1;
}
unsigned int exynos_dp_detect_hpd(struct exynos_dp *dp_regs)
{
int timeout_loop = DP_TIMEOUT_LOOP_COUNT;
mdelay(2);
while (exynos_dp_get_plug_in_status(dp_regs) != 0) {
if (timeout_loop == 0)
return -EINVAL;
mdelay(10);
timeout_loop--;
}
return EXYNOS_DP_SUCCESS;
}
unsigned int exynos_dp_start_aux_transaction(struct exynos_dp *dp_regs)
{
unsigned int reg;
unsigned int ret = 0;
unsigned int retry_cnt;
/* Enable AUX CH operation */
reg = readl(&dp_regs->aux_ch_ctl2);
reg |= AUX_EN;
writel(reg, &dp_regs->aux_ch_ctl2);
retry_cnt = 10;
while (retry_cnt) {
reg = readl(&dp_regs->int_sta);
if (!(reg & RPLY_RECEIV)) {
if (retry_cnt == 0) {
printf("DP Reply Timeout!!\n");
ret = -EAGAIN;
return ret;
}
mdelay(1);
retry_cnt--;
} else
break;
}
/* Clear interrupt source for AUX CH command reply */
writel(reg, &dp_regs->int_sta);
/* Clear interrupt source for AUX CH access error */
reg = readl(&dp_regs->int_sta);
if (reg & AUX_ERR) {
printf("DP Aux Access Error\n");
writel(AUX_ERR, &dp_regs->int_sta);
ret = -EAGAIN;
return ret;
}
/* Check AUX CH error access status */
reg = readl(&dp_regs->aux_ch_sta);
if ((reg & AUX_STATUS_MASK) != 0) {
debug("DP AUX CH error happens: %x\n", reg & AUX_STATUS_MASK);
ret = -EAGAIN;
return ret;
}
return EXYNOS_DP_SUCCESS;
}
unsigned int exynos_dp_write_byte_to_dpcd(struct exynos_dp *dp_regs,
unsigned int reg_addr,
unsigned char data)
{
unsigned int reg, ret;
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
/* Select DPCD device address */
reg = AUX_ADDR_7_0(reg_addr);
writel(reg, &dp_regs->aux_addr_7_0);
reg = AUX_ADDR_15_8(reg_addr);
writel(reg, &dp_regs->aux_addr_15_8);
reg = AUX_ADDR_19_16(reg_addr);
writel(reg, &dp_regs->aux_addr_19_16);
/* Write data buffer */
reg = (unsigned int)data;
writel(reg, &dp_regs->buf_data0);
/*
* Set DisplayPort transaction and write 1 byte
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_WRITE;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
ret = exynos_dp_start_aux_transaction(dp_regs);
if (ret != EXYNOS_DP_SUCCESS) {
printf("DP Aux transaction failed\n");
return ret;
}
return ret;
}
unsigned int exynos_dp_read_byte_from_dpcd(struct exynos_dp *dp_regs,
unsigned int reg_addr,
unsigned char *data)
{
unsigned int reg;
int retval;
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
/* Select DPCD device address */
reg = AUX_ADDR_7_0(reg_addr);
writel(reg, &dp_regs->aux_addr_7_0);
reg = AUX_ADDR_15_8(reg_addr);
writel(reg, &dp_regs->aux_addr_15_8);
reg = AUX_ADDR_19_16(reg_addr);
writel(reg, &dp_regs->aux_addr_19_16);
/*
* Set DisplayPort transaction and read 1 byte
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_READ;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
retval = exynos_dp_start_aux_transaction(dp_regs);
if (!retval)
debug("DP Aux Transaction fail!\n");
/* Read data buffer */
reg = readl(&dp_regs->buf_data0);
*data = (unsigned char)(reg & 0xff);
return retval;
}
unsigned int exynos_dp_write_bytes_to_dpcd(struct exynos_dp *dp_regs,
unsigned int reg_addr,
unsigned int count,
unsigned char data[])
{
unsigned int reg;
unsigned int start_offset;
unsigned int cur_data_count;
unsigned int cur_data_idx;
unsigned int retry_cnt;
unsigned int ret = 0;
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
start_offset = 0;
while (start_offset < count) {
/* Buffer size of AUX CH is 16 * 4bytes */
if ((count - start_offset) > 16)
cur_data_count = 16;
else
cur_data_count = count - start_offset;
retry_cnt = 5;
while (retry_cnt) {
/* Select DPCD device address */
reg = AUX_ADDR_7_0(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_7_0);
reg = AUX_ADDR_15_8(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_15_8);
reg = AUX_ADDR_19_16(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_19_16);
for (cur_data_idx = 0; cur_data_idx < cur_data_count;
cur_data_idx++) {
reg = data[start_offset + cur_data_idx];
writel(reg, (unsigned int)&dp_regs->buf_data0 +
(4 * cur_data_idx));
}
/*
* Set DisplayPort transaction and write
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_LENGTH(cur_data_count) |
AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_WRITE;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
ret = exynos_dp_start_aux_transaction(dp_regs);
if (ret != EXYNOS_DP_SUCCESS) {
if (retry_cnt == 0) {
printf("DP Aux Transaction failed\n");
return ret;
}
retry_cnt--;
} else
break;
}
start_offset += cur_data_count;
}
return ret;
}
unsigned int exynos_dp_read_bytes_from_dpcd(struct exynos_dp *dp_regs,
unsigned int reg_addr,
unsigned int count,
unsigned char data[])
{
unsigned int reg;
unsigned int start_offset;
unsigned int cur_data_count;
unsigned int cur_data_idx;
unsigned int retry_cnt;
unsigned int ret = 0;
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
start_offset = 0;
while (start_offset < count) {
/* Buffer size of AUX CH is 16 * 4bytes */
if ((count - start_offset) > 16)
cur_data_count = 16;
else
cur_data_count = count - start_offset;
retry_cnt = 5;
while (retry_cnt) {
/* Select DPCD device address */
reg = AUX_ADDR_7_0(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_7_0);
reg = AUX_ADDR_15_8(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_15_8);
reg = AUX_ADDR_19_16(reg_addr + start_offset);
writel(reg, &dp_regs->aux_addr_19_16);
/*
* Set DisplayPort transaction and read
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_LENGTH(cur_data_count) |
AUX_TX_COMM_DP_TRANSACTION | AUX_TX_COMM_READ;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
ret = exynos_dp_start_aux_transaction(dp_regs);
if (ret != EXYNOS_DP_SUCCESS) {
if (retry_cnt == 0) {
printf("DP Aux Transaction failed\n");
return ret;
}
retry_cnt--;
} else
break;
}
for (cur_data_idx = 0; cur_data_idx < cur_data_count;
cur_data_idx++) {
reg = readl((unsigned int)&dp_regs->buf_data0 +
4 * cur_data_idx);
data[start_offset + cur_data_idx] = (unsigned char)reg;
}
start_offset += cur_data_count;
}
return ret;
}
int exynos_dp_select_i2c_device(struct exynos_dp *dp_regs,
unsigned int device_addr, unsigned int reg_addr)
{
unsigned int reg;
int retval;
/* Set EDID device address */
reg = device_addr;
writel(reg, &dp_regs->aux_addr_7_0);
writel(0x0, &dp_regs->aux_addr_15_8);
writel(0x0, &dp_regs->aux_addr_19_16);
/* Set offset from base address of EDID device */
writel(reg_addr, &dp_regs->buf_data0);
/*
* Set I2C transaction and write address
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_TX_COMM_I2C_TRANSACTION | AUX_TX_COMM_MOT |
AUX_TX_COMM_WRITE;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
retval = exynos_dp_start_aux_transaction(dp_regs);
if (retval != 0)
printf("%s: DP Aux Transaction fail!\n", __func__);
return retval;
}
int exynos_dp_read_byte_from_i2c(struct exynos_dp *dp_regs,
unsigned int device_addr,
unsigned int reg_addr, unsigned int *data)
{
unsigned int reg;
int i;
int retval;
for (i = 0; i < 10; i++) {
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
/* Select EDID device */
retval = exynos_dp_select_i2c_device(dp_regs, device_addr,
reg_addr);
if (retval != 0) {
printf("DP Select EDID device fail. retry !\n");
continue;
}
/*
* Set I2C transaction and read data
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_TX_COMM_I2C_TRANSACTION |
AUX_TX_COMM_READ;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
retval = exynos_dp_start_aux_transaction(dp_regs);
if (retval != EXYNOS_DP_SUCCESS)
printf("%s: DP Aux Transaction fail!\n", __func__);
}
/* Read data */
if (retval == 0)
*data = readl(&dp_regs->buf_data0);
return retval;
}
int exynos_dp_read_bytes_from_i2c(struct exynos_dp *dp_regs,
unsigned int device_addr,
unsigned int reg_addr, unsigned int count,
unsigned char edid[])
{
unsigned int reg;
unsigned int i, j;
unsigned int cur_data_idx;
unsigned int defer = 0;
int retval = 0;
for (i = 0; i < count; i += 16) { /* use 16 burst */
for (j = 0; j < 100; j++) {
/* Clear AUX CH data buffer */
reg = BUF_CLR;
writel(reg, &dp_regs->buffer_data_ctl);
/* Set normal AUX CH command */
reg = readl(&dp_regs->aux_ch_ctl2);
reg &= ~ADDR_ONLY;
writel(reg, &dp_regs->aux_ch_ctl2);
/*
* If Rx sends defer, Tx sends only reads
* request without sending addres
*/
if (!defer)
retval = exynos_dp_select_i2c_device(
dp_regs, device_addr, reg_addr + i);
else
defer = 0;
if (retval == EXYNOS_DP_SUCCESS) {
/*
* Set I2C transaction and write data
* If bit 3 is 1, DisplayPort transaction.
* If Bit 3 is 0, I2C transaction.
*/
reg = AUX_LENGTH(16) |
AUX_TX_COMM_I2C_TRANSACTION |
AUX_TX_COMM_READ;
writel(reg, &dp_regs->aux_ch_ctl1);
/* Start AUX transaction */
retval = exynos_dp_start_aux_transaction(
dp_regs);
if (retval == 0)
break;
else
printf("DP Aux Transaction fail!\n");
}
/* Check if Rx sends defer */
reg = readl(&dp_regs->aux_rx_comm);
if (reg == AUX_RX_COMM_AUX_DEFER ||
reg == AUX_RX_COMM_I2C_DEFER) {
printf("DP Defer: %d\n", reg);
defer = 1;
}
}
for (cur_data_idx = 0; cur_data_idx < 16; cur_data_idx++) {
reg = readl((unsigned int)&dp_regs->buf_data0
+ 4 * cur_data_idx);
edid[i + cur_data_idx] = (unsigned char)reg;
}
}
return retval;
}
void exynos_dp_reset_macro(struct exynos_dp *dp_regs)
{
unsigned int reg;
reg = readl(&dp_regs->phy_test);
reg |= MACRO_RST;
writel(reg, &dp_regs->phy_test);
/* 10 us is the minimum Macro reset time. */
mdelay(1);
reg &= ~MACRO_RST;
writel(reg, &dp_regs->phy_test);
}
void exynos_dp_set_link_bandwidth(struct exynos_dp *dp_regs,
unsigned char bwtype)
{
unsigned int reg;
reg = (unsigned int)bwtype;
/* Set bandwidth to 2.7G or 1.62G */
if ((bwtype == DP_LANE_BW_1_62) || (bwtype == DP_LANE_BW_2_70))
writel(reg, &dp_regs->link_bw_set);
}
unsigned char exynos_dp_get_link_bandwidth(struct exynos_dp *dp_regs)
{
unsigned char ret;
unsigned int reg;
reg = readl(&dp_regs->link_bw_set);
ret = (unsigned char)reg;
return ret;
}
void exynos_dp_set_lane_count(struct exynos_dp *dp_regs, unsigned char count)
{
unsigned int reg;
reg = (unsigned int)count;
if ((count == DP_LANE_CNT_1) || (count == DP_LANE_CNT_2) ||
(count == DP_LANE_CNT_4))
writel(reg, &dp_regs->lane_count_set);
}
unsigned int exynos_dp_get_lane_count(struct exynos_dp *dp_regs)
{
return readl(&dp_regs->lane_count_set);
}
unsigned char exynos_dp_get_lanex_pre_emphasis(struct exynos_dp *dp_regs,
unsigned char lanecnt)
{
unsigned int reg_list[DP_LANE_CNT_4] = {
(unsigned int)&dp_regs->ln0_link_training_ctl,
(unsigned int)&dp_regs->ln1_link_training_ctl,
(unsigned int)&dp_regs->ln2_link_training_ctl,
(unsigned int)&dp_regs->ln3_link_training_ctl,
};
return readl(reg_list[lanecnt]);
}
void exynos_dp_set_lanex_pre_emphasis(struct exynos_dp *dp_regs,
unsigned char request_val,
unsigned char lanecnt)
{
unsigned int reg_list[DP_LANE_CNT_4] = {
(unsigned int)&dp_regs->ln0_link_training_ctl,
(unsigned int)&dp_regs->ln1_link_training_ctl,
(unsigned int)&dp_regs->ln2_link_training_ctl,
(unsigned int)&dp_regs->ln3_link_training_ctl,
};
writel(request_val, reg_list[lanecnt]);
}
void exynos_dp_set_lane_pre_emphasis(struct exynos_dp *dp_regs,
unsigned int level, unsigned char lanecnt)
{
unsigned char i;
unsigned int reg;
unsigned int reg_list[DP_LANE_CNT_4] = {
(unsigned int)&dp_regs->ln0_link_training_ctl,
(unsigned int)&dp_regs->ln1_link_training_ctl,
(unsigned int)&dp_regs->ln2_link_training_ctl,
(unsigned int)&dp_regs->ln3_link_training_ctl,
};
unsigned int reg_shift[DP_LANE_CNT_4] = {
PRE_EMPHASIS_SET_0_SHIFT,
PRE_EMPHASIS_SET_1_SHIFT,
PRE_EMPHASIS_SET_2_SHIFT,
PRE_EMPHASIS_SET_3_SHIFT
};
for (i = 0; i < lanecnt; i++) {
reg = level << reg_shift[i];
writel(reg, reg_list[i]);
}
}
void exynos_dp_set_training_pattern(struct exynos_dp *dp_regs,
unsigned int pattern)
{
unsigned int reg = 0;
switch (pattern) {
case PRBS7:
reg = SCRAMBLING_ENABLE | LINK_QUAL_PATTERN_SET_PRBS7;
break;
case D10_2:
reg = SCRAMBLING_ENABLE | LINK_QUAL_PATTERN_SET_D10_2;
break;
case TRAINING_PTN1:
reg = SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN1;
break;
case TRAINING_PTN2:
reg = SCRAMBLING_DISABLE | SW_TRAINING_PATTERN_SET_PTN2;
break;
case DP_NONE:
reg = SCRAMBLING_ENABLE | LINK_QUAL_PATTERN_SET_DISABLE |
SW_TRAINING_PATTERN_SET_NORMAL;
break;
default:
break;
}
writel(reg, &dp_regs->training_ptn_set);
}
void exynos_dp_enable_enhanced_mode(struct exynos_dp *dp_regs,
unsigned char enable)
{
unsigned int reg;
reg = readl(&dp_regs->sys_ctl4);
reg &= ~ENHANCED;
if (enable)
reg |= ENHANCED;
writel(reg, &dp_regs->sys_ctl4);
}
void exynos_dp_enable_scrambling(struct exynos_dp *dp_regs, unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->training_ptn_set);
reg &= ~(SCRAMBLING_DISABLE);
if (!enable)
reg |= SCRAMBLING_DISABLE;
writel(reg, &dp_regs->training_ptn_set);
}
int exynos_dp_init_video(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Clear VID_CLK_CHG[1] and VID_FORMAT_CHG[3] and VSYNC_DET[7] */
reg = VSYNC_DET | VID_FORMAT_CHG | VID_CLK_CHG;
writel(reg, &dp_regs->common_int_sta1);
/* I_STRM__CLK detect : DE_CTL : Auto detect */
reg &= ~DET_CTRL;
writel(reg, &dp_regs->sys_ctl1);
return 0;
}
void exynos_dp_config_video_slave_mode(struct exynos_dp *dp_regs,
struct edp_video_info *video_info)
{
unsigned int reg;
/* Video Slave mode setting */
reg = readl(&dp_regs->func_en1);
reg &= ~(MASTER_VID_FUNC_EN_N|SLAVE_VID_FUNC_EN_N);
reg |= MASTER_VID_FUNC_EN_N;
writel(reg, &dp_regs->func_en1);
/* Configure Interlaced for slave mode video */
reg = readl(&dp_regs->video_ctl10);
reg &= ~INTERACE_SCAN_CFG;
reg |= (video_info->interlaced << INTERACE_SCAN_CFG_SHIFT);
writel(reg, &dp_regs->video_ctl10);
/* Configure V sync polarity for slave mode video */
reg = readl(&dp_regs->video_ctl10);
reg &= ~VSYNC_POLARITY_CFG;
reg |= (video_info->v_sync_polarity << V_S_POLARITY_CFG_SHIFT);
writel(reg, &dp_regs->video_ctl10);
/* Configure H sync polarity for slave mode video */
reg = readl(&dp_regs->video_ctl10);
reg &= ~HSYNC_POLARITY_CFG;
reg |= (video_info->h_sync_polarity << H_S_POLARITY_CFG_SHIFT);
writel(reg, &dp_regs->video_ctl10);
/* Set video mode to slave mode */
reg = AUDIO_MODE_SPDIF_MODE | VIDEO_MODE_SLAVE_MODE;
writel(reg, &dp_regs->soc_general_ctl);
}
void exynos_dp_set_video_color_format(struct exynos_dp *dp_regs,
struct edp_video_info *video_info)
{
unsigned int reg;
/* Configure the input color depth, color space, dynamic range */
reg = (video_info->dynamic_range << IN_D_RANGE_SHIFT) |
(video_info->color_depth << IN_BPC_SHIFT) |
(video_info->color_space << IN_COLOR_F_SHIFT);
writel(reg, &dp_regs->video_ctl2);
/* Set Input Color YCbCr Coefficients to ITU601 or ITU709 */
reg = readl(&dp_regs->video_ctl3);
reg &= ~IN_YC_COEFFI_MASK;
if (video_info->ycbcr_coeff)
reg |= IN_YC_COEFFI_ITU709;
else
reg |= IN_YC_COEFFI_ITU601;
writel(reg, &dp_regs->video_ctl3);
}
int exynos_dp_config_video_bist(struct exynos_dp *dp_regs,
struct exynos_dp_priv *priv)
{
unsigned int reg;
unsigned int bist_type = 0;
struct edp_video_info video_info = priv->video_info;
/* For master mode, you don't need to set the video format */
if (video_info.master_mode == 0) {
writel(TOTAL_LINE_CFG_L(priv->disp_info.v_total),
&dp_regs->total_ln_cfg_l);
writel(TOTAL_LINE_CFG_H(priv->disp_info.v_total),
&dp_regs->total_ln_cfg_h);
writel(ACTIVE_LINE_CFG_L(priv->disp_info.v_res),
&dp_regs->active_ln_cfg_l);
writel(ACTIVE_LINE_CFG_H(priv->disp_info.v_res),
&dp_regs->active_ln_cfg_h);
writel(priv->disp_info.v_sync_width, &dp_regs->vsw_cfg);
writel(priv->disp_info.v_back_porch, &dp_regs->vbp_cfg);
writel(priv->disp_info.v_front_porch, &dp_regs->vfp_cfg);
writel(TOTAL_PIXEL_CFG_L(priv->disp_info.h_total),
&dp_regs->total_pix_cfg_l);
writel(TOTAL_PIXEL_CFG_H(priv->disp_info.h_total),
&dp_regs->total_pix_cfg_h);
writel(ACTIVE_PIXEL_CFG_L(priv->disp_info.h_res),
&dp_regs->active_pix_cfg_l);
writel(ACTIVE_PIXEL_CFG_H(priv->disp_info.h_res),
&dp_regs->active_pix_cfg_h);
writel(H_F_PORCH_CFG_L(priv->disp_info.h_front_porch),
&dp_regs->hfp_cfg_l);
writel(H_F_PORCH_CFG_H(priv->disp_info.h_front_porch),
&dp_regs->hfp_cfg_h);
writel(H_SYNC_PORCH_CFG_L(priv->disp_info.h_sync_width),
&dp_regs->hsw_cfg_l);
writel(H_SYNC_PORCH_CFG_H(priv->disp_info.h_sync_width),
&dp_regs->hsw_cfg_h);
writel(H_B_PORCH_CFG_L(priv->disp_info.h_back_porch),
&dp_regs->hbp_cfg_l);
writel(H_B_PORCH_CFG_H(priv->disp_info.h_back_porch),
&dp_regs->hbp_cfg_h);
/*
* Set SLAVE_I_SCAN_CFG[2], VSYNC_P_CFG[1],
* HSYNC_P_CFG[0] properly
*/
reg = (video_info.interlaced << INTERACE_SCAN_CFG_SHIFT |
video_info.v_sync_polarity << V_S_POLARITY_CFG_SHIFT |
video_info.h_sync_polarity << H_S_POLARITY_CFG_SHIFT);
writel(reg, &dp_regs->video_ctl10);
}
/* BIST color bar width set--set to each bar is 32 pixel width */
switch (video_info.bist_pattern) {
case COLORBAR_32:
bist_type = BIST_WIDTH_BAR_32_PIXEL |
BIST_TYPE_COLOR_BAR;
break;
case COLORBAR_64:
bist_type = BIST_WIDTH_BAR_64_PIXEL |
BIST_TYPE_COLOR_BAR;
break;
case WHITE_GRAY_BALCKBAR_32:
bist_type = BIST_WIDTH_BAR_32_PIXEL |
BIST_TYPE_WHITE_GRAY_BLACK_BAR;
break;
case WHITE_GRAY_BALCKBAR_64:
bist_type = BIST_WIDTH_BAR_64_PIXEL |
BIST_TYPE_WHITE_GRAY_BLACK_BAR;
break;
case MOBILE_WHITEBAR_32:
bist_type = BIST_WIDTH_BAR_32_PIXEL |
BIST_TYPE_MOBILE_WHITE_BAR;
break;
case MOBILE_WHITEBAR_64:
bist_type = BIST_WIDTH_BAR_64_PIXEL |
BIST_TYPE_MOBILE_WHITE_BAR;
break;
default:
return -1;
}
reg = bist_type;
writel(reg, &dp_regs->video_ctl4);
return 0;
}
unsigned int exynos_dp_is_slave_video_stream_clock_on(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Update Video stream clk detect status */
reg = readl(&dp_regs->sys_ctl1);
writel(reg, &dp_regs->sys_ctl1);
reg = readl(&dp_regs->sys_ctl1);
if (!(reg & DET_STA)) {
debug("DP Input stream clock not detected.\n");
return -EIO;
}
return EXYNOS_DP_SUCCESS;
}
void exynos_dp_set_video_cr_mn(struct exynos_dp *dp_regs, unsigned int type,
unsigned int m_value, unsigned int n_value)
{
unsigned int reg;
if (type == REGISTER_M) {
reg = readl(&dp_regs->sys_ctl4);
reg |= FIX_M_VID;
writel(reg, &dp_regs->sys_ctl4);
reg = M_VID0_CFG(m_value);
writel(reg, &dp_regs->m_vid0);
reg = M_VID1_CFG(m_value);
writel(reg, &dp_regs->m_vid1);
reg = M_VID2_CFG(m_value);
writel(reg, &dp_regs->m_vid2);
reg = N_VID0_CFG(n_value);
writel(reg, &dp_regs->n_vid0);
reg = N_VID1_CFG(n_value);
writel(reg, &dp_regs->n_vid1);
reg = N_VID2_CFG(n_value);
writel(reg, &dp_regs->n_vid2);
} else {
reg = readl(&dp_regs->sys_ctl4);
reg &= ~FIX_M_VID;
writel(reg, &dp_regs->sys_ctl4);
}
}
void exynos_dp_set_video_timing_mode(struct exynos_dp *dp_regs,
unsigned int type)
{
unsigned int reg;
reg = readl(&dp_regs->video_ctl10);
reg &= ~FORMAT_SEL;
if (type != VIDEO_TIMING_FROM_CAPTURE)
reg |= FORMAT_SEL;
writel(reg, &dp_regs->video_ctl10);
}
void exynos_dp_enable_video_master(struct exynos_dp *dp_regs,
unsigned int enable)
{
unsigned int reg;
reg = readl(&dp_regs->soc_general_ctl);
if (enable) {
reg &= ~VIDEO_MODE_MASK;
reg |= VIDEO_MASTER_MODE_EN | VIDEO_MODE_MASTER_MODE;
} else {
reg &= ~VIDEO_MODE_MASK;
reg |= VIDEO_MODE_SLAVE_MODE;
}
writel(reg, &dp_regs->soc_general_ctl);
}
void exynos_dp_start_video(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Enable Video input and disable Mute */
reg = readl(&dp_regs->video_ctl1);
reg |= VIDEO_EN;
writel(reg, &dp_regs->video_ctl1);
}
unsigned int exynos_dp_is_video_stream_on(struct exynos_dp *dp_regs)
{
unsigned int reg;
/* Update STRM_VALID */
reg = readl(&dp_regs->sys_ctl3);
writel(reg, &dp_regs->sys_ctl3);
reg = readl(&dp_regs->sys_ctl3);
if (!(reg & STRM_VALID))
return -EIO;
return EXYNOS_DP_SUCCESS;
}