blob: c85253dc7158284f2b739b8d82aac6c678c10f1b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2000-2003
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* Copyright (C) 2004-2009, 2015 Freescale Semiconductor, Inc.
* TsiChung Liew (Tsi-Chung.Liew@freescale.com)
* Chao Fu (B44548@freescale.com)
* Haikun Wang (B53464@freescale.com)
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <common.h>
#include <log.h>
#include <spi.h>
#include <malloc.h>
#include <asm/io.h>
#include <fdtdec.h>
#ifndef CONFIG_M68K
#include <asm/arch/clock.h>
#endif
#include <fsl_dspi.h>
DECLARE_GLOBAL_DATA_PTR;
/* fsl_dspi_platdata flags */
#define DSPI_FLAG_REGMAP_ENDIAN_BIG BIT(0)
/* idle data value */
#define DSPI_IDLE_VAL 0x0
/* max chipselect signals number */
#define FSL_DSPI_MAX_CHIPSELECT 6
/* default SCK frequency, unit: HZ */
#define FSL_DSPI_DEFAULT_SCK_FREQ 10000000
/* tx/rx data wait timeout value, unit: us */
#define DSPI_TXRX_WAIT_TIMEOUT 1000000
/* CTAR register pre-configure value */
#define DSPI_CTAR_DEFAULT_VALUE (DSPI_CTAR_TRSZ(7) | \
DSPI_CTAR_PCSSCK_1CLK | \
DSPI_CTAR_PASC(0) | \
DSPI_CTAR_PDT(0) | \
DSPI_CTAR_CSSCK(0) | \
DSPI_CTAR_ASC(0) | \
DSPI_CTAR_DT(0))
/* CTAR register pre-configure mask */
#define DSPI_CTAR_SET_MODE_MASK (DSPI_CTAR_TRSZ(15) | \
DSPI_CTAR_PCSSCK(3) | \
DSPI_CTAR_PASC(3) | \
DSPI_CTAR_PDT(3) | \
DSPI_CTAR_CSSCK(15) | \
DSPI_CTAR_ASC(15) | \
DSPI_CTAR_DT(15))
/**
* struct fsl_dspi_platdata - platform data for Freescale DSPI
*
* @flags: Flags for DSPI DSPI_FLAG_...
* @speed_hz: Default SCK frequency
* @num_chipselect: Number of DSPI chipselect signals
* @regs_addr: Base address of DSPI registers
*/
struct fsl_dspi_platdata {
uint flags;
uint speed_hz;
uint num_chipselect;
fdt_addr_t regs_addr;
};
/**
* struct fsl_dspi_priv - private data for Freescale DSPI
*
* @flags: Flags for DSPI DSPI_FLAG_...
* @mode: SPI mode to use for slave device (see SPI mode flags)
* @mcr_val: MCR register configure value
* @bus_clk: DSPI input clk frequency
* @speed_hz: Default SCK frequency
* @charbit: How many bits in every transfer
* @num_chipselect: Number of DSPI chipselect signals
* @ctar_val: CTAR register configure value of per chipselect slave device
* @regs: Point to DSPI register structure for I/O access
*/
struct fsl_dspi_priv {
uint flags;
uint mode;
uint mcr_val;
uint bus_clk;
uint speed_hz;
uint charbit;
uint num_chipselect;
uint ctar_val[FSL_DSPI_MAX_CHIPSELECT];
struct dspi *regs;
};
#ifndef CONFIG_DM_SPI
struct fsl_dspi {
struct spi_slave slave;
struct fsl_dspi_priv priv;
};
#endif
__weak void cpu_dspi_port_conf(void)
{
}
__weak int cpu_dspi_claim_bus(uint bus, uint cs)
{
return 0;
}
__weak void cpu_dspi_release_bus(uint bus, uint cs)
{
}
static uint dspi_read32(uint flags, uint *addr)
{
return flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ?
in_be32(addr) : in_le32(addr);
}
static void dspi_write32(uint flags, uint *addr, uint val)
{
flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ?
out_be32(addr, val) : out_le32(addr, val);
}
static void dspi_halt(struct fsl_dspi_priv *priv, u8 halt)
{
uint mcr_val;
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
if (halt)
mcr_val |= DSPI_MCR_HALT;
else
mcr_val &= ~DSPI_MCR_HALT;
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
}
static void fsl_dspi_init_mcr(struct fsl_dspi_priv *priv, uint cfg_val)
{
/* halt DSPI module */
dspi_halt(priv, 1);
dspi_write32(priv->flags, &priv->regs->mcr, cfg_val);
/* resume module */
dspi_halt(priv, 0);
priv->mcr_val = cfg_val;
}
static void fsl_dspi_cfg_cs_active_state(struct fsl_dspi_priv *priv,
uint cs, uint state)
{
uint mcr_val;
dspi_halt(priv, 1);
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
if (state & SPI_CS_HIGH)
/* CSx inactive state is low */
mcr_val &= ~DSPI_MCR_PCSIS(cs);
else
/* CSx inactive state is high */
mcr_val |= DSPI_MCR_PCSIS(cs);
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
dspi_halt(priv, 0);
}
static int fsl_dspi_cfg_ctar_mode(struct fsl_dspi_priv *priv,
uint cs, uint mode)
{
uint bus_setup;
bus_setup = dspi_read32(priv->flags, &priv->regs->ctar[0]);
bus_setup &= ~DSPI_CTAR_SET_MODE_MASK;
bus_setup |= priv->ctar_val[cs];
bus_setup &= ~(DSPI_CTAR_CPOL | DSPI_CTAR_CPHA | DSPI_CTAR_LSBFE);
if (mode & SPI_CPOL)
bus_setup |= DSPI_CTAR_CPOL;
if (mode & SPI_CPHA)
bus_setup |= DSPI_CTAR_CPHA;
if (mode & SPI_LSB_FIRST)
bus_setup |= DSPI_CTAR_LSBFE;
dspi_write32(priv->flags, &priv->regs->ctar[0], bus_setup);
priv->charbit =
((dspi_read32(priv->flags, &priv->regs->ctar[0]) &
DSPI_CTAR_TRSZ(15)) == DSPI_CTAR_TRSZ(15)) ? 16 : 8;
return 0;
}
static void fsl_dspi_clr_fifo(struct fsl_dspi_priv *priv)
{
uint mcr_val;
dspi_halt(priv, 1);
mcr_val = dspi_read32(priv->flags, &priv->regs->mcr);
/* flush RX and TX FIFO */
mcr_val |= (DSPI_MCR_CTXF | DSPI_MCR_CRXF);
dspi_write32(priv->flags, &priv->regs->mcr, mcr_val);
dspi_halt(priv, 0);
}
static void dspi_tx(struct fsl_dspi_priv *priv, u32 ctrl, u16 data)
{
int timeout = DSPI_TXRX_WAIT_TIMEOUT;
/* wait for empty entries in TXFIFO or timeout */
while (DSPI_SR_TXCTR(dspi_read32(priv->flags, &priv->regs->sr)) >= 4 &&
timeout--)
udelay(1);
if (timeout >= 0)
dspi_write32(priv->flags, &priv->regs->tfr, (ctrl | data));
else
debug("dspi_tx: waiting timeout!\n");
}
static u16 dspi_rx(struct fsl_dspi_priv *priv)
{
int timeout = DSPI_TXRX_WAIT_TIMEOUT;
/* wait for valid entries in RXFIFO or timeout */
while (DSPI_SR_RXCTR(dspi_read32(priv->flags, &priv->regs->sr)) == 0 &&
timeout--)
udelay(1);
if (timeout >= 0)
return (u16)DSPI_RFR_RXDATA(
dspi_read32(priv->flags, &priv->regs->rfr));
else {
debug("dspi_rx: waiting timeout!\n");
return (u16)(~0);
}
}
static int dspi_xfer(struct fsl_dspi_priv *priv, uint cs, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
u16 *spi_rd16 = NULL, *spi_wr16 = NULL;
u8 *spi_rd = NULL, *spi_wr = NULL;
static u32 ctrl;
uint len = bitlen >> 3;
if (priv->charbit == 16) {
bitlen >>= 1;
spi_wr16 = (u16 *)dout;
spi_rd16 = (u16 *)din;
} else {
spi_wr = (u8 *)dout;
spi_rd = (u8 *)din;
}
if ((flags & SPI_XFER_BEGIN) == SPI_XFER_BEGIN)
ctrl |= DSPI_TFR_CONT;
ctrl = ctrl & DSPI_TFR_CONT;
ctrl = ctrl | DSPI_TFR_CTAS(0) | DSPI_TFR_PCS(cs);
if (len > 1) {
int tmp_len = len - 1;
while (tmp_len--) {
if ((dout != NULL) && (din != NULL)) {
if (priv->charbit == 16) {
dspi_tx(priv, ctrl, *spi_wr16++);
*spi_rd16++ = dspi_rx(priv);
}
else {
dspi_tx(priv, ctrl, *spi_wr++);
*spi_rd++ = dspi_rx(priv);
}
}
else if (dout != NULL) {
if (priv->charbit == 16)
dspi_tx(priv, ctrl, *spi_wr16++);
else
dspi_tx(priv, ctrl, *spi_wr++);
dspi_rx(priv);
}
else if (din != NULL) {
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
if (priv->charbit == 16)
*spi_rd16++ = dspi_rx(priv);
else
*spi_rd++ = dspi_rx(priv);
}
}
len = 1; /* remaining byte */
}
if ((flags & SPI_XFER_END) == SPI_XFER_END)
ctrl &= ~DSPI_TFR_CONT;
if (len) {
if ((dout != NULL) && (din != NULL)) {
if (priv->charbit == 16) {
dspi_tx(priv, ctrl, *spi_wr16++);
*spi_rd16++ = dspi_rx(priv);
}
else {
dspi_tx(priv, ctrl, *spi_wr++);
*spi_rd++ = dspi_rx(priv);
}
}
else if (dout != NULL) {
if (priv->charbit == 16)
dspi_tx(priv, ctrl, *spi_wr16);
else
dspi_tx(priv, ctrl, *spi_wr);
dspi_rx(priv);
}
else if (din != NULL) {
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
if (priv->charbit == 16)
*spi_rd16 = dspi_rx(priv);
else
*spi_rd = dspi_rx(priv);
}
} else {
/* dummy read */
dspi_tx(priv, ctrl, DSPI_IDLE_VAL);
dspi_rx(priv);
}
return 0;
}
/**
* Calculate the divide value between input clk frequency and expected SCK frequency
* Formula: SCK = (clkrate/pbr) x ((1+dbr)/br)
* Dbr: use default value 0
*
* @pbr: return Baud Rate Prescaler value
* @br: return Baud Rate Scaler value
* @speed_hz: expected SCK frequency
* @clkrate: input clk frequency
*/
static int fsl_dspi_hz_to_spi_baud(int *pbr, int *br,
int speed_hz, uint clkrate)
{
/* Valid baud rate pre-scaler values */
int pbr_tbl[4] = {2, 3, 5, 7};
int brs[16] = {2, 4, 6, 8,
16, 32, 64, 128,
256, 512, 1024, 2048,
4096, 8192, 16384, 32768};
int temp, i = 0, j = 0;
temp = clkrate / speed_hz;
for (i = 0; i < ARRAY_SIZE(pbr_tbl); i++)
for (j = 0; j < ARRAY_SIZE(brs); j++) {
if (pbr_tbl[i] * brs[j] >= temp) {
*pbr = i;
*br = j;
return 0;
}
}
debug("Can not find valid baud rate,speed_hz is %d, ", speed_hz);
debug("clkrate is %d, we use the max prescaler value.\n", clkrate);
*pbr = ARRAY_SIZE(pbr_tbl) - 1;
*br = ARRAY_SIZE(brs) - 1;
return -EINVAL;
}
static int fsl_dspi_cfg_speed(struct fsl_dspi_priv *priv, uint speed)
{
int ret;
uint bus_setup;
int best_i, best_j, bus_clk;
bus_clk = priv->bus_clk;
debug("DSPI set_speed: expected SCK speed %u, bus_clk %u.\n",
speed, bus_clk);
bus_setup = dspi_read32(priv->flags, &priv->regs->ctar[0]);
bus_setup &= ~(DSPI_CTAR_DBR | DSPI_CTAR_PBR(0x3) | DSPI_CTAR_BR(0xf));
ret = fsl_dspi_hz_to_spi_baud(&best_i, &best_j, speed, bus_clk);
if (ret) {
speed = priv->speed_hz;
debug("DSPI set_speed use default SCK rate %u.\n", speed);
fsl_dspi_hz_to_spi_baud(&best_i, &best_j, speed, bus_clk);
}
bus_setup |= (DSPI_CTAR_PBR(best_i) | DSPI_CTAR_BR(best_j));
dspi_write32(priv->flags, &priv->regs->ctar[0], bus_setup);
priv->speed_hz = speed;
return 0;
}
#ifndef CONFIG_DM_SPI
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
if (((cs >= 0) && (cs < 8)) && ((bus >= 0) && (bus < 8)))
return 1;
else
return 0;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_dspi *dspi;
uint mcr_cfg_val;
dspi = spi_alloc_slave(struct fsl_dspi, bus, cs);
if (!dspi)
return NULL;
cpu_dspi_port_conf();
#ifdef CONFIG_SYS_FSL_DSPI_BE
dspi->priv.flags |= DSPI_FLAG_REGMAP_ENDIAN_BIG;
#endif
dspi->priv.regs = (struct dspi *)MMAP_DSPI;
#ifdef CONFIG_M68K
dspi->priv.bus_clk = gd->bus_clk;
#else
dspi->priv.bus_clk = mxc_get_clock(MXC_DSPI_CLK);
#endif
dspi->priv.speed_hz = FSL_DSPI_DEFAULT_SCK_FREQ;
/* default: all CS signals inactive state is high */
mcr_cfg_val = DSPI_MCR_MSTR | DSPI_MCR_PCSIS_MASK |
DSPI_MCR_CRXF | DSPI_MCR_CTXF;
fsl_dspi_init_mcr(&dspi->priv, mcr_cfg_val);
for (i = 0; i < FSL_DSPI_MAX_CHIPSELECT; i++)
dspi->priv.ctar_val[i] = DSPI_CTAR_DEFAULT_VALUE;
#ifdef CONFIG_SYS_DSPI_CTAR0
if (FSL_DSPI_MAX_CHIPSELECT > 0)
dspi->priv.ctar_val[0] = CONFIG_SYS_DSPI_CTAR0;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR1
if (FSL_DSPI_MAX_CHIPSELECT > 1)
dspi->priv.ctar_val[1] = CONFIG_SYS_DSPI_CTAR1;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR2
if (FSL_DSPI_MAX_CHIPSELECT > 2)
dspi->priv.ctar_val[2] = CONFIG_SYS_DSPI_CTAR2;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR3
if (FSL_DSPI_MAX_CHIPSELECT > 3)
dspi->priv.ctar_val[3] = CONFIG_SYS_DSPI_CTAR3;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR4
if (FSL_DSPI_MAX_CHIPSELECT > 4)
dspi->priv.ctar_val[4] = CONFIG_SYS_DSPI_CTAR4;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR5
if (FSL_DSPI_MAX_CHIPSELECT > 5)
dspi->priv.ctar_val[5] = CONFIG_SYS_DSPI_CTAR5;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR6
if (FSL_DSPI_MAX_CHIPSELECT > 6)
dspi->priv.ctar_val[6] = CONFIG_SYS_DSPI_CTAR6;
#endif
#ifdef CONFIG_SYS_DSPI_CTAR7
if (FSL_DSPI_MAX_CHIPSELECT > 7)
dspi->priv.ctar_val[7] = CONFIG_SYS_DSPI_CTAR7;
#endif
fsl_dspi_cfg_speed(&dspi->priv, max_hz);
/* configure transfer mode */
fsl_dspi_cfg_ctar_mode(&dspi->priv, cs, mode);
/* configure active state of CSX */
fsl_dspi_cfg_cs_active_state(&dspi->priv, cs, mode);
return &dspi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
free(slave);
}
int spi_claim_bus(struct spi_slave *slave)
{
uint sr_val;
struct fsl_dspi *dspi = (struct fsl_dspi *)slave;
cpu_dspi_claim_bus(slave->bus, slave->cs);
fsl_dspi_clr_fifo(&dspi->priv);
/* check module TX and RX status */
sr_val = dspi_read32(dspi->priv.flags, &dspi->priv.regs->sr);
if ((sr_val & DSPI_SR_TXRXS) != DSPI_SR_TXRXS) {
debug("DSPI RX/TX not ready!\n");
return -EIO;
}
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct fsl_dspi *dspi = (struct fsl_dspi *)slave;
dspi_halt(&dspi->priv, 1);
cpu_dspi_release_bus(slave->bus.slave->cs);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct fsl_dspi *dspi = (struct fsl_dspi *)slave;
return dspi_xfer(&dspi->priv, slave->cs, bitlen, dout, din, flags);
}
#else
static int fsl_dspi_child_pre_probe(struct udevice *dev)
{
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
struct fsl_dspi_priv *priv = dev_get_priv(dev->parent);
if (slave_plat->cs >= priv->num_chipselect) {
debug("DSPI invalid chipselect number %d(max %d)!\n",
slave_plat->cs, priv->num_chipselect - 1);
return -EINVAL;
}
priv->ctar_val[slave_plat->cs] = DSPI_CTAR_DEFAULT_VALUE;
debug("DSPI pre_probe slave device on CS %u, max_hz %u, mode 0x%x.\n",
slave_plat->cs, slave_plat->max_hz, slave_plat->mode);
return 0;
}
static int fsl_dspi_probe(struct udevice *bus)
{
struct fsl_dspi_platdata *plat = dev_get_platdata(bus);
struct fsl_dspi_priv *priv = dev_get_priv(bus);
struct dm_spi_bus *dm_spi_bus;
uint mcr_cfg_val;
dm_spi_bus = bus->uclass_priv;
/* cpu speical pin muxing configure */
cpu_dspi_port_conf();
/* get input clk frequency */
priv->regs = (struct dspi *)plat->regs_addr;
priv->flags = plat->flags;
#ifdef CONFIG_M68K
priv->bus_clk = gd->bus_clk;
#else
priv->bus_clk = mxc_get_clock(MXC_DSPI_CLK);
#endif
priv->num_chipselect = plat->num_chipselect;
priv->speed_hz = plat->speed_hz;
/* frame data length in bits, default 8bits */
priv->charbit = 8;
dm_spi_bus->max_hz = plat->speed_hz;
/* default: all CS signals inactive state is high */
mcr_cfg_val = DSPI_MCR_MSTR | DSPI_MCR_PCSIS_MASK |
DSPI_MCR_CRXF | DSPI_MCR_CTXF;
fsl_dspi_init_mcr(priv, mcr_cfg_val);
debug("%s probe done, bus-num %d.\n", bus->name, bus->seq);
return 0;
}
static int fsl_dspi_claim_bus(struct udevice *dev)
{
uint sr_val;
struct fsl_dspi_priv *priv;
struct udevice *bus = dev->parent;
struct dm_spi_slave_platdata *slave_plat =
dev_get_parent_platdata(dev);
priv = dev_get_priv(bus);
/* processor special preparation work */
cpu_dspi_claim_bus(bus->seq, slave_plat->cs);
/* configure transfer mode */
fsl_dspi_cfg_ctar_mode(priv, slave_plat->cs, priv->mode);
/* configure active state of CSX */
fsl_dspi_cfg_cs_active_state(priv, slave_plat->cs,
priv->mode);
fsl_dspi_clr_fifo(priv);
/* check module TX and RX status */
sr_val = dspi_read32(priv->flags, &priv->regs->sr);
if ((sr_val & DSPI_SR_TXRXS) != DSPI_SR_TXRXS) {
debug("DSPI RX/TX not ready!\n");
return -EIO;
}
return 0;
}
static int fsl_dspi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev->parent;
struct fsl_dspi_priv *priv = dev_get_priv(bus);
struct dm_spi_slave_platdata *slave_plat =
dev_get_parent_platdata(dev);
/* halt module */
dspi_halt(priv, 1);
/* processor special release work */
cpu_dspi_release_bus(bus->seq, slave_plat->cs);
return 0;
}
/**
* This function doesn't do anything except help with debugging
*/
static int fsl_dspi_bind(struct udevice *bus)
{
debug("%s assigned req_seq %d.\n", bus->name, bus->req_seq);
return 0;
}
static int fsl_dspi_ofdata_to_platdata(struct udevice *bus)
{
fdt_addr_t addr;
struct fsl_dspi_platdata *plat = bus->platdata;
const void *blob = gd->fdt_blob;
int node = dev_of_offset(bus);
if (fdtdec_get_bool(blob, node, "big-endian"))
plat->flags |= DSPI_FLAG_REGMAP_ENDIAN_BIG;
plat->num_chipselect =
fdtdec_get_int(blob, node, "num-cs", FSL_DSPI_MAX_CHIPSELECT);
addr = devfdt_get_addr(bus);
if (addr == FDT_ADDR_T_NONE) {
debug("DSPI: Can't get base address or size\n");
return -ENOMEM;
}
plat->regs_addr = addr;
plat->speed_hz = fdtdec_get_int(blob,
node, "spi-max-frequency", FSL_DSPI_DEFAULT_SCK_FREQ);
debug("DSPI: regs=%pa, max-frequency=%d, endianess=%s, num-cs=%d\n",
&plat->regs_addr, plat->speed_hz,
plat->flags & DSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le",
plat->num_chipselect);
return 0;
}
static int fsl_dspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_dspi_priv *priv;
struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
return dspi_xfer(priv, slave_plat->cs, bitlen, dout, din, flags);
}
static int fsl_dspi_set_speed(struct udevice *bus, uint speed)
{
struct fsl_dspi_priv *priv = dev_get_priv(bus);
return fsl_dspi_cfg_speed(priv, speed);
}
static int fsl_dspi_set_mode(struct udevice *bus, uint mode)
{
struct fsl_dspi_priv *priv = dev_get_priv(bus);
debug("DSPI set_mode: mode 0x%x.\n", mode);
/*
* We store some chipselect special configure value in priv->ctar_val,
* and we can't get the correct chipselect number here,
* so just store mode value.
* Do really configuration when claim_bus.
*/
priv->mode = mode;
return 0;
}
static const struct dm_spi_ops fsl_dspi_ops = {
.claim_bus = fsl_dspi_claim_bus,
.release_bus = fsl_dspi_release_bus,
.xfer = fsl_dspi_xfer,
.set_speed = fsl_dspi_set_speed,
.set_mode = fsl_dspi_set_mode,
};
static const struct udevice_id fsl_dspi_ids[] = {
{ .compatible = "fsl,vf610-dspi" },
{ }
};
U_BOOT_DRIVER(fsl_dspi) = {
.name = "fsl_dspi",
.id = UCLASS_SPI,
.of_match = fsl_dspi_ids,
.ops = &fsl_dspi_ops,
.ofdata_to_platdata = fsl_dspi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct fsl_dspi_platdata),
.priv_auto_alloc_size = sizeof(struct fsl_dspi_priv),
.probe = fsl_dspi_probe,
.child_pre_probe = fsl_dspi_child_pre_probe,
.bind = fsl_dspi_bind,
};
#endif