blob: a18316eda71117a17273b16210ee697f7ccd0aeb [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
* Copyright 2019-2020 NXP
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <cpu_func.h>
#include <errno.h>
#include <hwconfig.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <fsl_esdhc.h>
#include <fdt_support.h>
#include <asm/cache.h>
#include <asm/io.h>
#include <dm.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <sdhci.h>
DECLARE_GLOBAL_DATA_PTR;
struct fsl_esdhc {
uint dsaddr; /* SDMA system address register */
uint blkattr; /* Block attributes register */
uint cmdarg; /* Command argument register */
uint xfertyp; /* Transfer type register */
uint cmdrsp0; /* Command response 0 register */
uint cmdrsp1; /* Command response 1 register */
uint cmdrsp2; /* Command response 2 register */
uint cmdrsp3; /* Command response 3 register */
uint datport; /* Buffer data port register */
uint prsstat; /* Present state register */
uint proctl; /* Protocol control register */
uint sysctl; /* System Control Register */
uint irqstat; /* Interrupt status register */
uint irqstaten; /* Interrupt status enable register */
uint irqsigen; /* Interrupt signal enable register */
uint autoc12err; /* Auto CMD error status register */
uint hostcapblt; /* Host controller capabilities register */
uint wml; /* Watermark level register */
char reserved1[8]; /* reserved */
uint fevt; /* Force event register */
uint admaes; /* ADMA error status register */
uint adsaddrl; /* ADMA system address low register */
uint adsaddrh; /* ADMA system address high register */
char reserved2[156];
uint hostver; /* Host controller version register */
char reserved3[4]; /* reserved */
uint dmaerraddr; /* DMA error address register */
char reserved4[4]; /* reserved */
uint dmaerrattr; /* DMA error attribute register */
char reserved5[4]; /* reserved */
uint hostcapblt2; /* Host controller capabilities register 2 */
char reserved6[8]; /* reserved */
uint tbctl; /* Tuning block control register */
char reserved7[32]; /* reserved */
uint sdclkctl; /* SD clock control register */
uint sdtimingctl; /* SD timing control register */
char reserved8[20]; /* reserved */
uint dllcfg0; /* DLL config 0 register */
char reserved9[12]; /* reserved */
uint dllstat0; /* DLL status 0 register */
char reserved10[664];/* reserved */
uint esdhcctl; /* eSDHC control register */
};
struct fsl_esdhc_plat {
struct mmc_config cfg;
struct mmc mmc;
};
/**
* struct fsl_esdhc_priv
*
* @esdhc_regs: registers of the sdhc controller
* @sdhc_clk: Current clk of the sdhc controller
* @bus_width: bus width, 1bit, 4bit or 8bit
* @cfg: mmc config
* @mmc: mmc
* Following is used when Driver Model is enabled for MMC
* @dev: pointer for the device
* @cd_gpio: gpio for card detection
* @wp_gpio: gpio for write protection
*/
struct fsl_esdhc_priv {
struct fsl_esdhc *esdhc_regs;
unsigned int sdhc_clk;
bool is_sdhc_per_clk;
unsigned int clock;
#if !CONFIG_IS_ENABLED(DM_MMC)
struct mmc *mmc;
#endif
struct udevice *dev;
struct sdhci_adma_desc *adma_desc_table;
dma_addr_t dma_addr;
};
/* Return the XFERTYP flags for a given command and data packet */
static uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
if (!IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO) &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200)
xfertyp |= XFERTYP_DMAEN;
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111))
xfertyp |= XFERTYP_AC12EN;
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= XFERTYP_CMDTYP_ABORT;
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void esdhc_pio_read_write(struct fsl_esdhc_priv *priv,
struct mmc_data *data)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
uint blocks;
char *buffer;
uint databuf;
uint size;
uint irqstat;
ulong start;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Read Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = in_le32(&regs->datport);
*((uint *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
start = get_timer(0);
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)) {
if (get_timer(start) > PIO_TIMEOUT) {
printf("\nData Write Failed in PIO Mode.");
return;
}
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((uint *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
out_le32(&regs->datport, databuf);
}
blocks--;
}
}
}
static void esdhc_setup_watermark_level(struct fsl_esdhc_priv *priv,
struct mmc_data *data)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
uint wml_value = data->blocksize / 4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > WML_RD_WML_MAX)
wml_value = WML_RD_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
} else {
if (wml_value > WML_WR_WML_MAX)
wml_value = WML_WR_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
}
}
static void esdhc_setup_dma(struct fsl_esdhc_priv *priv, struct mmc_data *data)
{
uint trans_bytes = data->blocksize * data->blocks;
struct fsl_esdhc *regs = priv->esdhc_regs;
phys_addr_t adma_addr;
void *buf;
if (data->flags & MMC_DATA_WRITE)
buf = (void *)data->src;
else
buf = data->dest;
priv->dma_addr = dma_map_single(buf, trans_bytes,
mmc_get_dma_dir(data));
if (IS_ENABLED(CONFIG_FSL_ESDHC_SUPPORT_ADMA2) &&
priv->adma_desc_table) {
debug("Using ADMA2\n");
/* prefer ADMA2 if it is available */
sdhci_prepare_adma_table(priv->adma_desc_table, data,
priv->dma_addr);
adma_addr = virt_to_phys(priv->adma_desc_table);
esdhc_write32(&regs->adsaddrl, lower_32_bits(adma_addr));
if (IS_ENABLED(CONFIG_DMA_ADDR_T_64BIT))
esdhc_write32(&regs->adsaddrh, upper_32_bits(adma_addr));
esdhc_clrsetbits32(&regs->proctl, PROCTL_DMAS_MASK,
PROCTL_DMAS_ADMA2);
} else {
debug("Using SDMA\n");
if (upper_32_bits(priv->dma_addr))
printf("Cannot use 64 bit addresses with SDMA\n");
esdhc_write32(&regs->dsaddr, lower_32_bits(priv->dma_addr));
esdhc_clrsetbits32(&regs->proctl, PROCTL_DMAS_MASK,
PROCTL_DMAS_SDMA);
}
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
}
static int esdhc_setup_data(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_data *data)
{
int timeout;
bool is_write = data->flags & MMC_DATA_WRITE;
struct fsl_esdhc *regs = priv->esdhc_regs;
if (is_write && !(esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL)) {
printf("Can not write to locked SD card.\n");
return -EINVAL;
}
if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO))
esdhc_setup_watermark_level(priv, data);
else
esdhc_setup_dma(priv, data);
/* Calculate the timeout period for data transactions */
/*
* 1)Timeout period = (2^(timeout+13)) SD Clock cycles
* 2)Timeout period should be minimum 0.250sec as per SD Card spec
* So, Number of SD Clock cycles for 0.25sec should be minimum
* (SD Clock/sec * 0.25 sec) SD Clock cycles
* = (mmc->clock * 1/4) SD Clock cycles
* As 1) >= 2)
* => (2^(timeout+13)) >= mmc->clock * 1/4
* Taking log2 both the sides
* => timeout + 13 >= log2(mmc->clock/4)
* Rounding up to next power of 2
* => timeout + 13 = log2(mmc->clock/4) + 1
* => timeout + 13 = fls(mmc->clock/4)
*
* However, the MMC spec "It is strongly recommended for hosts to
* implement more than 500ms timeout value even if the card
* indicates the 250ms maximum busy length." Even the previous
* value of 300ms is known to be insufficient for some cards.
* So, we use
* => timeout + 13 = fls(mmc->clock/2)
*/
timeout = fls(mmc->clock/2);
timeout -= 13;
if (timeout > 14)
timeout = 14;
if (timeout < 0)
timeout = 0;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC_A001) &&
(timeout == 4 || timeout == 8 || timeout == 12))
timeout++;
if (IS_ENABLED(ESDHCI_QUIRK_BROKEN_TIMEOUT_VALUE))
timeout = 0xE;
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
return 0;
}
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int esdhc_send_cmd_common(struct fsl_esdhc_priv *priv, struct mmc *mmc,
struct mmc_cmd *cmd, struct mmc_data *data)
{
int err = 0;
uint xfertyp;
uint irqstat;
u32 flags = IRQSTAT_CC | IRQSTAT_CTOE;
struct fsl_esdhc *regs = priv->esdhc_regs;
unsigned long start;
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC111) &&
cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
esdhc_write32(&regs->irqstat, -1);
sync();
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Wait at least 8 SD clock cycles before the next command */
/*
* Note: This is way more than 8 cycles, but 1ms seems to
* resolve timing issues with some cards
*/
udelay(1000);
/* Set up for a data transfer if we have one */
if (data) {
err = esdhc_setup_data(priv, mmc, data);
if(err)
return err;
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Mask all irqs */
esdhc_write32(&regs->irqsigen, 0);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
esdhc_write32(&regs->xfertyp, xfertyp);
if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)
flags = IRQSTAT_BRR;
/* Wait for the command to complete */
start = get_timer(0);
while (!(esdhc_read32(&regs->irqstat) & flags)) {
if (get_timer(start) > 1000) {
err = -ETIMEDOUT;
goto out;
}
}
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & CMD_ERR) {
err = -ECOMM;
goto out;
}
if (irqstat & IRQSTAT_CTOE) {
err = -ETIMEDOUT;
goto out;
}
/* Workaround for ESDHC errata ENGcm03648 */
if (!data && (cmd->resp_type & MMC_RSP_BUSY)) {
int timeout = 6000;
/* Poll on DATA0 line for cmd with busy signal for 600 ms */
while (timeout > 0 && !(esdhc_read32(&regs->prsstat) &
PRSSTAT_DAT0)) {
udelay(100);
timeout--;
}
if (timeout <= 0) {
printf("Timeout waiting for DAT0 to go high!\n");
err = -ETIMEDOUT;
goto out;
}
}
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
if (IS_ENABLED(CONFIG_SYS_FSL_ESDHC_USE_PIO)) {
esdhc_pio_read_write(priv, data);
} else {
flags = DATA_COMPLETE;
if (cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)
flags = IRQSTAT_BRR;
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & IRQSTAT_DTOE) {
err = -ETIMEDOUT;
goto out;
}
if (irqstat & DATA_ERR) {
err = -ECOMM;
goto out;
}
} while ((irqstat & flags) != flags);
/*
* Need invalidate the dcache here again to avoid any
* cache-fill during the DMA operations such as the
* speculative pre-fetching etc.
*/
dma_unmap_single(priv->dma_addr,
data->blocks * data->blocksize,
mmc_get_dma_dir(data));
}
}
out:
/* Reset CMD and DATA portions on error */
if (err) {
esdhc_write32(&regs->sysctl, esdhc_read32(&regs->sysctl) |
SYSCTL_RSTC);
while (esdhc_read32(&regs->sysctl) & SYSCTL_RSTC)
;
if (data) {
esdhc_write32(&regs->sysctl,
esdhc_read32(&regs->sysctl) |
SYSCTL_RSTD);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTD))
;
}
}
esdhc_write32(&regs->irqstat, -1);
return err;
}
static void set_sysctl(struct fsl_esdhc_priv *priv, struct mmc *mmc, uint clock)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int div = 1;
int pre_div = 2;
unsigned int sdhc_clk = priv->sdhc_clk;
u32 time_out;
u32 value;
uint clk;
if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
while (sdhc_clk / (16 * pre_div) > clock && pre_div < 256)
pre_div *= 2;
while (sdhc_clk / (div * pre_div) > clock && div < 16)
div++;
mmc->clock = sdhc_clk / pre_div / div;
priv->clock = mmc->clock;
pre_div >>= 1;
div -= 1;
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
time_out = 20;
value = PRSSTAT_SDSTB;
while (!(esdhc_read32(&regs->prsstat) & value)) {
if (time_out == 0) {
printf("fsl_esdhc: Internal clock never stabilised.\n");
break;
}
time_out--;
mdelay(1);
}
esdhc_setbits32(&regs->sysctl, SYSCTL_PEREN | SYSCTL_CKEN);
}
static void esdhc_clock_control(struct fsl_esdhc_priv *priv, bool enable)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 value;
u32 time_out;
value = esdhc_read32(&regs->sysctl);
if (enable)
value |= SYSCTL_CKEN;
else
value &= ~SYSCTL_CKEN;
esdhc_write32(&regs->sysctl, value);
time_out = 20;
value = PRSSTAT_SDSTB;
while (!(esdhc_read32(&regs->prsstat) & value)) {
if (time_out == 0) {
printf("fsl_esdhc: Internal clock never stabilised.\n");
break;
}
time_out--;
mdelay(1);
}
}
static void esdhc_flush_async_fifo(struct fsl_esdhc_priv *priv)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 time_out;
esdhc_setbits32(&regs->esdhcctl, ESDHCCTL_FAF);
time_out = 20;
while (esdhc_read32(&regs->esdhcctl) & ESDHCCTL_FAF) {
if (time_out == 0) {
printf("fsl_esdhc: Flush asynchronous FIFO timeout.\n");
break;
}
time_out--;
mdelay(1);
}
}
static void esdhc_tuning_block_enable(struct fsl_esdhc_priv *priv,
bool en)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
esdhc_clock_control(priv, false);
esdhc_flush_async_fifo(priv);
if (en)
esdhc_setbits32(&regs->tbctl, TBCTL_TB_EN);
else
esdhc_clrbits32(&regs->tbctl, TBCTL_TB_EN);
esdhc_clock_control(priv, true);
}
static void esdhc_exit_hs400(struct fsl_esdhc_priv *priv)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
esdhc_clrbits32(&regs->sdtimingctl, FLW_CTL_BG);
esdhc_clrbits32(&regs->sdclkctl, CMD_CLK_CTL);
esdhc_clock_control(priv, false);
esdhc_clrbits32(&regs->tbctl, HS400_MODE);
esdhc_clock_control(priv, true);
esdhc_clrbits32(&regs->dllcfg0, DLL_FREQ_SEL | DLL_ENABLE);
esdhc_clrbits32(&regs->tbctl, HS400_WNDW_ADJUST);
esdhc_tuning_block_enable(priv, false);
}
static int esdhc_set_timing(struct fsl_esdhc_priv *priv, enum bus_mode mode)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
ulong start;
u32 val;
/* Exit HS400 mode before setting any other mode */
if (esdhc_read32(&regs->tbctl) & HS400_MODE &&
mode != MMC_HS_400)
esdhc_exit_hs400(priv);
esdhc_clock_control(priv, false);
if (mode == MMC_HS_200)
esdhc_clrsetbits32(&regs->autoc12err, UHSM_MASK,
UHSM_SDR104_HS200);
if (mode == MMC_HS_400) {
esdhc_setbits32(&regs->tbctl, HS400_MODE);
esdhc_setbits32(&regs->sdclkctl, CMD_CLK_CTL);
esdhc_clock_control(priv, true);
if (priv->clock == 200000000)
esdhc_setbits32(&regs->dllcfg0, DLL_FREQ_SEL);
esdhc_setbits32(&regs->dllcfg0, DLL_ENABLE);
esdhc_setbits32(&regs->dllcfg0, DLL_RESET);
udelay(1);
esdhc_clrbits32(&regs->dllcfg0, DLL_RESET);
start = get_timer(0);
val = DLL_STS_SLV_LOCK;
while (!(esdhc_read32(&regs->dllstat0) & val)) {
if (get_timer(start) > 1000) {
printf("fsl_esdhc: delay chain lock timeout\n");
return -ETIMEDOUT;
}
}
esdhc_setbits32(&regs->tbctl, HS400_WNDW_ADJUST);
esdhc_clock_control(priv, false);
esdhc_flush_async_fifo(priv);
}
esdhc_clock_control(priv, true);
return 0;
}
static int esdhc_set_ios_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
int ret;
if (priv->is_sdhc_per_clk) {
/* Select to use peripheral clock */
esdhc_clock_control(priv, false);
esdhc_setbits32(&regs->esdhcctl, ESDHCCTL_PCS);
esdhc_clock_control(priv, true);
}
if (mmc->selected_mode == MMC_HS_400)
esdhc_tuning_block_enable(priv, true);
/* Set the clock speed */
if (priv->clock != mmc->clock)
set_sysctl(priv, mmc, mmc->clock);
/* Set timing */
ret = esdhc_set_timing(priv, mmc->selected_mode);
if (ret)
return ret;
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (mmc->bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (mmc->bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
return 0;
}
static void esdhc_enable_cache_snooping(struct fsl_esdhc *regs)
{
#ifdef CONFIG_ARCH_MPC830X
immap_t *immr = (immap_t *)CONFIG_SYS_IMMR;
sysconf83xx_t *sysconf = &immr->sysconf;
setbits_be32(&sysconf->sdhccr, 0x02000000);
#else
esdhc_write32(&regs->esdhcctl, 0x00000040);
#endif
}
static int esdhc_init_common(struct fsl_esdhc_priv *priv, struct mmc *mmc)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
ulong start;
/* Reset the entire host controller */
esdhc_setbits32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
start = get_timer(0);
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA)) {
if (get_timer(start) > 1000)
return -ETIMEDOUT;
}
/* Clean TBCTL[TB_EN] which is not able to be reset by reset all */
esdhc_clrbits32(&regs->tbctl, TBCTL_TB_EN);
esdhc_enable_cache_snooping(regs);
esdhc_setbits32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
set_sysctl(priv, mmc, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
return 0;
}
static int esdhc_getcd_common(struct fsl_esdhc_priv *priv)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
#ifdef CONFIG_ESDHC_DETECT_QUIRK
if (CONFIG_ESDHC_DETECT_QUIRK)
return 1;
#endif
if (esdhc_read32(&regs->prsstat) & PRSSTAT_CINS)
return 1;
return 0;
}
static void fsl_esdhc_get_cfg_common(struct fsl_esdhc_priv *priv,
struct mmc_config *cfg)
{
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 caps;
caps = esdhc_read32(&regs->hostcapblt);
if (IS_ENABLED(CONFIG_SYS_FSL_ERRATUM_ESDHC135))
caps &= ~(HOSTCAPBLT_SRS | HOSTCAPBLT_VS18 | HOSTCAPBLT_VS30);
if (IS_ENABLED(CONFIG_SYS_FSL_MMC_HAS_CAPBLT_VS33))
caps |= HOSTCAPBLT_VS33;
if (caps & HOSTCAPBLT_VS18)
cfg->voltages |= MMC_VDD_165_195;
if (caps & HOSTCAPBLT_VS30)
cfg->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & HOSTCAPBLT_VS33)
cfg->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
cfg->name = "FSL_SDHC";
if (caps & HOSTCAPBLT_HSS)
cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
cfg->f_min = 400000;
cfg->f_max = min(priv->sdhc_clk, (u32)200000000);
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
}
#ifdef CONFIG_OF_LIBFDT
__weak int esdhc_status_fixup(void *blob, const char *compat)
{
if (IS_ENABLED(CONFIG_FSL_ESDHC_PIN_MUX) && !hwconfig("esdhc")) {
do_fixup_by_compat(blob, compat, "status", "disabled",
sizeof("disabled"), 1);
return 1;
}
return 0;
}
#if CONFIG_IS_ENABLED(DM_MMC)
static int fsl_esdhc_get_cd(struct udevice *dev);
static void esdhc_disable_for_no_card(void *blob)
{
struct udevice *dev;
for (uclass_first_device(UCLASS_MMC, &dev);
dev;
uclass_next_device(&dev)) {
char esdhc_path[50];
if (fsl_esdhc_get_cd(dev))
continue;
snprintf(esdhc_path, sizeof(esdhc_path), "/soc/esdhc@%lx",
(unsigned long)dev_read_addr(dev));
do_fixup_by_path(blob, esdhc_path, "status", "disabled",
sizeof("disabled"), 1);
}
}
#else
static void esdhc_disable_for_no_card(void *blob)
{
}
#endif
void fdt_fixup_esdhc(void *blob, struct bd_info *bd)
{
const char *compat = "fsl,esdhc";
if (esdhc_status_fixup(blob, compat))
return;
if (IS_ENABLED(CONFIG_FSL_ESDHC_33V_IO_RELIABILITY_WORKAROUND))
esdhc_disable_for_no_card(blob);
do_fixup_by_compat_u32(blob, compat, "clock-frequency",
gd->arch.sdhc_clk, 1);
}
#endif
#if !CONFIG_IS_ENABLED(DM_MMC)
static int esdhc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_getcd_common(priv);
}
static int esdhc_init(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_init_common(priv, mmc);
}
static int esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_send_cmd_common(priv, mmc, cmd, data);
}
static int esdhc_set_ios(struct mmc *mmc)
{
struct fsl_esdhc_priv *priv = mmc->priv;
return esdhc_set_ios_common(priv, mmc);
}
static const struct mmc_ops esdhc_ops = {
.getcd = esdhc_getcd,
.init = esdhc_init,
.send_cmd = esdhc_send_cmd,
.set_ios = esdhc_set_ios,
};
int fsl_esdhc_initialize(struct bd_info *bis, struct fsl_esdhc_cfg *cfg)
{
struct fsl_esdhc_plat *plat;
struct fsl_esdhc_priv *priv;
struct mmc_config *mmc_cfg;
struct mmc *mmc;
if (!cfg)
return -EINVAL;
priv = calloc(sizeof(struct fsl_esdhc_priv), 1);
if (!priv)
return -ENOMEM;
plat = calloc(sizeof(struct fsl_esdhc_plat), 1);
if (!plat) {
free(priv);
return -ENOMEM;
}
priv->esdhc_regs = (struct fsl_esdhc *)(unsigned long)(cfg->esdhc_base);
priv->sdhc_clk = cfg->sdhc_clk;
if (gd->arch.sdhc_per_clk)
priv->is_sdhc_per_clk = true;
mmc_cfg = &plat->cfg;
if (cfg->max_bus_width == 8) {
mmc_cfg->host_caps |= MMC_MODE_1BIT | MMC_MODE_4BIT |
MMC_MODE_8BIT;
} else if (cfg->max_bus_width == 4) {
mmc_cfg->host_caps |= MMC_MODE_1BIT | MMC_MODE_4BIT;
} else if (cfg->max_bus_width == 1) {
mmc_cfg->host_caps |= MMC_MODE_1BIT;
} else {
mmc_cfg->host_caps |= MMC_MODE_1BIT | MMC_MODE_4BIT |
MMC_MODE_8BIT;
printf("No max bus width provided. Assume 8-bit supported.\n");
}
if (IS_ENABLED(CONFIG_ESDHC_DETECT_8_BIT_QUIRK))
mmc_cfg->host_caps &= ~MMC_MODE_8BIT;
mmc_cfg->ops = &esdhc_ops;
fsl_esdhc_get_cfg_common(priv, mmc_cfg);
mmc = mmc_create(mmc_cfg, priv);
if (!mmc)
return -EIO;
priv->mmc = mmc;
return 0;
}
int fsl_esdhc_mmc_init(struct bd_info *bis)
{
struct fsl_esdhc_cfg *cfg;
cfg = calloc(sizeof(struct fsl_esdhc_cfg), 1);
cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR;
/* Prefer peripheral clock which provides higher frequency. */
if (gd->arch.sdhc_per_clk)
cfg->sdhc_clk = gd->arch.sdhc_per_clk;
else
cfg->sdhc_clk = gd->arch.sdhc_clk;
return fsl_esdhc_initialize(bis, cfg);
}
#else /* DM_MMC */
static int fsl_esdhc_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
u32 caps, hostver;
fdt_addr_t addr;
struct mmc *mmc;
int ret;
addr = dev_read_addr(dev);
if (addr == FDT_ADDR_T_NONE)
return -EINVAL;
#ifdef CONFIG_PPC
priv->esdhc_regs = (struct fsl_esdhc *)lower_32_bits(addr);
#else
priv->esdhc_regs = (struct fsl_esdhc *)addr;
#endif
priv->dev = dev;
if (IS_ENABLED(CONFIG_FSL_ESDHC_SUPPORT_ADMA2)) {
/*
* Only newer eSDHC controllers can do ADMA2 if the ADMA flag
* is set in the host capabilities register.
*/
caps = esdhc_read32(&priv->esdhc_regs->hostcapblt);
hostver = esdhc_read32(&priv->esdhc_regs->hostver);
if (caps & HOSTCAPBLT_DMAS &&
HOSTVER_VENDOR(hostver) > VENDOR_V_22) {
priv->adma_desc_table = sdhci_adma_init();
if (!priv->adma_desc_table)
debug("Could not allocate ADMA tables, falling back to SDMA\n");
}
}
if (gd->arch.sdhc_per_clk) {
priv->sdhc_clk = gd->arch.sdhc_per_clk;
priv->is_sdhc_per_clk = true;
} else {
priv->sdhc_clk = gd->arch.sdhc_clk;
}
if (priv->sdhc_clk <= 0) {
dev_err(dev, "Unable to get clk for %s\n", dev->name);
return -EINVAL;
}
fsl_esdhc_get_cfg_common(priv, &plat->cfg);
mmc_of_parse(dev, &plat->cfg);
mmc = &plat->mmc;
mmc->cfg = &plat->cfg;
mmc->dev = dev;
upriv->mmc = mmc;
ret = esdhc_init_common(priv, mmc);
if (ret)
return ret;
if (IS_ENABLED(CONFIG_FSL_ESDHC_33V_IO_RELIABILITY_WORKAROUND) &&
!fsl_esdhc_get_cd(dev))
esdhc_setbits32(&priv->esdhc_regs->proctl, PROCTL_VOLT_SEL);
return 0;
}
static int fsl_esdhc_get_cd(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
if (plat->cfg.host_caps & MMC_CAP_NONREMOVABLE)
return 1;
return esdhc_getcd_common(priv);
}
static int fsl_esdhc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_send_cmd_common(priv, &plat->mmc, cmd, data);
}
static int fsl_esdhc_set_ios(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_set_ios_common(priv, &plat->mmc);
}
static int fsl_esdhc_reinit(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
return esdhc_init_common(priv, &plat->mmc);
}
#ifdef MMC_SUPPORTS_TUNING
static int fsl_esdhc_execute_tuning(struct udevice *dev, uint32_t opcode)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
struct fsl_esdhc *regs = priv->esdhc_regs;
u32 val, irqstaten;
int i;
esdhc_tuning_block_enable(priv, true);
esdhc_setbits32(&regs->autoc12err, EXECUTE_TUNING);
irqstaten = esdhc_read32(&regs->irqstaten);
esdhc_write32(&regs->irqstaten, IRQSTATEN_BRR);
for (i = 0; i < MAX_TUNING_LOOP; i++) {
mmc_send_tuning(&plat->mmc, opcode, NULL);
mdelay(1);
val = esdhc_read32(&regs->autoc12err);
if (!(val & EXECUTE_TUNING)) {
if (val & SMPCLKSEL)
break;
}
}
esdhc_write32(&regs->irqstaten, irqstaten);
if (i != MAX_TUNING_LOOP) {
if (plat->mmc.hs400_tuning)
esdhc_setbits32(&regs->sdtimingctl, FLW_CTL_BG);
return 0;
}
printf("fsl_esdhc: tuning failed!\n");
esdhc_clrbits32(&regs->autoc12err, SMPCLKSEL);
esdhc_clrbits32(&regs->autoc12err, EXECUTE_TUNING);
esdhc_tuning_block_enable(priv, false);
return -ETIMEDOUT;
}
#endif
int fsl_esdhc_hs400_prepare_ddr(struct udevice *dev)
{
struct fsl_esdhc_priv *priv = dev_get_priv(dev);
esdhc_tuning_block_enable(priv, false);
return 0;
}
static const struct dm_mmc_ops fsl_esdhc_ops = {
.get_cd = fsl_esdhc_get_cd,
.send_cmd = fsl_esdhc_send_cmd,
.set_ios = fsl_esdhc_set_ios,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = fsl_esdhc_execute_tuning,
#endif
.reinit = fsl_esdhc_reinit,
.hs400_prepare_ddr = fsl_esdhc_hs400_prepare_ddr,
};
static const struct udevice_id fsl_esdhc_ids[] = {
{ .compatible = "fsl,esdhc", },
{ /* sentinel */ }
};
static int fsl_esdhc_bind(struct udevice *dev)
{
struct fsl_esdhc_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
U_BOOT_DRIVER(fsl_esdhc) = {
.name = "fsl-esdhc-mmc",
.id = UCLASS_MMC,
.of_match = fsl_esdhc_ids,
.ops = &fsl_esdhc_ops,
.bind = fsl_esdhc_bind,
.probe = fsl_esdhc_probe,
.platdata_auto_alloc_size = sizeof(struct fsl_esdhc_plat),
.priv_auto_alloc_size = sizeof(struct fsl_esdhc_priv),
};
#endif