blob: b7588fa4eec944efed3804c3f1f4e2b52dc812d1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Marek BehĂșn <kabel@kernel.org>
* Copyright (C) 2016 Tomas Hlavacek <tomas.hlavacek@nic.cz>
*
* Derived from the code for
* Marvell/db-88f6820-gp by Stefan Roese <sr@denx.de>
*/
#include <config.h>
#include <env.h>
#include <i2c.h>
#include <init.h>
#include <log.h>
#include <miiphy.h>
#include <mtd.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include <asm/unaligned.h>
#include <dm/uclass.h>
#include <dt-bindings/gpio/gpio.h>
#include <fdt_support.h>
#include <hexdump.h>
#include <i2c_eeprom.h>
#include <time.h>
#include <turris-omnia-mcu-interface.h>
#include <linux/bitops.h>
#include <linux/bitrev.h>
#include <linux/delay.h>
#include <u-boot/crc.h>
#include "../drivers/ddr/marvell/a38x/ddr3_init.h"
#include <../serdes/a38x/high_speed_env_spec.h>
#include "../turris_atsha_otp.h"
#include "../turris_common.h"
DECLARE_GLOBAL_DATA_PTR;
#define OMNIA_I2C_BUS_NAME "i2c@11000->i2cmux@70->i2c@0"
#define OMNIA_I2C_MCU_CHIP_ADDR 0x2a
#define OMNIA_I2C_MCU_CHIP_LEN 1
#define OMNIA_I2C_EEPROM_CHIP_ADDR 0x54
#define OMNIA_I2C_EEPROM_CHIP_LEN 2
#define OMNIA_I2C_EEPROM_MAGIC 0x0341a034
#define OMNIA_RESET_TO_LOWER_DDR_SPEED 9
#define OMNIA_LOWER_DDR_SPEED "1333H"
#define A385_SYS_RSTOUT_MASK MVEBU_REGISTER(0x18260)
#define A385_SYS_RSTOUT_MASK_WD BIT(10)
#define A385_WDT_GLOBAL_CTRL MVEBU_REGISTER(0x20300)
#define A385_WDT_GLOBAL_RATIO_MASK GENMASK(18, 16)
#define A385_WDT_GLOBAL_RATIO_SHIFT 16
#define A385_WDT_GLOBAL_25MHZ BIT(10)
#define A385_WDT_GLOBAL_ENABLE BIT(8)
#define A385_WDT_GLOBAL_STATUS MVEBU_REGISTER(0x20304)
#define A385_WDT_GLOBAL_EXPIRED BIT(31)
#define A385_WDT_DURATION MVEBU_REGISTER(0x20334)
#define A385_WD_RSTOUT_UNMASK MVEBU_REGISTER(0x20704)
#define A385_WD_RSTOUT_UNMASK_GLOBAL BIT(8)
/*
* Those values and defines are taken from the Marvell U-Boot version
* "u-boot-2013.01-2014_T3.0"
*/
#define OMNIA_GPP_OUT_ENA_LOW \
(~(BIT(1) | BIT(4) | BIT(6) | BIT(7) | BIT(8) | BIT(9) | \
BIT(10) | BIT(11) | BIT(19) | BIT(22) | BIT(23) | BIT(25) | \
BIT(26) | BIT(27) | BIT(29) | BIT(30) | BIT(31)))
#define OMNIA_GPP_OUT_ENA_MID \
(~(BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(15) | \
BIT(16) | BIT(17) | BIT(18)))
#define OMNIA_GPP_OUT_VAL_LOW 0x0
#define OMNIA_GPP_OUT_VAL_MID 0x0
#define OMNIA_GPP_POL_LOW 0x0
#define OMNIA_GPP_POL_MID 0x0
static struct serdes_map board_serdes_map[] = {
{PEX0, SERDES_SPEED_5_GBPS, PEX_ROOT_COMPLEX_X1, 0, 0},
{USB3_HOST0, SERDES_SPEED_5_GBPS, SERDES_DEFAULT_MODE, 0, 0},
{PEX1, SERDES_SPEED_5_GBPS, PEX_ROOT_COMPLEX_X1, 0, 0},
{USB3_HOST1, SERDES_SPEED_5_GBPS, SERDES_DEFAULT_MODE, 0, 0},
{PEX2, SERDES_SPEED_5_GBPS, PEX_ROOT_COMPLEX_X1, 0, 0},
{SGMII2, SERDES_SPEED_1_25_GBPS, SERDES_DEFAULT_MODE, 0, 0}
};
static struct udevice *omnia_get_i2c_chip(const char *name, uint addr,
uint offset_len)
{
struct udevice *bus, *dev;
int ret;
ret = uclass_get_device_by_name(UCLASS_I2C, OMNIA_I2C_BUS_NAME, &bus);
if (ret) {
printf("Cannot get I2C bus %s: uclass_get_device_by_name failed: %i\n",
OMNIA_I2C_BUS_NAME, ret);
return NULL;
}
ret = i2c_get_chip(bus, addr, offset_len, &dev);
if (ret) {
printf("Cannot get %s I2C chip: i2c_get_chip failed: %i\n",
name, ret);
return NULL;
}
return dev;
}
static int omnia_mcu_read(u8 cmd, void *buf, int len)
{
struct udevice *chip;
chip = omnia_get_i2c_chip("MCU", OMNIA_I2C_MCU_CHIP_ADDR,
OMNIA_I2C_MCU_CHIP_LEN);
if (!chip)
return -ENODEV;
return dm_i2c_read(chip, cmd, buf, len);
}
static int omnia_mcu_write(u8 cmd, const void *buf, int len)
{
struct udevice *chip;
chip = omnia_get_i2c_chip("MCU", OMNIA_I2C_MCU_CHIP_ADDR,
OMNIA_I2C_MCU_CHIP_LEN);
if (!chip)
return -ENODEV;
return dm_i2c_write(chip, cmd, buf, len);
}
static int omnia_mcu_get_sts_and_features(u16 *psts, u32 *pfeatures)
{
u16 sts, feat16;
int ret;
ret = omnia_mcu_read(CMD_GET_STATUS_WORD, &sts, sizeof(sts));
if (ret)
return ret;
if (psts)
*psts = sts;
if (!pfeatures)
return 0;
if (sts & STS_FEATURES_SUPPORTED) {
/* try read 32-bit features */
ret = omnia_mcu_read(CMD_GET_FEATURES, pfeatures,
sizeof(*pfeatures));
if (ret) {
/* try read 16-bit features */
ret = omnia_mcu_read(CMD_GET_FEATURES, &feat16,
sizeof(&feat16));
if (ret)
return ret;
*pfeatures = feat16;
} else {
if (*pfeatures & FEAT_FROM_BIT_16_INVALID)
*pfeatures &= GENMASK(15, 0);
}
} else {
*pfeatures = 0;
}
return 0;
}
static int omnia_mcu_get_sts(u16 *sts)
{
return omnia_mcu_get_sts_and_features(sts, NULL);
}
static bool omnia_mcu_has_feature(u32 feature)
{
u32 features;
if (omnia_mcu_get_sts_and_features(NULL, &features))
return false;
return feature & features;
}
static u32 omnia_mcu_crc32(const void *p, size_t len)
{
u32 val, crc = 0;
compiletime_assert(!(len % 4), "length has to be a multiple of 4");
while (len) {
val = bitrev32(get_unaligned_le32(p));
crc = crc32(crc, (void *)&val, 4);
p += 4;
len -= 4;
}
return ~bitrev32(crc);
}
static int omnia_mcu_get_reset(void)
{
u8 reset_status;
int ret;
ret = omnia_mcu_read(CMD_GET_RESET, &reset_status, 1);
if (ret) {
printf("omnia_mcu_read failed: %i, reset status unknown!\n", ret);
return ret;
}
return reset_status;
}
/* Can only be called after relocation, since it needs cleared BSS */
static int omnia_mcu_board_info(char *serial, u8 *mac, char *version)
{
static u8 reply[17];
static bool cached;
if (!cached) {
u8 csum;
int ret;
ret = omnia_mcu_read(CMD_BOARD_INFO_GET, reply, sizeof(reply));
if (ret)
return ret;
if (reply[0] != 16)
return -EBADMSG;
csum = reply[16];
reply[16] = 0;
if ((omnia_mcu_crc32(&reply[1], 16) & 0xff) != csum)
return -EBADMSG;
cached = true;
}
if (serial) {
const char *serial_env;
serial_env = env_get("serial#");
if (serial_env && strlen(serial_env) == 16) {
strcpy(serial, serial_env);
} else {
sprintf(serial, "%016llX",
get_unaligned_le64(&reply[1]));
env_set("serial#", serial);
}
}
if (mac)
memcpy(mac, &reply[9], ETH_ALEN);
if (version)
sprintf(version, "%u", reply[15]);
return 0;
}
static int omnia_mcu_get_board_public_key(char pub_key[static 67])
{
u8 reply[34];
int ret;
ret = omnia_mcu_read(CMD_CRYPTO_GET_PUBLIC_KEY, reply, sizeof(reply));
if (ret)
return ret;
if (reply[0] != 33)
return -EBADMSG;
bin2hex(pub_key, &reply[1], 33);
pub_key[66] = '\0';
return 0;
}
static void enable_a385_watchdog(unsigned int timeout_minutes)
{
struct sar_freq_modes sar_freq;
u32 watchdog_freq;
printf("Enabling A385 watchdog with %u minutes timeout...\n",
timeout_minutes);
/*
* Use NBCLK clock (a.k.a. L2 clock) as watchdog input clock with
* its maximal ratio 7 instead of default fixed 25 MHz clock.
* It allows to set watchdog duration up to the 22 minutes.
*/
clrsetbits_32(A385_WDT_GLOBAL_CTRL,
A385_WDT_GLOBAL_25MHZ | A385_WDT_GLOBAL_RATIO_MASK,
7 << A385_WDT_GLOBAL_RATIO_SHIFT);
/*
* Calculate watchdog clock frequency. It is defined by formula:
* freq = NBCLK / 2 / (2 ^ ratio)
* We set ratio to the maximal possible value 7.
*/
get_sar_freq(&sar_freq);
watchdog_freq = sar_freq.nb_clk * 1000000 / 2 / (1 << 7);
/* Set watchdog duration */
writel(timeout_minutes * 60 * watchdog_freq, A385_WDT_DURATION);
/* Clear the watchdog expiration bit */
clrbits_32(A385_WDT_GLOBAL_STATUS, A385_WDT_GLOBAL_EXPIRED);
/* Enable watchdog timer */
setbits_32(A385_WDT_GLOBAL_CTRL, A385_WDT_GLOBAL_ENABLE);
/* Enable reset on watchdog */
setbits_32(A385_WD_RSTOUT_UNMASK, A385_WD_RSTOUT_UNMASK_GLOBAL);
/* Unmask reset for watchdog */
clrbits_32(A385_SYS_RSTOUT_MASK, A385_SYS_RSTOUT_MASK_WD);
}
static bool disable_mcu_watchdog(void)
{
int ret;
puts("Disabling MCU watchdog... ");
ret = omnia_mcu_write(CMD_SET_WATCHDOG_STATE, "\x00", 1);
if (ret) {
printf("omnia_mcu_write failed: %i\n", ret);
return false;
}
puts("disabled\n");
return true;
}
static bool omnia_detect_sata(const char *msata_slot)
{
int ret;
u16 sts;
puts("MiniPCIe/mSATA card detection... ");
if (msata_slot) {
if (strcmp(msata_slot, "pcie") == 0) {
puts("forced to MiniPCIe via env\n");
return false;
} else if (strcmp(msata_slot, "sata") == 0) {
puts("forced to mSATA via env\n");
return true;
} else if (strcmp(msata_slot, "auto") != 0) {
printf("unsupported env value '%s', fallback to... ", msata_slot);
}
}
ret = omnia_mcu_get_sts(&sts);
if (ret) {
printf("omnia_mcu_read failed: %i, defaulting to MiniPCIe card\n",
ret);
return false;
}
if (!(sts & STS_CARD_DET)) {
puts("none\n");
return false;
}
if (sts & STS_MSATA_IND)
puts("mSATA\n");
else
puts("MiniPCIe\n");
return sts & STS_MSATA_IND;
}
static bool omnia_detect_wwan_usb3(const char *wwan_slot)
{
puts("WWAN slot configuration... ");
if (wwan_slot && strcmp(wwan_slot, "usb3") == 0) {
puts("USB3.0\n");
return true;
}
if (wwan_slot && strcmp(wwan_slot, "pcie") != 0)
printf("unsupported env value '%s', fallback to... ", wwan_slot);
puts("PCIe+USB2.0\n");
return false;
}
int hws_board_topology_load(struct serdes_map **serdes_map_array, u8 *count)
{
#ifdef CONFIG_SPL_ENV_SUPPORT
/* Do not use env_load() as malloc() pool is too small at this stage */
bool has_env = (env_init() == 0);
#endif
const char *env_value = NULL;
#ifdef CONFIG_SPL_ENV_SUPPORT
/* beware that env_get() returns static allocated memory */
env_value = has_env ? env_get("omnia_msata_slot") : NULL;
#endif
if (omnia_detect_sata(env_value)) {
/* Change SerDes for first mPCIe port (mSATA) from PCIe to SATA */
board_serdes_map[0].serdes_type = SATA0;
board_serdes_map[0].serdes_speed = SERDES_SPEED_6_GBPS;
board_serdes_map[0].serdes_mode = SERDES_DEFAULT_MODE;
}
#ifdef CONFIG_SPL_ENV_SUPPORT
/* beware that env_get() returns static allocated memory */
env_value = has_env ? env_get("omnia_wwan_slot") : NULL;
#endif
if (omnia_detect_wwan_usb3(env_value)) {
/* Disable SerDes for USB 3.0 pins on the front USB-A port */
board_serdes_map[1].serdes_type = DEFAULT_SERDES;
/* Change SerDes for third mPCIe port (WWAN) from PCIe to USB 3.0 */
board_serdes_map[4].serdes_type = USB3_HOST0;
board_serdes_map[4].serdes_speed = SERDES_SPEED_5_GBPS;
board_serdes_map[4].serdes_mode = SERDES_DEFAULT_MODE;
}
*serdes_map_array = board_serdes_map;
*count = ARRAY_SIZE(board_serdes_map);
return 0;
}
struct omnia_eeprom {
u32 magic;
u32 ramsize;
char region[4];
u32 crc;
/* second part (only considered if crc2 is not all-ones) */
char ddr_speed[5];
u8 old_ddr_training;
u8 reserved[38];
u32 crc2;
};
static bool is_omnia_eeprom_second_part_valid(const struct omnia_eeprom *oep)
{
return oep->crc2 != 0xffffffff;
}
static void make_omnia_eeprom_second_part_invalid(struct omnia_eeprom *oep)
{
oep->crc2 = 0xffffffff;
}
static bool check_eeprom_crc(const void *buf, size_t size, u32 expected,
const char *name)
{
u32 crc;
crc = crc32(0, buf, size);
if (crc != expected) {
printf("bad %s EEPROM CRC (stored %08x, computed %08x)\n",
name, expected, crc);
return false;
}
return true;
}
static struct udevice *omnia_get_eeprom(void)
{
return omnia_get_i2c_chip("EEPROM", OMNIA_I2C_EEPROM_CHIP_ADDR,
OMNIA_I2C_EEPROM_CHIP_LEN);
}
static bool omnia_read_eeprom(struct omnia_eeprom *oep)
{
struct udevice *eeprom = omnia_get_eeprom();
int ret;
if (!eeprom)
return false;
if (IS_ENABLED(CONFIG_XPL_BUILD))
ret = dm_i2c_read(eeprom, 0, (void *)oep, sizeof(*oep));
else
ret = i2c_eeprom_read(eeprom, 0, (void *)oep, sizeof(*oep));
if (ret) {
printf("cannot read EEPROM: %d\n", ret);
return false;
}
if (oep->magic != OMNIA_I2C_EEPROM_MAGIC) {
printf("bad EEPROM magic number (%08x, should be %08x)\n",
oep->magic, OMNIA_I2C_EEPROM_MAGIC);
return false;
}
if (!check_eeprom_crc(oep, offsetof(struct omnia_eeprom, crc), oep->crc,
"first"))
return false;
if (is_omnia_eeprom_second_part_valid(oep) &&
!check_eeprom_crc(oep, offsetof(struct omnia_eeprom, crc2),
oep->crc2, "second"))
make_omnia_eeprom_second_part_invalid(oep);
return true;
}
static void omnia_eeprom_set_lower_ddr_speed(void)
{
struct udevice *eeprom = omnia_get_eeprom();
struct omnia_eeprom oep;
int ret;
if (!eeprom || !omnia_read_eeprom(&oep))
return;
puts("Setting DDR speed to " OMNIA_LOWER_DDR_SPEED " in EEPROM as requested by reset button... ");
/* check if already set */
if (!strncmp(oep.ddr_speed, OMNIA_LOWER_DDR_SPEED, sizeof(oep.ddr_speed)) &&
(oep.old_ddr_training == 0 || oep.old_ddr_training == 0xff)) {
puts("was already set\n");
return;
}
strncpy(oep.ddr_speed, OMNIA_LOWER_DDR_SPEED, sizeof(oep.ddr_speed));
oep.old_ddr_training = 0xff;
oep.crc2 = crc32(0, (const void *)&oep, offsetof(struct omnia_eeprom, crc2));
ret = i2c_eeprom_write(eeprom, 0, (const void *)&oep, sizeof(oep));
if (ret)
printf("cannot write EEPROM: %d\n", ret);
else
puts("done\n");
}
int omnia_get_ram_size_gb(void)
{
static int ram_size;
struct omnia_eeprom oep;
if (!ram_size) {
/* Get the board config from EEPROM */
if (omnia_read_eeprom(&oep)) {
debug("Memory config in EEPROM: 0x%02x\n", oep.ramsize);
if (oep.ramsize == 0x2)
ram_size = 2;
else
ram_size = 1;
} else {
/* Hardcoded fallback */
puts("Memory config from EEPROM read failed!\n");
puts("Falling back to default 1 GiB!\n");
ram_size = 1;
}
}
return ram_size;
}
bool board_use_old_ddr3_training(void)
{
struct omnia_eeprom oep;
/*
* If lower DDR speed is requested by reset button, we can't use old DDR
* training algorithm.
*/
if (omnia_mcu_get_reset() == OMNIA_RESET_TO_LOWER_DDR_SPEED)
return false;
if (!omnia_read_eeprom(&oep))
return false;
if (!is_omnia_eeprom_second_part_valid(&oep))
return false;
return oep.old_ddr_training == 1;
}
static const char *omnia_get_ddr_speed(void)
{
struct omnia_eeprom oep;
static char speed[sizeof(oep.ddr_speed) + 1];
if (!omnia_read_eeprom(&oep))
return NULL;
if (!is_omnia_eeprom_second_part_valid(&oep))
return NULL;
if (!oep.ddr_speed[0] || oep.ddr_speed[0] == 0xff)
return NULL;
memcpy(&speed, &oep.ddr_speed, sizeof(oep.ddr_speed));
speed[sizeof(speed) - 1] = '\0';
return speed;
}
static const char * const omnia_get_mcu_type(void)
{
static char result[] = "xxxxxxx (with peripheral resets)";
u16 sts;
int ret;
ret = omnia_mcu_get_sts(&sts);
if (ret)
return "unknown";
switch (sts & STS_MCU_TYPE_MASK) {
case STS_MCU_TYPE_STM32:
strcpy(result, "STM32");
break;
case STS_MCU_TYPE_GD32:
strcpy(result, "GD32");
break;
case STS_MCU_TYPE_MKL:
strcpy(result, "MKL");
break;
default:
strcpy(result, "unknown");
break;
}
if (omnia_mcu_has_feature(FEAT_PERIPH_MCU))
strcat(result, " (with peripheral resets)");
return result;
}
static const char * const omnia_get_mcu_version(void)
{
static char version[82];
u8 version_app[20];
u8 version_boot[20];
int ret;
ret = omnia_mcu_read(CMD_GET_FW_VERSION_APP, &version_app, sizeof(version_app));
if (ret)
return "unknown";
ret = omnia_mcu_read(CMD_GET_FW_VERSION_BOOT, &version_boot, sizeof(version_boot));
if (ret)
return "unknown";
/*
* If git commits of MCU bootloader and MCU application are same then
* show version only once. If they are different then show both commits.
*/
if (!memcmp(version_app, version_boot, 20)) {
bin2hex(version, version_app, 20);
version[40] = '\0';
} else {
bin2hex(version, version_boot, 20);
version[40] = '/';
bin2hex(version + 41, version_app, 20);
version[81] = '\0';
}
return version;
}
/*
* Define the DDR layout / topology here in the board file. This will
* be used by the DDR3 init code in the SPL U-Boot version to configure
* the DDR3 controller.
*/
static struct mv_ddr_topology_map board_topology_map_1g = {
DEBUG_LEVEL_ERROR,
0x1, /* active interfaces */
/* cs_mask, mirror, dqs_swap, ck_swap X PUPs */
{ { { {0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0} },
SPEED_BIN_DDR_1600K, /* speed_bin */
MV_DDR_DEV_WIDTH_16BIT, /* memory_width */
MV_DDR_DIE_CAP_4GBIT, /* mem_size */
MV_DDR_FREQ_800, /* frequency */
0, 0, /* cas_wl cas_l */
MV_DDR_TEMP_NORMAL, /* temperature */
MV_DDR_TIM_2T} }, /* timing */
BUS_MASK_32BIT, /* Busses mask */
MV_DDR_CFG_DEFAULT, /* ddr configuration data source */
NOT_COMBINED, /* ddr twin-die combined */
{ {0} }, /* raw spd data */
{0} /* timing parameters */
};
static struct mv_ddr_topology_map board_topology_map_2g = {
DEBUG_LEVEL_ERROR,
0x1, /* active interfaces */
/* cs_mask, mirror, dqs_swap, ck_swap X PUPs */
{ { { {0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0},
{0x1, 0, 0, 0} },
SPEED_BIN_DDR_1600K, /* speed_bin */
MV_DDR_DEV_WIDTH_16BIT, /* memory_width */
MV_DDR_DIE_CAP_8GBIT, /* mem_size */
MV_DDR_FREQ_800, /* frequency */
0, 0, /* cas_wl cas_l */
MV_DDR_TEMP_NORMAL, /* temperature */
MV_DDR_TIM_2T} }, /* timing */
BUS_MASK_32BIT, /* Busses mask */
MV_DDR_CFG_DEFAULT, /* ddr configuration data source */
NOT_COMBINED, /* ddr twin-die combined */
{ {0} }, /* raw spd data */
{0} /* timing parameters */
};
static const struct omnia_ddr_speed {
char name[5];
u8 speed_bin;
u8 freq;
} omnia_ddr_speeds[] = {
{ "1066F", SPEED_BIN_DDR_1066F, MV_DDR_FREQ_533 },
{ "1333H", SPEED_BIN_DDR_1333H, MV_DDR_FREQ_667 },
{ "1600K", SPEED_BIN_DDR_1600K, MV_DDR_FREQ_800 },
};
static const struct omnia_ddr_speed *find_ddr_speed_setting(const char *name)
{
for (int i = 0; i < ARRAY_SIZE(omnia_ddr_speeds); ++i)
if (!strncmp(name, omnia_ddr_speeds[i].name, 5))
return &omnia_ddr_speeds[i];
return NULL;
}
bool omnia_valid_ddr_speed(const char *name)
{
return find_ddr_speed_setting(name) != NULL;
}
void omnia_print_ddr_speeds(void)
{
for (int i = 0; i < ARRAY_SIZE(omnia_ddr_speeds); ++i)
printf("%.5s%s", omnia_ddr_speeds[i].name,
i == ARRAY_SIZE(omnia_ddr_speeds) - 1 ? "\n" : ", ");
}
static void fixup_speed_in_ddr_topology(struct mv_ddr_topology_map *topology)
{
typeof(topology->interface_params[0]) *params;
const struct omnia_ddr_speed *setting;
const char *speed;
static bool done;
int reset_status;
if (done)
return;
done = true;
reset_status = omnia_mcu_get_reset();
if (reset_status == OMNIA_RESET_TO_LOWER_DDR_SPEED)
speed = OMNIA_LOWER_DDR_SPEED;
else
speed = omnia_get_ddr_speed();
if (!speed)
return;
setting = find_ddr_speed_setting(speed);
if (!setting) {
printf("Unsupported value %s for DDR3 speed in EEPROM!\n",
speed);
return;
}
params = &topology->interface_params[0];
/* don't inform if we are not changing the speed from the default one */
if (params->speed_bin_index == setting->speed_bin)
return;
if (reset_status == OMNIA_RESET_TO_LOWER_DDR_SPEED)
printf("Fixing up DDR3 speed to %s as requested by reset button\n", speed);
else
printf("Fixing up DDR3 speed (EEPROM defines %s)\n", speed);
params->speed_bin_index = setting->speed_bin;
params->memory_freq = setting->freq;
}
struct mv_ddr_topology_map *mv_ddr_topology_map_get(void)
{
struct mv_ddr_topology_map *topology;
if (omnia_get_ram_size_gb() == 2)
topology = &board_topology_map_2g;
else
topology = &board_topology_map_1g;
fixup_speed_in_ddr_topology(topology);
return topology;
}
static int set_regdomain(void)
{
struct omnia_eeprom oep;
char rd[3] = {' ', ' ', 0};
if (omnia_read_eeprom(&oep))
memcpy(rd, &oep.region, 2);
else
puts("EEPROM regdomain read failed.\n");
printf("Regdomain set to %s\n", rd);
return env_set("regdomain", rd);
}
static void handle_reset_button(void)
{
const char * const vars[1] = { "bootcmd_rescue", };
int reset_status;
/*
* Ensure that bootcmd_rescue has always stock value, so that running
* run bootcmd_rescue
* always works correctly.
*/
env_set_default_vars(1, (char * const *)vars, 0);
reset_status = omnia_mcu_get_reset();
if (reset_status < 0)
return;
if (reset_status == OMNIA_RESET_TO_LOWER_DDR_SPEED)
return omnia_eeprom_set_lower_ddr_speed();
env_set_ulong("omnia_reset", reset_status);
if (reset_status) {
const char * const vars[3] = {
"bootcmd",
"bootdelay",
"distro_bootcmd",
};
/*
* Set the above envs to their default values, in case the user
* managed to break them.
*/
env_set_default_vars(3, (char * const *)vars, 0);
/* Ensure bootcmd_rescue is used by distroboot */
env_set("boot_targets", "rescue");
printf("RESET button was pressed, overwriting boot_targets!\n");
} else {
/*
* In case the user somehow managed to save environment with
* boot_targets=rescue, reset boot_targets to default value.
* This could happen in subsequent commands if bootcmd_rescue
* failed.
*/
if (!strcmp(env_get("boot_targets"), "rescue")) {
const char * const vars[1] = {
"boot_targets",
};
env_set_default_vars(1, (char * const *)vars, 0);
}
}
}
static void initialize_switch(void)
{
u32 val, val04, val08, val10, val14;
u16 ctrl[2];
int err;
printf("Initializing LAN eth switch... ");
/* Change RGMII pins to GPIO mode */
val = val04 = readl(MVEBU_MPP_BASE + 0x04);
val &= ~GENMASK(19, 16); /* MPP[12] := GPIO */
val &= ~GENMASK(23, 20); /* MPP[13] := GPIO */
val &= ~GENMASK(27, 24); /* MPP[14] := GPIO */
val &= ~GENMASK(31, 28); /* MPP[15] := GPIO */
writel(val, MVEBU_MPP_BASE + 0x04);
val = val08 = readl(MVEBU_MPP_BASE + 0x08);
val &= ~GENMASK(3, 0); /* MPP[16] := GPIO */
val &= ~GENMASK(23, 20); /* MPP[21] := GPIO */
writel(val, MVEBU_MPP_BASE + 0x08);
val = val10 = readl(MVEBU_MPP_BASE + 0x10);
val &= ~GENMASK(27, 24); /* MPP[38] := GPIO */
val &= ~GENMASK(31, 28); /* MPP[39] := GPIO */
writel(val, MVEBU_MPP_BASE + 0x10);
val = val14 = readl(MVEBU_MPP_BASE + 0x14);
val &= ~GENMASK(3, 0); /* MPP[40] := GPIO */
val &= ~GENMASK(7, 4); /* MPP[41] := GPIO */
writel(val, MVEBU_MPP_BASE + 0x14);
/* Set initial values for switch reset strapping pins */
val = readl(MVEBU_GPIO0_BASE + 0x00);
val |= BIT(12); /* GPIO[12] := 1 */
val |= BIT(13); /* GPIO[13] := 1 */
val |= BIT(14); /* GPIO[14] := 1 */
val |= BIT(15); /* GPIO[15] := 1 */
val &= ~BIT(16); /* GPIO[16] := 0 */
val |= BIT(21); /* GPIO[21] := 1 */
writel(val, MVEBU_GPIO0_BASE + 0x00);
val = readl(MVEBU_GPIO1_BASE + 0x00);
val |= BIT(6); /* GPIO[38] := 1 */
val |= BIT(7); /* GPIO[39] := 1 */
val |= BIT(8); /* GPIO[40] := 1 */
val &= ~BIT(9); /* GPIO[41] := 0 */
writel(val, MVEBU_GPIO1_BASE + 0x00);
val = readl(MVEBU_GPIO0_BASE + 0x04);
val &= ~BIT(12); /* GPIO[12] := Out Enable */
val &= ~BIT(13); /* GPIO[13] := Out Enable */
val &= ~BIT(14); /* GPIO[14] := Out Enable */
val &= ~BIT(15); /* GPIO[15] := Out Enable */
val &= ~BIT(16); /* GPIO[16] := Out Enable */
val &= ~BIT(21); /* GPIO[21] := Out Enable */
writel(val, MVEBU_GPIO0_BASE + 0x04);
val = readl(MVEBU_GPIO1_BASE + 0x04);
val &= ~BIT(6); /* GPIO[38] := Out Enable */
val &= ~BIT(7); /* GPIO[39] := Out Enable */
val &= ~BIT(8); /* GPIO[40] := Out Enable */
val &= ~BIT(9); /* GPIO[41] := Out Enable */
writel(val, MVEBU_GPIO1_BASE + 0x04);
/* Release switch reset */
ctrl[0] = EXT_CTL_nRES_LAN;
ctrl[1] = EXT_CTL_nRES_LAN;
err = omnia_mcu_write(CMD_EXT_CONTROL, ctrl, sizeof(ctrl));
mdelay(50);
/* Change RGMII pins back to RGMII mode */
writel(val04, MVEBU_MPP_BASE + 0x04);
writel(val08, MVEBU_MPP_BASE + 0x08);
writel(val10, MVEBU_MPP_BASE + 0x10);
writel(val14, MVEBU_MPP_BASE + 0x14);
puts(err ? "failed\n" : "done\n");
}
int board_early_init_f(void)
{
/* Configure MPP */
writel(0x11111111, MVEBU_MPP_BASE + 0x00);
writel(0x11111111, MVEBU_MPP_BASE + 0x04);
writel(0x11244011, MVEBU_MPP_BASE + 0x08);
writel(0x22222111, MVEBU_MPP_BASE + 0x0c);
writel(0x22200002, MVEBU_MPP_BASE + 0x10);
writel(0x30042022, MVEBU_MPP_BASE + 0x14);
writel(0x55550555, MVEBU_MPP_BASE + 0x18);
writel(0x00005550, MVEBU_MPP_BASE + 0x1c);
/* Set GPP Out value */
writel(OMNIA_GPP_OUT_VAL_LOW, MVEBU_GPIO0_BASE + 0x00);
writel(OMNIA_GPP_OUT_VAL_MID, MVEBU_GPIO1_BASE + 0x00);
/* Set GPP Polarity */
writel(OMNIA_GPP_POL_LOW, MVEBU_GPIO0_BASE + 0x0c);
writel(OMNIA_GPP_POL_MID, MVEBU_GPIO1_BASE + 0x0c);
/* Set GPP Out Enable */
writel(OMNIA_GPP_OUT_ENA_LOW, MVEBU_GPIO0_BASE + 0x04);
writel(OMNIA_GPP_OUT_ENA_MID, MVEBU_GPIO1_BASE + 0x04);
return 0;
}
void spl_board_init(void)
{
/*
* If booting from UART, disable MCU watchdog in SPL, since uploading
* U-Boot proper can take too much time and trigger it. Instead enable
* A385 watchdog with very high timeout (10 minutes) to prevent hangup.
*/
if (get_boot_device() == BOOT_DEVICE_UART) {
enable_a385_watchdog(10);
disable_mcu_watchdog();
}
/*
* When MCU controls peripheral resets then release LAN eth switch from
* the reset and initialize it. When MCU does not control peripheral
* resets then LAN eth switch is initialized automatically by bootstrap
* pins when A385 is released from the reset.
*/
if (omnia_mcu_has_feature(FEAT_PERIPH_MCU))
initialize_switch();
}
#if IS_ENABLED(CONFIG_OF_BOARD_FIXUP) || IS_ENABLED(CONFIG_OF_BOARD_SETUP)
static void disable_sata_node(void *blob)
{
int node;
fdt_for_each_node_by_compatible(node, blob, -1, "marvell,armada-380-ahci") {
if (!fdtdec_get_is_enabled(blob, node))
continue;
if (fdt_status_disabled(blob, node) < 0)
printf("Cannot disable SATA DT node!\n");
else
debug("Disabled SATA DT node\n");
return;
}
printf("Cannot find SATA DT node!\n");
}
static void disable_pcie_node(void *blob, int port)
{
int node;
fdt_for_each_node_by_compatible(node, blob, -1, "marvell,armada-370-pcie") {
int port_node;
if (!fdtdec_get_is_enabled(blob, node))
continue;
fdt_for_each_subnode (port_node, blob, node) {
if (!fdtdec_get_is_enabled(blob, port_node))
continue;
if (fdtdec_get_int(blob, port_node, "marvell,pcie-port", -1) != port)
continue;
if (fdt_status_disabled(blob, port_node) < 0)
printf("Cannot disable PCIe port %d DT node!\n", port);
else
debug("Disabled PCIe port %d DT node\n", port);
return;
}
}
printf("Cannot find PCIe port %d DT node!\n", port);
}
static void fixup_msata_port_nodes(void *blob)
{
bool mode_sata;
/*
* Determine if SerDes 0 is configured to SATA mode.
* We do this instead of calling omnia_detect_sata() to avoid another
* call to the MCU. By this time the common PHYs are initialized (it is
* done in SPL), so we can read this common PHY register.
*/
mode_sata = (readl(MVEBU_REGISTER(0x183fc)) & GENMASK(3, 0)) == 2;
/*
* We're either adding status = "disabled" property, or changing
* status = "okay" to status = "disabled". In both cases we'll need more
* space. Increase the size a little.
*/
if (fdt_increase_size(blob, 32) < 0) {
printf("Cannot increase FDT size!\n");
return;
}
if (!mode_sata) {
/* If mSATA card is not present, disable SATA DT node */
disable_sata_node(blob);
} else {
/* Otherwise disable PCIe port 0 DT node (MiniPCIe / mSATA port) */
disable_pcie_node(blob, 0);
}
}
static void fixup_wwan_port_nodes(void *blob)
{
bool mode_usb3;
/* Determine if SerDes 4 is configured to USB3 mode */
mode_usb3 = ((readl(MVEBU_REGISTER(0x183fc)) & GENMASK(19, 16)) >> 16) == 4;
/* If SerDes 4 is not configured to USB3 mode then nothing is needed to fixup */
if (!mode_usb3)
return;
/*
* We're either adding status = "disabled" property, or changing
* status = "okay" to status = "disabled". In both cases we'll need more
* space. Increase the size a little.
*/
if (fdt_increase_size(blob, 32) < 0) {
printf("Cannot increase FDT size!\n");
return;
}
/* Disable PCIe port 2 DT node (WWAN) */
disable_pcie_node(blob, 2);
}
static int insert_mcu_gpio_prop(void *blob, int node, const char *prop,
unsigned int phandle, u32 bank, u32 gpio,
u32 flags)
{
fdt32_t val[4] = { cpu_to_fdt32(phandle), cpu_to_fdt32(bank),
cpu_to_fdt32(gpio), cpu_to_fdt32(flags) };
return fdt_setprop(blob, node, prop, &val, sizeof(val));
}
static int fixup_mcu_gpio_in_pcie_nodes(void *blob)
{
unsigned int mcu_phandle;
int port, gpio;
int pcie_node;
int port_node;
int ret;
ret = fdt_increase_size(blob, 128);
if (ret < 0) {
printf("Cannot increase FDT size!\n");
return ret;
}
mcu_phandle = fdt_create_phandle_by_compatible(blob, "cznic,turris-omnia-mcu");
if (!mcu_phandle)
return -FDT_ERR_NOPHANDLES;
fdt_for_each_node_by_compatible(pcie_node, blob, -1, "marvell,armada-370-pcie") {
if (!fdtdec_get_is_enabled(blob, pcie_node))
continue;
fdt_for_each_subnode(port_node, blob, pcie_node) {
if (!fdtdec_get_is_enabled(blob, port_node))
continue;
port = fdtdec_get_int(blob, port_node, "marvell,pcie-port", -1);
if (port == 0)
gpio = ilog2(EXT_CTL_nPERST0);
else if (port == 1)
gpio = ilog2(EXT_CTL_nPERST1);
else if (port == 2)
gpio = ilog2(EXT_CTL_nPERST2);
else
continue;
/* insert: reset-gpios = <&mcu 2 gpio GPIO_ACTIVE_LOW>; */
ret = insert_mcu_gpio_prop(blob, port_node, "reset-gpios",
mcu_phandle, 2, gpio, GPIO_ACTIVE_LOW);
if (ret < 0)
return ret;
}
}
return 0;
}
static int get_phy_wan_node_offset(const void *blob)
{
u32 phy_wan_phandle;
phy_wan_phandle = fdt_getprop_u32_default(blob, "ethernet2", "phy-handle", 0);
if (!phy_wan_phandle)
return -FDT_ERR_NOTFOUND;
return fdt_node_offset_by_phandle(blob, phy_wan_phandle);
}
static int fixup_mcu_gpio_in_phy_wan_node(void *blob)
{
unsigned int mcu_phandle;
int phy_wan_node, ret;
ret = fdt_increase_size(blob, 64);
if (ret < 0) {
printf("Cannot increase FDT size!\n");
return ret;
}
phy_wan_node = get_phy_wan_node_offset(blob);
if (phy_wan_node < 0)
return phy_wan_node;
mcu_phandle = fdt_create_phandle_by_compatible(blob, "cznic,turris-omnia-mcu");
if (!mcu_phandle)
return -FDT_ERR_NOPHANDLES;
/* insert: reset-gpios = <&mcu 2 gpio GPIO_ACTIVE_LOW>; */
return insert_mcu_gpio_prop(blob, phy_wan_node, "reset-gpios",
mcu_phandle, 2, ilog2(EXT_CTL_nRES_PHY), GPIO_ACTIVE_LOW);
}
static void fixup_atsha_node(void *blob)
{
int node;
if (!omnia_mcu_has_feature(FEAT_CRYPTO))
return;
node = fdt_node_offset_by_compatible(blob, -1, "atmel,atsha204a");
if (node < 0) {
printf("Cannot find ATSHA204A node!\n");
return;
}
if (fdt_status_disabled(blob, node) < 0)
printf("Cannot disable ATSHA204A node!\n");
else
debug("Disabled ATSHA204A node\n");
}
#endif
#if IS_ENABLED(CONFIG_OF_BOARD_FIXUP)
int board_fix_fdt(void *blob)
{
if (omnia_mcu_has_feature(FEAT_PERIPH_MCU)) {
fixup_mcu_gpio_in_pcie_nodes(blob);
fixup_mcu_gpio_in_phy_wan_node(blob);
}
fixup_msata_port_nodes(blob);
fixup_wwan_port_nodes(blob);
fixup_atsha_node(blob);
return 0;
}
#endif
int board_init(void)
{
/* address of boot parameters */
gd->bd->bi_boot_params = mvebu_sdram_bar(0) + 0x100;
return 0;
}
int board_late_init(void)
{
/*
* If not booting from UART, MCU watchdog was not disabled in SPL,
* disable it now.
*/
if (get_boot_device() != BOOT_DEVICE_UART)
disable_mcu_watchdog();
set_regdomain();
handle_reset_button();
pci_init();
return 0;
}
int checkboard(void)
{
char serial[17], version[4], pub_key[67];
bool has_version;
int err;
printf(" MCU type: %s\n", omnia_get_mcu_type());
printf(" MCU version: %s\n", omnia_get_mcu_version());
printf(" RAM size: %i MiB\n", omnia_get_ram_size_gb() * 1024);
if (omnia_mcu_has_feature(FEAT_BOARD_INFO)) {
err = omnia_mcu_board_info(serial, NULL, version);
has_version = !err;
} else {
err = turris_atsha_otp_get_serial_number(serial);
has_version = false;
}
printf(" Board version: %s\n", has_version ? version : "unknown");
printf(" Serial Number: %s\n", !err ? serial : "unknown");
if (omnia_mcu_has_feature(FEAT_CRYPTO)) {
err = omnia_mcu_get_board_public_key(pub_key);
printf(" ECDSA Public Key: %s\n", !err ? pub_key : "unknown");
}
return 0;
}
int misc_init_r(void)
{
if (omnia_mcu_has_feature(FEAT_BOARD_INFO)) {
char serial[17];
u8 first_mac[6];
if (!omnia_mcu_board_info(serial, first_mac, NULL))
turris_init_mac_addresses(1, first_mac);
} else {
turris_atsha_otp_init_mac_addresses(1);
turris_atsha_otp_init_serial_number();
}
return 0;
}
#if defined(CONFIG_OF_BOARD_SETUP)
/*
* I plan to generalize this function and move it to common/fdt_support.c.
* This will require some more work on multiple boards, though, so for now leave
* it here.
*/
static bool fixup_mtd_partitions(void *blob, int offset, struct mtd_info *mtd)
{
struct mtd_info *slave;
int parts;
parts = fdt_subnode_offset(blob, offset, "partitions");
if (parts >= 0) {
if (fdt_del_node(blob, parts) < 0)
return false;
}
if (fdt_increase_size(blob, 512) < 0)
return false;
parts = fdt_add_subnode(blob, offset, "partitions");
if (parts < 0)
return false;
if (fdt_setprop_u32(blob, parts, "#address-cells", 1) < 0)
return false;
if (fdt_setprop_u32(blob, parts, "#size-cells", 1) < 0)
return false;
if (fdt_setprop_string(blob, parts, "compatible",
"fixed-partitions") < 0)
return false;
mtd_probe_devices();
list_for_each_entry_reverse(slave, &mtd->partitions, node) {
char name[32];
int part;
snprintf(name, sizeof(name), "partition@%llx", slave->offset);
part = fdt_add_subnode(blob, parts, name);
if (part < 0)
return false;
if (fdt_setprop_u32(blob, part, "reg", slave->offset) < 0)
return false;
if (fdt_appendprop_u32(blob, part, "reg", slave->size) < 0)
return false;
if (fdt_setprop_string(blob, part, "label", slave->name) < 0)
return false;
if (!(slave->flags & MTD_WRITEABLE))
if (fdt_setprop_empty(blob, part, "read-only") < 0)
return false;
if (slave->flags & MTD_POWERUP_LOCK)
if (fdt_setprop_empty(blob, part, "lock") < 0)
return false;
}
return true;
}
static void fixup_spi_nor_partitions(void *blob)
{
struct mtd_info *mtd = NULL;
char mtd_path[64];
int node;
node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "jedec,spi-nor");
if (node < 0)
goto fail;
if (fdt_get_path(gd->fdt_blob, node, mtd_path, sizeof(mtd_path)) < 0)
goto fail;
mtd = get_mtd_device_nm(mtd_path);
if (IS_ERR_OR_NULL(mtd))
goto fail;
node = fdt_node_offset_by_compatible(blob, -1, "jedec,spi-nor");
if (node < 0)
goto fail;
if (!fixup_mtd_partitions(blob, node, mtd))
goto fail;
put_mtd_device(mtd);
return;
fail:
printf("Failed fixing SPI NOR partitions!\n");
if (!IS_ERR_OR_NULL(mtd))
put_mtd_device(mtd);
}
int ft_board_setup(void *blob, struct bd_info *bd)
{
int node;
/*
* U-Boot's FDT blob contains reset-gpios in ethernet2 PHY node when MCU
* controls all peripherals resets.
* Fixup MCU GPIO nodes in PCIe and eth wan nodes in this case.
*/
node = get_phy_wan_node_offset(gd->fdt_blob);
if (node >= 0 && fdt_getprop(gd->fdt_blob, node, "reset-gpios", NULL)) {
fixup_mcu_gpio_in_pcie_nodes(blob);
fixup_mcu_gpio_in_phy_wan_node(blob);
}
fixup_spi_nor_partitions(blob);
fixup_msata_port_nodes(blob);
fixup_wwan_port_nodes(blob);
fixup_atsha_node(blob);
return 0;
}
#endif