| /* BEGIN_HEADER */ |
| #include <alignment.h> |
| |
| #include <stdint.h> |
| |
| #if defined(__clang__) |
| #pragma clang diagnostic ignored "-Wunreachable-code" |
| #endif |
| |
| /* |
| * Convert a string of the form "abcd" (case-insensitive) to a uint64_t. |
| */ |
| int parse_hex_string(char *hex_string, uint64_t *result) |
| { |
| uint8_t raw[8] = { 0 }; |
| size_t olen; |
| if (mbedtls_test_unhexify(raw, sizeof(raw), hex_string, &olen) != 0) { |
| return 0; |
| } |
| |
| *result = 0; |
| for (size_t i = 0; i < olen; i++) { |
| *result |= ((uint64_t) raw[i]) << ((olen - i - 1) * 8); |
| } |
| return 1; |
| } |
| |
| /* END_HEADER */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_unaligned_access(int size, int offset) |
| { |
| /* Define 64-bit aligned raw byte array */ |
| uint64_t raw[2]; |
| |
| /* Populate with known data */ |
| uint8_t *x = (uint8_t *) raw; |
| for (size_t i = 0; i < sizeof(raw); i++) { |
| x[i] = (uint8_t) i; |
| } |
| |
| TEST_ASSERT(size == 16 || size == 32 || size == 64); |
| |
| uint64_t r = 0; |
| switch (size) { |
| case 16: |
| r = mbedtls_get_unaligned_uint16(x + offset); |
| break; |
| case 32: |
| r = mbedtls_get_unaligned_uint32(x + offset); |
| break; |
| case 64: |
| r = mbedtls_get_unaligned_uint64(x + offset); |
| break; |
| } |
| |
| /* Define expected result by manually aligning the raw bytes, and |
| * reading back with a normal pointer access. */ |
| uint64_t raw_aligned_64; |
| uint16_t *raw_aligned_16 = (uint16_t *) &raw_aligned_64; |
| uint32_t *raw_aligned_32 = (uint32_t *) &raw_aligned_64; |
| memcpy(&raw_aligned_64, ((uint8_t *) &raw) + offset, size / 8); |
| /* Make a 16/32/64 byte read from the aligned location, and copy to expected */ |
| uint64_t expected = 0; |
| switch (size) { |
| case 16: |
| expected = *raw_aligned_16; |
| break; |
| case 32: |
| expected = *raw_aligned_32; |
| break; |
| case 64: |
| expected = raw_aligned_64; |
| break; |
| } |
| |
| TEST_EQUAL(r, expected); |
| |
| /* Write sentinel to the part of the array we will test writing to */ |
| for (size_t i = 0; i < (size_t) (size / 8); i++) { |
| x[i + offset] = 0xff; |
| } |
| /* |
| * Write back to the array with mbedtls_put_unaligned_uint16 and validate |
| * that the array is unchanged as a result. |
| */ |
| switch (size) { |
| case 16: |
| mbedtls_put_unaligned_uint16(x + offset, r); |
| break; |
| case 32: |
| mbedtls_put_unaligned_uint32(x + offset, r); |
| break; |
| case 64: |
| mbedtls_put_unaligned_uint64(x + offset, r); |
| break; |
| } |
| for (size_t i = 0; i < sizeof(x); i++) { |
| TEST_EQUAL(x[i], (uint8_t) i); |
| } |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_byteswap(char *input_str, int size, char *expected_str) |
| { |
| uint64_t input = 0, expected = 0; |
| TEST_ASSERT(parse_hex_string(input_str, &input)); |
| TEST_ASSERT(parse_hex_string(expected_str, &expected)); |
| |
| /* Check against expected result */ |
| uint64_t r = 0; |
| switch (size) { |
| case 16: |
| r = MBEDTLS_BSWAP16(input); |
| break; |
| case 32: |
| r = MBEDTLS_BSWAP32(input); |
| break; |
| case 64: |
| r = MBEDTLS_BSWAP64(input); |
| break; |
| default: |
| TEST_FAIL("size must be 16, 32 or 64"); |
| } |
| TEST_EQUAL(r, expected); |
| |
| /* |
| * Check byte by byte by extracting bytes from opposite ends of |
| * input and r. |
| */ |
| for (size_t i = 0; i < (size_t) (size / 8); i++) { |
| size_t s1 = i * 8; |
| size_t s2 = ((size / 8 - 1) - i) * 8; |
| uint64_t a = (input & ((uint64_t) 0xff << s1)) >> s1; |
| uint64_t b = (r & ((uint64_t) 0xff << s2)) >> s2; |
| TEST_EQUAL(a, b); |
| } |
| |
| /* Check BSWAP(BSWAP(x)) == x */ |
| switch (size) { |
| case 16: |
| r = MBEDTLS_BSWAP16(r); |
| TEST_EQUAL(r, input & 0xffff); |
| break; |
| case 32: |
| r = MBEDTLS_BSWAP32(r); |
| TEST_EQUAL(r, input & 0xffffffff); |
| break; |
| case 64: |
| r = MBEDTLS_BSWAP64(r); |
| TEST_EQUAL(r, input); |
| break; |
| } |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void get_byte() |
| { |
| uint8_t data[16]; |
| |
| for (size_t i = 0; i < sizeof(data); i++) { |
| data[i] = (uint8_t) i; |
| } |
| |
| uint64_t u64 = 0x0706050403020100; |
| for (size_t b = 0; b < 8; b++) { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch (b) { |
| case 0: |
| actual = MBEDTLS_BYTE_0(u64); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1(u64); |
| break; |
| case 2: |
| actual = MBEDTLS_BYTE_2(u64); |
| break; |
| case 3: |
| actual = MBEDTLS_BYTE_3(u64); |
| break; |
| case 4: |
| actual = MBEDTLS_BYTE_4(u64); |
| break; |
| case 5: |
| actual = MBEDTLS_BYTE_5(u64); |
| break; |
| case 6: |
| actual = MBEDTLS_BYTE_6(u64); |
| break; |
| case 7: |
| actual = MBEDTLS_BYTE_7(u64); |
| break; |
| } |
| TEST_EQUAL(actual, expected); |
| } |
| |
| uint32_t u32 = 0x03020100; |
| for (size_t b = 0; b < 4; b++) { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch (b) { |
| case 0: |
| actual = MBEDTLS_BYTE_0(u32); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1(u32); |
| break; |
| case 2: |
| actual = MBEDTLS_BYTE_2(u32); |
| break; |
| case 3: |
| actual = MBEDTLS_BYTE_3(u32); |
| break; |
| } |
| TEST_EQUAL(actual, expected); |
| } |
| |
| uint16_t u16 = 0x0100; |
| for (size_t b = 0; b < 2; b++) { |
| uint8_t expected = b; |
| uint8_t actual = b + 1; |
| switch (b) { |
| case 0: |
| actual = MBEDTLS_BYTE_0(u16); |
| break; |
| case 1: |
| actual = MBEDTLS_BYTE_1(u16); |
| break; |
| } |
| TEST_EQUAL(actual, expected); |
| } |
| |
| uint8_t u8 = 0x01; |
| uint8_t actual = MBEDTLS_BYTE_0(u8); |
| TEST_EQUAL(actual, u8); |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void unaligned_access_endian_aware(int size, int offset, int big_endian) |
| { |
| TEST_ASSERT(size == 16 || size == 24 || size == 32 || size == 64); |
| TEST_ASSERT(offset >= 0 && offset < 8); |
| |
| /* Define 64-bit aligned raw byte array */ |
| uint64_t raw[2]; |
| /* Populate with known data: x == { 0, 1, 2, ... } */ |
| uint8_t *x = (uint8_t *) raw; |
| for (size_t i = 0; i < sizeof(raw); i++) { |
| x[i] = (uint8_t) i; |
| } |
| |
| uint64_t read = 0; |
| if (big_endian) { |
| switch (size) { |
| case 16: |
| read = MBEDTLS_GET_UINT16_BE(x, offset); |
| break; |
| case 24: |
| read = MBEDTLS_GET_UINT24_BE(x, offset); |
| break; |
| case 32: |
| read = MBEDTLS_GET_UINT32_BE(x, offset); |
| break; |
| case 64: |
| read = MBEDTLS_GET_UINT64_BE(x, offset); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 16: |
| read = MBEDTLS_GET_UINT16_LE(x, offset); |
| break; |
| case 24: |
| read = MBEDTLS_GET_UINT24_LE(x, offset); |
| break; |
| case 32: |
| read = MBEDTLS_GET_UINT32_LE(x, offset); |
| break; |
| case 64: |
| read = MBEDTLS_GET_UINT64_LE(x, offset); |
| break; |
| } |
| } |
| |
| /* Build up expected value byte by byte, in either big or little endian format */ |
| uint64_t expected = 0; |
| for (size_t i = 0; i < (size_t) (size / 8); i++) { |
| uint64_t b = x[i + offset]; |
| uint8_t shift = (big_endian) ? (8 * ((size / 8 - 1) - i)) : (8 * i); |
| expected |= b << shift; |
| } |
| |
| /* Verify read */ |
| TEST_EQUAL(read, expected); |
| |
| /* Test writing back to memory. First write sentinel */ |
| for (size_t i = 0; i < (size_t) (size / 8); i++) { |
| x[i + offset] = 0xff; |
| } |
| /* Overwrite sentinel with endian-aware write macro */ |
| if (big_endian) { |
| switch (size) { |
| case 16: |
| MBEDTLS_PUT_UINT16_BE(read, x, offset); |
| break; |
| case 24: |
| MBEDTLS_PUT_UINT24_BE(read, x, offset); |
| break; |
| case 32: |
| MBEDTLS_PUT_UINT32_BE(read, x, offset); |
| break; |
| case 64: |
| MBEDTLS_PUT_UINT64_BE(read, x, offset); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 16: |
| MBEDTLS_PUT_UINT16_LE(read, x, offset); |
| break; |
| case 24: |
| MBEDTLS_PUT_UINT24_LE(read, x, offset); |
| break; |
| case 32: |
| MBEDTLS_PUT_UINT32_LE(read, x, offset); |
| break; |
| case 64: |
| MBEDTLS_PUT_UINT64_LE(read, x, offset); |
| break; |
| } |
| } |
| |
| /* Verify write - check memory is correct */ |
| for (size_t i = 0; i < sizeof(raw); i++) { |
| TEST_EQUAL(x[i], (uint8_t) i); |
| } |
| } |
| /* END_CASE */ |
| |
| /* BEGIN_CASE */ |
| void mbedtls_is_big_endian() |
| { |
| uint16_t check = 0x1234; |
| uint8_t *p = (uint8_t *) ✓ |
| |
| if (MBEDTLS_IS_BIG_ENDIAN) { |
| /* Big-endian: data stored MSB first, i.e. p == { 0x12, 0x34 } */ |
| TEST_EQUAL(p[0], 0x12); |
| TEST_EQUAL(p[1], 0x34); |
| } else { |
| /* Little-endian: data stored LSB first, i.e. p == { 0x34, 0x12 } */ |
| TEST_EQUAL(p[0], 0x34); |
| TEST_EQUAL(p[1], 0x12); |
| } |
| } |
| /* END_CASE */ |