| /** |
| * Cipher API multi-part AEAD demonstration. |
| * |
| * This program AEAD-encrypts a message, using the algorithm and key size |
| * specified on the command line, using the multi-part API. |
| * |
| * It comes with a companion program psa/aead_demo.c, which does the same |
| * operations with the PSA Crypto API. The goal is that comparing the two |
| * programs will help people migrating to the PSA Crypto API. |
| * |
| * When used with multi-part AEAD operations, the `mbedtls_cipher_context` |
| * serves a triple purpose (1) hold the key, (2) store the algorithm when no |
| * operation is active, and (3) save progress information for the current |
| * operation. With PSA those roles are held by disinct objects: (1) a |
| * psa_key_id_t to hold the key, a (2) psa_algorithm_t to represent the |
| * algorithm, and (3) a psa_operation_t for multi-part progress. |
| * |
| * On the other hand, with PSA, the algorithms encodes the desired tag length; |
| * with Cipher the desired tag length needs to be tracked separately. |
| * |
| * This program and its companion psa/aead_demo.c illustrate this by doing the |
| * same sequence of multi-part AEAD computation with both APIs; looking at the |
| * two side by side should make the differences and similarities clear. |
| */ |
| |
| /* |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| */ |
| |
| /* First include Mbed TLS headers to get the Mbed TLS configuration and |
| * platform definitions that we'll use in this program. Also include |
| * standard C headers for functions we'll use here. */ |
| #include "mbedtls/build_info.h" |
| |
| #include "mbedtls/cipher.h" |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| /* If the build options we need are not enabled, compile a placeholder. */ |
| #if !defined(MBEDTLS_CIPHER_C) || \ |
| !defined(MBEDTLS_AES_C) || !defined(MBEDTLS_GCM_C) || \ |
| !defined(MBEDTLS_CHACHAPOLY_C) |
| int main(void) |
| { |
| printf("MBEDTLS_MD_C and/or " |
| "MBEDTLS_AES_C and/or MBEDTLS_GCM_C and/or " |
| "MBEDTLS_CHACHAPOLY_C not defined\r\n"); |
| return 0; |
| } |
| #else |
| |
| /* The real program starts here. */ |
| |
| const char usage[] = |
| "Usage: cipher_aead_demo [aes128-gcm|aes256-gcm|aes128-gcm_8|chachapoly]"; |
| |
| /* Dummy data for encryption: IV/nonce, additional data, 2-part message */ |
| const unsigned char iv1[12] = { 0x00 }; |
| const unsigned char add_data1[] = { 0x01, 0x02 }; |
| const unsigned char msg1_part1[] = { 0x03, 0x04 }; |
| const unsigned char msg1_part2[] = { 0x05, 0x06, 0x07 }; |
| |
| /* Dummy data (2nd message) */ |
| const unsigned char iv2[12] = { 0x10 }; |
| const unsigned char add_data2[] = { 0x11, 0x12 }; |
| const unsigned char msg2_part1[] = { 0x13, 0x14 }; |
| const unsigned char msg2_part2[] = { 0x15, 0x16, 0x17 }; |
| |
| /* Maximum total size of the messages */ |
| #define MSG1_SIZE (sizeof(msg1_part1) + sizeof(msg1_part2)) |
| #define MSG2_SIZE (sizeof(msg2_part1) + sizeof(msg2_part2)) |
| #define MSG_MAX_SIZE (MSG1_SIZE > MSG2_SIZE ? MSG1_SIZE : MSG2_SIZE) |
| |
| /* Dummy key material - never do this in production! |
| * 32-byte is enough to all the key size supported by this program. */ |
| const unsigned char key_bytes[32] = { 0x2a }; |
| |
| /* Print the contents of a buffer in hex */ |
| void print_buf(const char *title, unsigned char *buf, size_t len) |
| { |
| printf("%s:", title); |
| for (size_t i = 0; i < len; i++) { |
| printf(" %02x", buf[i]); |
| } |
| printf("\n"); |
| } |
| |
| /* Run an Mbed TLS function and bail out if it fails. |
| * A string description of the error code can be recovered with: |
| * programs/util/strerror <value> */ |
| #define CHK(expr) \ |
| do \ |
| { \ |
| ret = (expr); \ |
| if (ret != 0) \ |
| { \ |
| printf("Error %d at line %d: %s\n", \ |
| ret, \ |
| __LINE__, \ |
| #expr); \ |
| goto exit; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Prepare encryption material: |
| * - interpret command-line argument |
| * - set up key |
| * - outputs: context and tag length, which together hold all the information |
| */ |
| static int aead_prepare(const char *info, |
| mbedtls_cipher_context_t *ctx, |
| size_t *tag_len) |
| { |
| int ret; |
| |
| /* Convert arg to type + tag_len */ |
| mbedtls_cipher_type_t type; |
| if (strcmp(info, "aes128-gcm") == 0) { |
| type = MBEDTLS_CIPHER_AES_128_GCM; |
| *tag_len = 16; |
| } else if (strcmp(info, "aes256-gcm") == 0) { |
| type = MBEDTLS_CIPHER_AES_256_GCM; |
| *tag_len = 16; |
| } else if (strcmp(info, "aes128-gcm_8") == 0) { |
| type = MBEDTLS_CIPHER_AES_128_GCM; |
| *tag_len = 8; |
| } else if (strcmp(info, "chachapoly") == 0) { |
| type = MBEDTLS_CIPHER_CHACHA20_POLY1305; |
| *tag_len = 16; |
| } else { |
| puts(usage); |
| return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA; |
| } |
| |
| /* Prepare context for the given type */ |
| CHK(mbedtls_cipher_setup(ctx, |
| mbedtls_cipher_info_from_type(type))); |
| |
| /* Import key */ |
| int key_len = mbedtls_cipher_get_key_bitlen(ctx); |
| CHK(mbedtls_cipher_setkey(ctx, key_bytes, key_len, MBEDTLS_ENCRYPT)); |
| |
| exit: |
| return ret; |
| } |
| |
| /* |
| * Print out some information. |
| * |
| * All of this information was present in the command line argument, but his |
| * function demonstrates how each piece can be recovered from (ctx, tag_len). |
| */ |
| static void aead_info(const mbedtls_cipher_context_t *ctx, size_t tag_len) |
| { |
| mbedtls_cipher_type_t type = mbedtls_cipher_get_type(ctx); |
| const mbedtls_cipher_info_t *info = mbedtls_cipher_info_from_type(type); |
| const char *ciph = mbedtls_cipher_info_get_name(info); |
| int key_bits = mbedtls_cipher_get_key_bitlen(ctx); |
| mbedtls_cipher_mode_t mode = mbedtls_cipher_get_cipher_mode(ctx); |
| |
| const char *mode_str = mode == MBEDTLS_MODE_GCM ? "GCM" |
| : mode == MBEDTLS_MODE_CHACHAPOLY ? "ChachaPoly" |
| : "???"; |
| |
| printf("%s, %d, %s, %u\n", |
| ciph, key_bits, mode_str, (unsigned) tag_len); |
| } |
| |
| /* |
| * Encrypt a 2-part message. |
| */ |
| static int aead_encrypt(mbedtls_cipher_context_t *ctx, size_t tag_len, |
| const unsigned char *iv, size_t iv_len, |
| const unsigned char *ad, size_t ad_len, |
| const unsigned char *part1, size_t part1_len, |
| const unsigned char *part2, size_t part2_len) |
| { |
| int ret; |
| size_t olen; |
| #define MAX_TAG_LENGTH 16 |
| unsigned char out[MSG_MAX_SIZE + MAX_TAG_LENGTH]; |
| unsigned char *p = out; |
| |
| CHK(mbedtls_cipher_set_iv(ctx, iv, iv_len)); |
| CHK(mbedtls_cipher_reset(ctx)); |
| CHK(mbedtls_cipher_update_ad(ctx, ad, ad_len)); |
| CHK(mbedtls_cipher_update(ctx, part1, part1_len, p, &olen)); |
| p += olen; |
| CHK(mbedtls_cipher_update(ctx, part2, part2_len, p, &olen)); |
| p += olen; |
| CHK(mbedtls_cipher_finish(ctx, p, &olen)); |
| p += olen; |
| CHK(mbedtls_cipher_write_tag(ctx, p, tag_len)); |
| p += tag_len; |
| |
| olen = p - out; |
| print_buf("out", out, olen); |
| |
| exit: |
| return ret; |
| } |
| |
| /* |
| * AEAD demo: set up key/alg, print out info, encrypt messages. |
| */ |
| static int aead_demo(const char *info) |
| { |
| int ret = 0; |
| |
| mbedtls_cipher_context_t ctx; |
| size_t tag_len; |
| |
| mbedtls_cipher_init(&ctx); |
| |
| CHK(aead_prepare(info, &ctx, &tag_len)); |
| |
| aead_info(&ctx, tag_len); |
| |
| CHK(aead_encrypt(&ctx, tag_len, |
| iv1, sizeof(iv1), add_data1, sizeof(add_data1), |
| msg1_part1, sizeof(msg1_part1), |
| msg1_part2, sizeof(msg1_part2))); |
| CHK(aead_encrypt(&ctx, tag_len, |
| iv2, sizeof(iv2), add_data2, sizeof(add_data2), |
| msg2_part1, sizeof(msg2_part1), |
| msg2_part2, sizeof(msg2_part2))); |
| |
| exit: |
| mbedtls_cipher_free(&ctx); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Main function |
| */ |
| int main(int argc, char **argv) |
| { |
| /* Check usage */ |
| if (argc != 2) { |
| puts(usage); |
| return 1; |
| } |
| |
| int ret; |
| |
| /* Run the demo */ |
| CHK(aead_demo(argv[1])); |
| |
| exit: |
| return ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE; |
| } |
| |
| #endif |