| /* |
| * The RSA public-key cryptosystem |
| * |
| * Copyright The Mbed TLS Contributors |
| * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later |
| */ |
| |
| /* |
| * The following sources were referenced in the design of this implementation |
| * of the RSA algorithm: |
| * |
| * [1] A method for obtaining digital signatures and public-key cryptosystems |
| * R Rivest, A Shamir, and L Adleman |
| * http://people.csail.mit.edu/rivest/pubs.html#RSA78 |
| * |
| * [2] Handbook of Applied Cryptography - 1997, Chapter 8 |
| * Menezes, van Oorschot and Vanstone |
| * |
| * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks |
| * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and |
| * Stefan Mangard |
| * https://arxiv.org/abs/1702.08719v2 |
| * |
| */ |
| |
| #include "common.h" |
| |
| #if defined(MBEDTLS_RSA_C) |
| |
| #include "mbedtls/rsa.h" |
| #include "bignum_core.h" |
| #include "rsa_alt_helpers.h" |
| #include "rsa_internal.h" |
| #include "mbedtls/oid.h" |
| #include "mbedtls/asn1write.h" |
| #include "mbedtls/platform_util.h" |
| #include "mbedtls/error.h" |
| #include "constant_time_internal.h" |
| #include "mbedtls/constant_time.h" |
| #include "md_psa.h" |
| |
| #include <string.h> |
| |
| #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__) |
| #include <stdlib.h> |
| #endif |
| |
| #include "mbedtls/platform.h" |
| |
| /* |
| * Wrapper around mbedtls_asn1_get_mpi() that rejects zero. |
| * |
| * The value zero is: |
| * - never a valid value for an RSA parameter |
| * - interpreted as "omitted, please reconstruct" by mbedtls_rsa_complete(). |
| * |
| * Since values can't be omitted in PKCS#1, passing a zero value to |
| * rsa_complete() would be incorrect, so reject zero values early. |
| */ |
| static int asn1_get_nonzero_mpi(unsigned char **p, |
| const unsigned char *end, |
| mbedtls_mpi *X) |
| { |
| int ret; |
| |
| ret = mbedtls_asn1_get_mpi(p, end, X); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| if (mbedtls_mpi_cmp_int(X, 0) == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| return 0; |
| } |
| |
| int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen) |
| { |
| int ret, version; |
| size_t len; |
| unsigned char *p, *end; |
| |
| mbedtls_mpi T; |
| mbedtls_mpi_init(&T); |
| |
| p = (unsigned char *) key; |
| end = p + keylen; |
| |
| /* |
| * This function parses the RSAPrivateKey (PKCS#1) |
| * |
| * RSAPrivateKey ::= SEQUENCE { |
| * version Version, |
| * modulus INTEGER, -- n |
| * publicExponent INTEGER, -- e |
| * privateExponent INTEGER, -- d |
| * prime1 INTEGER, -- p |
| * prime2 INTEGER, -- q |
| * exponent1 INTEGER, -- d mod (p-1) |
| * exponent2 INTEGER, -- d mod (q-1) |
| * coefficient INTEGER, -- (inverse of q) mod p |
| * otherPrimeInfos OtherPrimeInfos OPTIONAL |
| * } |
| */ |
| if ((ret = mbedtls_asn1_get_tag(&p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return ret; |
| } |
| |
| if (end != p + len) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) { |
| return ret; |
| } |
| |
| if (version != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* Import N */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_rsa_import(rsa, &T, NULL, NULL, |
| NULL, NULL)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import E */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL, |
| NULL, &T)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import D */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL, |
| &T, NULL)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import P */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_rsa_import(rsa, NULL, &T, NULL, |
| NULL, NULL)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import Q */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_rsa_import(rsa, NULL, NULL, &T, |
| NULL, NULL)) != 0) { |
| goto cleanup; |
| } |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) && !defined(MBEDTLS_RSA_ALT) |
| /* |
| * The RSA CRT parameters DP, DQ and QP are nominally redundant, in |
| * that they can be easily recomputed from D, P and Q. However by |
| * parsing them from the PKCS1 structure it is possible to avoid |
| * recalculating them which both reduces the overhead of loading |
| * RSA private keys into memory and also avoids side channels which |
| * can arise when computing those values, since all of D, P, and Q |
| * are secret. See https://eprint.iacr.org/2020/055 for a |
| * description of one such attack. |
| */ |
| |
| /* Import DP */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_mpi_copy(&rsa->DP, &T)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import DQ */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_mpi_copy(&rsa->DQ, &T)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Import QP */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = mbedtls_mpi_copy(&rsa->QP, &T)) != 0) { |
| goto cleanup; |
| } |
| |
| #else |
| /* Verify existence of the CRT params */ |
| if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 || |
| (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0) { |
| goto cleanup; |
| } |
| #endif |
| |
| /* rsa_complete() doesn't complete anything with the default |
| * implementation but is still called: |
| * - for the benefit of alternative implementation that may want to |
| * pre-compute stuff beyond what's provided (eg Montgomery factors) |
| * - as is also sanity-checks the key |
| * |
| * Furthermore, we also check the public part for consistency with |
| * mbedtls_pk_parse_pubkey(), as it includes size minima for example. |
| */ |
| if ((ret = mbedtls_rsa_complete(rsa)) != 0 || |
| (ret = mbedtls_rsa_check_pubkey(rsa)) != 0) { |
| goto cleanup; |
| } |
| |
| if (p != end) { |
| ret = MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; |
| } |
| |
| cleanup: |
| |
| mbedtls_mpi_free(&T); |
| |
| if (ret != 0) { |
| mbedtls_rsa_free(rsa); |
| } |
| |
| return ret; |
| } |
| |
| int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen) |
| { |
| unsigned char *p = (unsigned char *) key; |
| unsigned char *end = (unsigned char *) (key + keylen); |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t len; |
| |
| /* |
| * RSAPublicKey ::= SEQUENCE { |
| * modulus INTEGER, -- n |
| * publicExponent INTEGER -- e |
| * } |
| */ |
| |
| if ((ret = mbedtls_asn1_get_tag(&p, end, &len, |
| MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) { |
| return ret; |
| } |
| |
| if (end != p + len) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* Import N */ |
| if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) { |
| return ret; |
| } |
| |
| if ((ret = mbedtls_rsa_import_raw(rsa, p, len, NULL, 0, NULL, 0, |
| NULL, 0, NULL, 0)) != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| p += len; |
| |
| /* Import E */ |
| if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) { |
| return ret; |
| } |
| |
| if ((ret = mbedtls_rsa_import_raw(rsa, NULL, 0, NULL, 0, NULL, 0, |
| NULL, 0, p, len)) != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| p += len; |
| |
| if (mbedtls_rsa_complete(rsa) != 0 || |
| mbedtls_rsa_check_pubkey(rsa) != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (p != end) { |
| return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH; |
| } |
| |
| return 0; |
| } |
| |
| int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start, |
| unsigned char **p) |
| { |
| size_t len = 0; |
| int ret; |
| |
| mbedtls_mpi T; /* Temporary holding the exported parameters */ |
| |
| /* |
| * Export the parameters one after another to avoid simultaneous copies. |
| */ |
| |
| mbedtls_mpi_init(&T); |
| |
| /* Export QP */ |
| if ((ret = mbedtls_rsa_export_crt(rsa, NULL, NULL, &T)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export DQ */ |
| if ((ret = mbedtls_rsa_export_crt(rsa, NULL, &T, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export DP */ |
| if ((ret = mbedtls_rsa_export_crt(rsa, &T, NULL, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export Q */ |
| if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, &T, NULL, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export P */ |
| if ((ret = mbedtls_rsa_export(rsa, NULL, &T, NULL, NULL, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export D */ |
| if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, &T, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export E */ |
| if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export N */ |
| if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| end_of_export: |
| |
| mbedtls_mpi_free(&T); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, start, 0)); |
| MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len)); |
| MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, |
| MBEDTLS_ASN1_CONSTRUCTED | |
| MBEDTLS_ASN1_SEQUENCE)); |
| |
| return (int) len; |
| } |
| |
| /* |
| * RSAPublicKey ::= SEQUENCE { |
| * modulus INTEGER, -- n |
| * publicExponent INTEGER -- e |
| * } |
| */ |
| int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start, |
| unsigned char **p) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t len = 0; |
| mbedtls_mpi T; |
| |
| mbedtls_mpi_init(&T); |
| |
| /* Export E */ |
| if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| /* Export N */ |
| if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 || |
| (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) { |
| goto end_of_export; |
| } |
| len += ret; |
| |
| end_of_export: |
| |
| mbedtls_mpi_free(&T); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len)); |
| MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_CONSTRUCTED | |
| MBEDTLS_ASN1_SEQUENCE)); |
| |
| return (int) len; |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) && !defined(MBEDTLS_RSA_ALT) |
| |
| /** This function performs the unpadding part of a PKCS#1 v1.5 decryption |
| * operation (EME-PKCS1-v1_5 decoding). |
| * |
| * \note The return value from this function is a sensitive value |
| * (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen |
| * in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING |
| * is often a situation that an attacker can provoke and leaking which |
| * one is the result is precisely the information the attacker wants. |
| * |
| * \param input The input buffer which is the payload inside PKCS#1v1.5 |
| * encryption padding, called the "encoded message EM" |
| * by the terminology. |
| * \param ilen The length of the payload in the \p input buffer. |
| * \param output The buffer for the payload, called "message M" by the |
| * PKCS#1 terminology. This must be a writable buffer of |
| * length \p output_max_len bytes. |
| * \param olen The address at which to store the length of |
| * the payload. This must not be \c NULL. |
| * \param output_max_len The length in bytes of the output buffer \p output. |
| * |
| * \return \c 0 on success. |
| * \return #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE |
| * The output buffer is too small for the unpadded payload. |
| * \return #MBEDTLS_ERR_RSA_INVALID_PADDING |
| * The input doesn't contain properly formatted padding. |
| */ |
| static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input, |
| size_t ilen, |
| unsigned char *output, |
| size_t output_max_len, |
| size_t *olen) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t i, plaintext_max_size; |
| |
| /* The following variables take sensitive values: their value must |
| * not leak into the observable behavior of the function other than |
| * the designated outputs (output, olen, return value). Otherwise |
| * this would open the execution of the function to |
| * side-channel-based variants of the Bleichenbacher padding oracle |
| * attack. Potential side channels include overall timing, memory |
| * access patterns (especially visible to an adversary who has access |
| * to a shared memory cache), and branches (especially visible to |
| * an adversary who has access to a shared code cache or to a shared |
| * branch predictor). */ |
| size_t pad_count = 0; |
| mbedtls_ct_condition_t bad; |
| mbedtls_ct_condition_t pad_done; |
| size_t plaintext_size = 0; |
| mbedtls_ct_condition_t output_too_large; |
| |
| plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11 |
| : output_max_len; |
| |
| /* Check and get padding length in constant time and constant |
| * memory trace. The first byte must be 0. */ |
| bad = mbedtls_ct_bool(input[0]); |
| |
| |
| /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00 |
| * where PS must be at least 8 nonzero bytes. */ |
| bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT)); |
| |
| /* Read the whole buffer. Set pad_done to nonzero if we find |
| * the 0x00 byte and remember the padding length in pad_count. */ |
| pad_done = MBEDTLS_CT_FALSE; |
| for (i = 2; i < ilen; i++) { |
| mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0); |
| pad_done = mbedtls_ct_bool_or(pad_done, found); |
| pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1); |
| } |
| |
| /* If pad_done is still zero, there's no data, only unfinished padding. */ |
| bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done)); |
| |
| /* There must be at least 8 bytes of padding. */ |
| bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count)); |
| |
| /* If the padding is valid, set plaintext_size to the number of |
| * remaining bytes after stripping the padding. If the padding |
| * is invalid, avoid leaking this fact through the size of the |
| * output: use the maximum message size that fits in the output |
| * buffer. Do it without branches to avoid leaking the padding |
| * validity through timing. RSA keys are small enough that all the |
| * size_t values involved fit in unsigned int. */ |
| plaintext_size = mbedtls_ct_uint_if( |
| bad, (unsigned) plaintext_max_size, |
| (unsigned) (ilen - pad_count - 3)); |
| |
| /* Set output_too_large to 0 if the plaintext fits in the output |
| * buffer and to 1 otherwise. */ |
| output_too_large = mbedtls_ct_uint_gt(plaintext_size, |
| plaintext_max_size); |
| |
| /* Set ret without branches to avoid timing attacks. Return: |
| * - INVALID_PADDING if the padding is bad (bad != 0). |
| * - OUTPUT_TOO_LARGE if the padding is good but the decrypted |
| * plaintext does not fit in the output buffer. |
| * - 0 if the padding is correct. */ |
| ret = mbedtls_ct_error_if( |
| bad, |
| MBEDTLS_ERR_RSA_INVALID_PADDING, |
| mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE) |
| ); |
| |
| /* If the padding is bad or the plaintext is too large, zero the |
| * data that we're about to copy to the output buffer. |
| * We need to copy the same amount of data |
| * from the same buffer whether the padding is good or not to |
| * avoid leaking the padding validity through overall timing or |
| * through memory or cache access patterns. */ |
| mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11); |
| |
| /* If the plaintext is too large, truncate it to the buffer size. |
| * Copy anyway to avoid revealing the length through timing, because |
| * revealing the length is as bad as revealing the padding validity |
| * for a Bleichenbacher attack. */ |
| plaintext_size = mbedtls_ct_uint_if(output_too_large, |
| (unsigned) plaintext_max_size, |
| (unsigned) plaintext_size); |
| |
| /* Move the plaintext to the leftmost position where it can start in |
| * the working buffer, i.e. make it start plaintext_max_size from |
| * the end of the buffer. Do this with a memory access trace that |
| * does not depend on the plaintext size. After this move, the |
| * starting location of the plaintext is no longer sensitive |
| * information. */ |
| mbedtls_ct_memmove_left(input + ilen - plaintext_max_size, |
| plaintext_max_size, |
| plaintext_max_size - plaintext_size); |
| |
| /* Finally copy the decrypted plaintext plus trailing zeros into the output |
| * buffer. If output_max_len is 0, then output may be an invalid pointer |
| * and the result of memcpy() would be undefined; prevent undefined |
| * behavior making sure to depend only on output_max_len (the size of the |
| * user-provided output buffer), which is independent from plaintext |
| * length, validity of padding, success of the decryption, and other |
| * secrets. */ |
| if (output_max_len != 0) { |
| memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size); |
| } |
| |
| /* Report the amount of data we copied to the output buffer. In case |
| * of errors (bad padding or output too large), the value of *olen |
| * when this function returns is not specified. Making it equivalent |
| * to the good case limits the risks of leaking the padding validity. */ |
| *olen = plaintext_size; |
| |
| return ret; |
| } |
| |
| #endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C && ! MBEDTLS_RSA_ALT */ |
| |
| #if !defined(MBEDTLS_RSA_ALT) |
| |
| int mbedtls_rsa_import(mbedtls_rsa_context *ctx, |
| const mbedtls_mpi *N, |
| const mbedtls_mpi *P, const mbedtls_mpi *Q, |
| const mbedtls_mpi *D, const mbedtls_mpi *E) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| |
| if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) || |
| (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) || |
| (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) || |
| (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) || |
| (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| |
| if (N != NULL) { |
| ctx->len = mbedtls_mpi_size(&ctx->N); |
| } |
| |
| return 0; |
| } |
| |
| int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx, |
| unsigned char const *N, size_t N_len, |
| unsigned char const *P, size_t P_len, |
| unsigned char const *Q, size_t Q_len, |
| unsigned char const *D, size_t D_len, |
| unsigned char const *E, size_t E_len) |
| { |
| int ret = 0; |
| |
| if (N != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len)); |
| ctx->len = mbedtls_mpi_size(&ctx->N); |
| } |
| |
| if (P != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len)); |
| } |
| |
| if (Q != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len)); |
| } |
| |
| if (D != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len)); |
| } |
| |
| if (E != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len)); |
| } |
| |
| cleanup: |
| |
| if (ret != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Checks whether the context fields are set in such a way |
| * that the RSA primitives will be able to execute without error. |
| * It does *not* make guarantees for consistency of the parameters. |
| */ |
| static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv, |
| int blinding_needed) |
| { |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| /* blinding_needed is only used for NO_CRT to decide whether |
| * P,Q need to be present or not. */ |
| ((void) blinding_needed); |
| #endif |
| |
| if (ctx->len != mbedtls_mpi_size(&ctx->N) || |
| ctx->len > MBEDTLS_MPI_MAX_SIZE) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * 1. Modular exponentiation needs positive, odd moduli. |
| */ |
| |
| /* Modular exponentiation wrt. N is always used for |
| * RSA public key operations. */ |
| if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 || |
| mbedtls_mpi_get_bit(&ctx->N, 0) == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| /* Modular exponentiation for P and Q is only |
| * used for private key operations and if CRT |
| * is used. */ |
| if (is_priv && |
| (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 || |
| mbedtls_mpi_get_bit(&ctx->P, 0) == 0 || |
| mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 || |
| mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| #endif /* !MBEDTLS_RSA_NO_CRT */ |
| |
| /* |
| * 2. Exponents must be positive |
| */ |
| |
| /* Always need E for public key operations */ |
| if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| /* For private key operations, use D or DP & DQ |
| * as (unblinded) exponents. */ |
| if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| #else |
| if (is_priv && |
| (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 || |
| mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| /* Blinding shouldn't make exponents negative either, |
| * so check that P, Q >= 1 if that hasn't yet been |
| * done as part of 1. */ |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| if (is_priv && blinding_needed && |
| (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 || |
| mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| #endif |
| |
| /* It wouldn't lead to an error if it wasn't satisfied, |
| * but check for QP >= 1 nonetheless. */ |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| if (is_priv && |
| mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| int mbedtls_rsa_complete(mbedtls_rsa_context *ctx) |
| { |
| int ret = 0; |
| int have_N, have_P, have_Q, have_D, have_E; |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| int have_DP, have_DQ, have_QP; |
| #endif |
| int n_missing, pq_missing, d_missing, is_pub, is_priv; |
| |
| have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0); |
| have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0); |
| have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0); |
| have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0); |
| have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0); |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0); |
| have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0); |
| have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0); |
| #endif |
| |
| /* |
| * Check whether provided parameters are enough |
| * to deduce all others. The following incomplete |
| * parameter sets for private keys are supported: |
| * |
| * (1) P, Q missing. |
| * (2) D and potentially N missing. |
| * |
| */ |
| |
| n_missing = have_P && have_Q && have_D && have_E; |
| pq_missing = have_N && !have_P && !have_Q && have_D && have_E; |
| d_missing = have_P && have_Q && !have_D && have_E; |
| is_pub = have_N && !have_P && !have_Q && !have_D && have_E; |
| |
| /* These three alternatives are mutually exclusive */ |
| is_priv = n_missing || pq_missing || d_missing; |
| |
| if (!is_priv && !is_pub) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * Step 1: Deduce N if P, Q are provided. |
| */ |
| |
| if (!have_N && have_P && have_Q) { |
| if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, |
| &ctx->Q)) != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| |
| ctx->len = mbedtls_mpi_size(&ctx->N); |
| } |
| |
| /* |
| * Step 2: Deduce and verify all remaining core parameters. |
| */ |
| |
| if (pq_missing) { |
| ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D, |
| &ctx->P, &ctx->Q); |
| if (ret != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| |
| } else if (d_missing) { |
| if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P, |
| &ctx->Q, |
| &ctx->E, |
| &ctx->D)) != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| } |
| |
| /* |
| * Step 3: Deduce all additional parameters specific |
| * to our current RSA implementation. |
| */ |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| if (is_priv && !(have_DP && have_DQ && have_QP)) { |
| ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D, |
| &ctx->DP, &ctx->DQ, &ctx->QP); |
| if (ret != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| } |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| /* |
| * Step 3: Basic sanity checks |
| */ |
| |
| return rsa_check_context(ctx, is_priv, 1); |
| } |
| |
| int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx, |
| unsigned char *N, size_t N_len, |
| unsigned char *P, size_t P_len, |
| unsigned char *Q, size_t Q_len, |
| unsigned char *D, size_t D_len, |
| unsigned char *E, size_t E_len) |
| { |
| int ret = 0; |
| int is_priv; |
| |
| /* Check if key is private or public */ |
| is_priv = |
| mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; |
| |
| if (!is_priv) { |
| /* If we're trying to export private parameters for a public key, |
| * something must be wrong. */ |
| if (P != NULL || Q != NULL || D != NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| } |
| |
| if (N != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len)); |
| } |
| |
| if (P != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len)); |
| } |
| |
| if (Q != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len)); |
| } |
| |
| if (D != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len)); |
| } |
| |
| if (E != NULL) { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len)); |
| } |
| |
| cleanup: |
| |
| return ret; |
| } |
| |
| int mbedtls_rsa_export(const mbedtls_rsa_context *ctx, |
| mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q, |
| mbedtls_mpi *D, mbedtls_mpi *E) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| int is_priv; |
| |
| /* Check if key is private or public */ |
| is_priv = |
| mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; |
| |
| if (!is_priv) { |
| /* If we're trying to export private parameters for a public key, |
| * something must be wrong. */ |
| if (P != NULL || Q != NULL || D != NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| } |
| |
| /* Export all requested core parameters. */ |
| |
| if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) || |
| (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) || |
| (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) || |
| (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) || |
| (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) { |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Export CRT parameters |
| * This must also be implemented if CRT is not used, for being able to |
| * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt |
| * can be used in this case. |
| */ |
| int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx, |
| mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| int is_priv; |
| |
| /* Check if key is private or public */ |
| is_priv = |
| mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 && |
| mbedtls_mpi_cmp_int(&ctx->E, 0) != 0; |
| |
| if (!is_priv) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| /* Export all requested blinding parameters. */ |
| if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) || |
| (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) || |
| (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| #else |
| if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D, |
| DP, DQ, QP)) != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret); |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Initialize an RSA context |
| */ |
| void mbedtls_rsa_init(mbedtls_rsa_context *ctx) |
| { |
| memset(ctx, 0, sizeof(mbedtls_rsa_context)); |
| |
| ctx->padding = MBEDTLS_RSA_PKCS_V15; |
| ctx->hash_id = MBEDTLS_MD_NONE; |
| |
| #if defined(MBEDTLS_THREADING_C) |
| /* Set ctx->ver to nonzero to indicate that the mutex has been |
| * initialized and will need to be freed. */ |
| ctx->ver = 1; |
| mbedtls_mutex_init(&ctx->mutex); |
| #endif |
| } |
| |
| /* |
| * Set padding for an existing RSA context |
| */ |
| int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding, |
| mbedtls_md_type_t hash_id) |
| { |
| switch (padding) { |
| #if defined(MBEDTLS_PKCS1_V15) |
| case MBEDTLS_RSA_PKCS_V15: |
| break; |
| #endif |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| case MBEDTLS_RSA_PKCS_V21: |
| break; |
| #endif |
| default: |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| if ((padding == MBEDTLS_RSA_PKCS_V21) && |
| (hash_id != MBEDTLS_MD_NONE)) { |
| /* Just make sure this hash is supported in this build. */ |
| if (mbedtls_md_info_from_type(hash_id) == NULL) { |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| ctx->padding = padding; |
| ctx->hash_id = hash_id; |
| |
| return 0; |
| } |
| |
| /* |
| * Get padding mode of initialized RSA context |
| */ |
| int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx) |
| { |
| return ctx->padding; |
| } |
| |
| /* |
| * Get hash identifier of mbedtls_md_type_t type |
| */ |
| int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx) |
| { |
| return ctx->hash_id; |
| } |
| |
| /* |
| * Get length in bits of RSA modulus |
| */ |
| size_t mbedtls_rsa_get_bitlen(const mbedtls_rsa_context *ctx) |
| { |
| return mbedtls_mpi_bitlen(&ctx->N); |
| } |
| |
| /* |
| * Get length in bytes of RSA modulus |
| */ |
| size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx) |
| { |
| return ctx->len; |
| } |
| |
| #if defined(MBEDTLS_GENPRIME) |
| |
| /* |
| * Generate an RSA keypair |
| * |
| * This generation method follows the RSA key pair generation procedure of |
| * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072. |
| */ |
| int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| unsigned int nbits, int exponent) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| mbedtls_mpi H, G, L; |
| int prime_quality = 0; |
| |
| /* |
| * If the modulus is 1024 bit long or shorter, then the security strength of |
| * the RSA algorithm is less than or equal to 80 bits and therefore an error |
| * rate of 2^-80 is sufficient. |
| */ |
| if (nbits > 1024) { |
| prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR; |
| } |
| |
| mbedtls_mpi_init(&H); |
| mbedtls_mpi_init(&G); |
| mbedtls_mpi_init(&L); |
| |
| if (exponent < 3 || nbits % 2 != 0) { |
| ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) { |
| ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| /* |
| * find primes P and Q with Q < P so that: |
| * 1. |P-Q| > 2^( nbits / 2 - 100 ) |
| * 2. GCD( E, (P-1)*(Q-1) ) == 1 |
| * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 ) |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent)); |
| |
| do { |
| MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1, |
| prime_quality, f_rng, p_rng)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1, |
| prime_quality, f_rng, p_rng)); |
| |
| /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q)); |
| if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) { |
| continue; |
| } |
| |
| /* not required by any standards, but some users rely on the fact that P > Q */ |
| if (H.s < 0) { |
| mbedtls_mpi_swap(&ctx->P, &ctx->Q); |
| } |
| |
| /* Temporarily replace P,Q by P-1, Q-1 */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q)); |
| |
| /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H)); |
| if (mbedtls_mpi_cmp_int(&G, 1) != 0) { |
| continue; |
| } |
| |
| /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L)); |
| |
| if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) { // (FIPS 186-4 §B.3.1 criterion 3(a)) |
| continue; |
| } |
| |
| break; |
| } while (1); |
| |
| /* Restore P,Q */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P, &ctx->P, 1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q, &ctx->Q, 1)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q)); |
| |
| ctx->len = mbedtls_mpi_size(&ctx->N); |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| /* |
| * DP = D mod (P - 1) |
| * DQ = D mod (Q - 1) |
| * QP = Q^-1 mod P |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D, |
| &ctx->DP, &ctx->DQ, &ctx->QP)); |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| /* Double-check */ |
| MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx)); |
| |
| cleanup: |
| |
| mbedtls_mpi_free(&H); |
| mbedtls_mpi_free(&G); |
| mbedtls_mpi_free(&L); |
| |
| if (ret != 0) { |
| mbedtls_rsa_free(ctx); |
| |
| if ((-ret & ~0x7f) == 0) { |
| ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret); |
| } |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| #endif /* MBEDTLS_GENPRIME */ |
| |
| /* |
| * Check a public RSA key |
| */ |
| int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx) |
| { |
| if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| if (mbedtls_mpi_bitlen(&ctx->N) < 128) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 || |
| mbedtls_mpi_bitlen(&ctx->E) < 2 || |
| mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check for the consistency of all fields in an RSA private key context |
| */ |
| int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx) |
| { |
| if (mbedtls_rsa_check_pubkey(ctx) != 0 || |
| rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q, |
| &ctx->D, &ctx->E, NULL, NULL) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D, |
| &ctx->DP, &ctx->DQ, &ctx->QP) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Check if contexts holding a public and private key match |
| */ |
| int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub, |
| const mbedtls_rsa_context *prv) |
| { |
| if (mbedtls_rsa_check_pubkey(pub) != 0 || |
| mbedtls_rsa_check_privkey(prv) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 || |
| mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) { |
| return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Do an RSA public key operation |
| */ |
| int mbedtls_rsa_public(mbedtls_rsa_context *ctx, |
| const unsigned char *input, |
| unsigned char *output) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t olen; |
| mbedtls_mpi T; |
| |
| if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| mbedtls_mpi_init(&T); |
| |
| #if defined(MBEDTLS_THREADING_C) |
| if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { |
| return ret; |
| } |
| #endif |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len)); |
| |
| if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) { |
| ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| olen = ctx->len; |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen)); |
| |
| cleanup: |
| #if defined(MBEDTLS_THREADING_C) |
| if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { |
| return MBEDTLS_ERR_THREADING_MUTEX_ERROR; |
| } |
| #endif |
| |
| mbedtls_mpi_free(&T); |
| |
| if (ret != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Generate or update blinding values, see section 10 of: |
| * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA, |
| * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer |
| * Berlin Heidelberg, 1996. p. 104-113. |
| */ |
| static int rsa_prepare_blinding(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) |
| { |
| int ret, count = 0; |
| mbedtls_mpi R; |
| |
| mbedtls_mpi_init(&R); |
| |
| if (ctx->Vf.p != NULL) { |
| /* We already have blinding values, just update them by squaring */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N)); |
| |
| goto cleanup; |
| } |
| |
| /* Unblinding value: Vf = random number, invertible mod N */ |
| do { |
| if (count++ > 10) { |
| ret = MBEDTLS_ERR_RSA_RNG_FAILED; |
| goto cleanup; |
| } |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng)); |
| |
| /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); |
| |
| /* At this point, Vi is invertible mod N if and only if both Vf and R |
| * are invertible mod N. If one of them isn't, we don't need to know |
| * which one, we just loop and choose new values for both of them. |
| * (Each iteration succeeds with overwhelming probability.) */ |
| ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N); |
| if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) { |
| goto cleanup; |
| } |
| |
| } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE); |
| |
| /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N)); |
| |
| /* Blinding value: Vi = Vf^(-e) mod N |
| * (Vi already contains Vf^-1 at this point) */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN)); |
| |
| |
| cleanup: |
| mbedtls_mpi_free(&R); |
| |
| return ret; |
| } |
| |
| /* |
| * Unblind |
| * T = T * Vf mod N |
| */ |
| static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p); |
| const size_t nlimbs = N->n; |
| const size_t tlimbs = mbedtls_mpi_core_montmul_working_limbs(nlimbs); |
| mbedtls_mpi RR, M_T; |
| |
| mbedtls_mpi_init(&RR); |
| mbedtls_mpi_init(&M_T); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs)); |
| |
| /* T = T * Vf mod N |
| * Reminder: montmul(A, B, N) = A * B * R^-1 mod N |
| * Usually both operands are multiplied by R mod N beforehand (by calling |
| * `to_mont_rep()` on them), yielding a result that's also * R mod N (aka |
| * "in the Montgomery domain"). Here we only multiply one operand by R mod |
| * N, so the result is directly what we want - no need to call |
| * `from_mont_rep()` on it. */ |
| mbedtls_mpi_core_to_mont_rep(T->p, T->p, N->p, nlimbs, mm, RR.p, M_T.p); |
| mbedtls_mpi_core_montmul(T->p, T->p, Vf->p, nlimbs, N->p, nlimbs, mm, M_T.p); |
| |
| cleanup: |
| |
| mbedtls_mpi_free(&RR); |
| mbedtls_mpi_free(&M_T); |
| |
| return ret; |
| } |
| |
| /* |
| * Exponent blinding supposed to prevent side-channel attacks using multiple |
| * traces of measurements to recover the RSA key. The more collisions are there, |
| * the more bits of the key can be recovered. See [3]. |
| * |
| * Collecting n collisions with m bit long blinding value requires 2^(m-m/n) |
| * observations on average. |
| * |
| * For example with 28 byte blinding to achieve 2 collisions the adversary has |
| * to make 2^112 observations on average. |
| * |
| * (With the currently (as of 2017 April) known best algorithms breaking 2048 |
| * bit RSA requires approximately as much time as trying out 2^112 random keys. |
| * Thus in this sense with 28 byte blinding the security is not reduced by |
| * side-channel attacks like the one in [3]) |
| * |
| * This countermeasure does not help if the key recovery is possible with a |
| * single trace. |
| */ |
| #define RSA_EXPONENT_BLINDING 28 |
| |
| /* |
| * Do an RSA private key operation |
| */ |
| int mbedtls_rsa_private(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| const unsigned char *input, |
| unsigned char *output) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t olen; |
| |
| /* Temporary holding the result */ |
| mbedtls_mpi T; |
| |
| /* Temporaries holding P-1, Q-1 and the |
| * exponent blinding factor, respectively. */ |
| mbedtls_mpi P1, Q1, R; |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| /* Temporaries holding the results mod p resp. mod q. */ |
| mbedtls_mpi TP, TQ; |
| |
| /* Temporaries holding the blinded exponents for |
| * the mod p resp. mod q computation (if used). */ |
| mbedtls_mpi DP_blind, DQ_blind; |
| #else |
| /* Temporary holding the blinded exponent (if used). */ |
| mbedtls_mpi D_blind; |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| /* Temporaries holding the initial input and the double |
| * checked result; should be the same in the end. */ |
| mbedtls_mpi input_blinded, check_result_blinded; |
| |
| if (f_rng == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (rsa_check_context(ctx, 1 /* private key checks */, |
| 1 /* blinding on */) != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| #if defined(MBEDTLS_THREADING_C) |
| if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) { |
| return ret; |
| } |
| #endif |
| |
| /* MPI Initialization */ |
| mbedtls_mpi_init(&T); |
| |
| mbedtls_mpi_init(&P1); |
| mbedtls_mpi_init(&Q1); |
| mbedtls_mpi_init(&R); |
| |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| mbedtls_mpi_init(&D_blind); |
| #else |
| mbedtls_mpi_init(&DP_blind); |
| mbedtls_mpi_init(&DQ_blind); |
| #endif |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ); |
| #endif |
| |
| mbedtls_mpi_init(&input_blinded); |
| mbedtls_mpi_init(&check_result_blinded); |
| |
| /* End of MPI initialization */ |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len)); |
| if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) { |
| ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; |
| goto cleanup; |
| } |
| |
| /* |
| * Blinding |
| * T = T * Vi mod N |
| */ |
| MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T)); |
| |
| /* |
| * Exponent blinding |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1)); |
| |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| /* |
| * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, |
| f_rng, p_rng)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D)); |
| #else |
| /* |
| * DP_blind = ( P - 1 ) * R + DP |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, |
| f_rng, p_rng)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind, |
| &ctx->DP)); |
| |
| /* |
| * DQ_blind = ( Q - 1 ) * R + DQ |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING, |
| f_rng, p_rng)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind, |
| &ctx->DQ)); |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &D_blind, &ctx->N, &ctx->RN)); |
| #else |
| /* |
| * Faster decryption using the CRT |
| * |
| * TP = input ^ dP mod P |
| * TQ = input ^ dQ mod Q |
| */ |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ)); |
| |
| /* |
| * T = (TP - TQ) * (Q^-1 mod P) mod P |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P)); |
| |
| /* |
| * T = TQ + T * Q |
| */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP)); |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| /* Verify the result to prevent glitching attacks. */ |
| MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E, |
| &ctx->N, &ctx->RN)); |
| if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) { |
| ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| /* |
| * Unblind |
| * T = T * Vf mod N |
| */ |
| MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N)); |
| |
| olen = ctx->len; |
| MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen)); |
| |
| cleanup: |
| #if defined(MBEDTLS_THREADING_C) |
| if (mbedtls_mutex_unlock(&ctx->mutex) != 0) { |
| return MBEDTLS_ERR_THREADING_MUTEX_ERROR; |
| } |
| #endif |
| |
| mbedtls_mpi_free(&P1); |
| mbedtls_mpi_free(&Q1); |
| mbedtls_mpi_free(&R); |
| |
| #if defined(MBEDTLS_RSA_NO_CRT) |
| mbedtls_mpi_free(&D_blind); |
| #else |
| mbedtls_mpi_free(&DP_blind); |
| mbedtls_mpi_free(&DQ_blind); |
| #endif |
| |
| mbedtls_mpi_free(&T); |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ); |
| #endif |
| |
| mbedtls_mpi_free(&check_result_blinded); |
| mbedtls_mpi_free(&input_blinded); |
| |
| if (ret != 0 && ret >= -0x007f) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret); |
| } |
| |
| return ret; |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| /** |
| * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. |
| * |
| * \param dst buffer to mask |
| * \param dlen length of destination buffer |
| * \param src source of the mask generation |
| * \param slen length of the source buffer |
| * \param md_alg message digest to use |
| */ |
| static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src, |
| size_t slen, mbedtls_md_type_t md_alg) |
| { |
| unsigned char counter[4]; |
| unsigned char *p; |
| unsigned int hlen; |
| size_t i, use_len; |
| unsigned char mask[MBEDTLS_MD_MAX_SIZE]; |
| int ret = 0; |
| const mbedtls_md_info_t *md_info; |
| mbedtls_md_context_t md_ctx; |
| |
| mbedtls_md_init(&md_ctx); |
| md_info = mbedtls_md_info_from_type(md_alg); |
| if (md_info == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| mbedtls_md_init(&md_ctx); |
| if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) { |
| goto exit; |
| } |
| |
| hlen = mbedtls_md_get_size(md_info); |
| |
| memset(mask, 0, sizeof(mask)); |
| memset(counter, 0, 4); |
| |
| /* Generate and apply dbMask */ |
| p = dst; |
| |
| while (dlen > 0) { |
| use_len = hlen; |
| if (dlen < hlen) { |
| use_len = dlen; |
| } |
| |
| if ((ret = mbedtls_md_starts(&md_ctx)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) { |
| goto exit; |
| } |
| |
| for (i = 0; i < use_len; ++i) { |
| *p++ ^= mask[i]; |
| } |
| |
| counter[3]++; |
| |
| dlen -= use_len; |
| } |
| |
| exit: |
| mbedtls_platform_zeroize(mask, sizeof(mask)); |
| mbedtls_md_free(&md_ctx); |
| |
| return ret; |
| } |
| |
| /** |
| * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6. |
| * |
| * \param hash the input hash |
| * \param hlen length of the input hash |
| * \param salt the input salt |
| * \param slen length of the input salt |
| * \param out the output buffer - must be large enough for \p md_alg |
| * \param md_alg message digest to use |
| */ |
| static int hash_mprime(const unsigned char *hash, size_t hlen, |
| const unsigned char *salt, size_t slen, |
| unsigned char *out, mbedtls_md_type_t md_alg) |
| { |
| const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| mbedtls_md_context_t md_ctx; |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| |
| const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg); |
| if (md_info == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| mbedtls_md_init(&md_ctx); |
| if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_starts(&md_ctx)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) { |
| goto exit; |
| } |
| if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) { |
| goto exit; |
| } |
| |
| exit: |
| mbedtls_md_free(&md_ctx); |
| |
| return ret; |
| } |
| |
| /** |
| * Compute a hash. |
| * |
| * \param md_alg algorithm to use |
| * \param input input message to hash |
| * \param ilen input length |
| * \param output the output buffer - must be large enough for \p md_alg |
| */ |
| static int compute_hash(mbedtls_md_type_t md_alg, |
| const unsigned char *input, size_t ilen, |
| unsigned char *output) |
| { |
| const mbedtls_md_info_t *md_info; |
| |
| md_info = mbedtls_md_info_from_type(md_alg); |
| if (md_info == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| return mbedtls_md(md_info, input, ilen, output); |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function |
| */ |
| int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| const unsigned char *label, size_t label_len, |
| size_t ilen, |
| const unsigned char *input, |
| unsigned char *output) |
| { |
| size_t olen; |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| unsigned char *p = output; |
| unsigned int hlen; |
| |
| if (f_rng == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id); |
| if (hlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| olen = ctx->len; |
| |
| /* first comparison checks for overflow */ |
| if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| memset(output, 0, olen); |
| |
| *p++ = 0; |
| |
| /* Generate a random octet string seed */ |
| if ((ret = f_rng(p_rng, p, hlen)) != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); |
| } |
| |
| p += hlen; |
| |
| /* Construct DB */ |
| ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p); |
| if (ret != 0) { |
| return ret; |
| } |
| p += hlen; |
| p += olen - 2 * hlen - 2 - ilen; |
| *p++ = 1; |
| if (ilen != 0) { |
| memcpy(p, input, ilen); |
| } |
| |
| /* maskedDB: Apply dbMask to DB */ |
| if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen, |
| (mbedtls_md_type_t) ctx->hash_id)) != 0) { |
| return ret; |
| } |
| |
| /* maskedSeed: Apply seedMask to seed */ |
| if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1, |
| (mbedtls_md_type_t) ctx->hash_id)) != 0) { |
| return ret; |
| } |
| |
| return mbedtls_rsa_public(ctx, output, output); |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| #if defined(MBEDTLS_PKCS1_V15) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function |
| */ |
| int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, size_t ilen, |
| const unsigned char *input, |
| unsigned char *output) |
| { |
| size_t nb_pad, olen; |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| unsigned char *p = output; |
| |
| olen = ctx->len; |
| |
| /* first comparison checks for overflow */ |
| if (ilen + 11 < ilen || olen < ilen + 11) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| nb_pad = olen - 3 - ilen; |
| |
| *p++ = 0; |
| |
| if (f_rng == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| *p++ = MBEDTLS_RSA_CRYPT; |
| |
| while (nb_pad-- > 0) { |
| int rng_dl = 100; |
| |
| do { |
| ret = f_rng(p_rng, p, 1); |
| } while (*p == 0 && --rng_dl && ret == 0); |
| |
| /* Check if RNG failed to generate data */ |
| if (rng_dl == 0 || ret != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); |
| } |
| |
| p++; |
| } |
| |
| *p++ = 0; |
| if (ilen != 0) { |
| memcpy(p, input, ilen); |
| } |
| |
| return mbedtls_rsa_public(ctx, output, output); |
| } |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| |
| /* |
| * Add the message padding, then do an RSA operation |
| */ |
| int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| size_t ilen, |
| const unsigned char *input, |
| unsigned char *output) |
| { |
| switch (ctx->padding) { |
| #if defined(MBEDTLS_PKCS1_V15) |
| case MBEDTLS_RSA_PKCS_V15: |
| return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng, |
| ilen, input, output); |
| #endif |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| case MBEDTLS_RSA_PKCS_V21: |
| return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0, |
| ilen, input, output); |
| #endif |
| |
| default: |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function |
| */ |
| int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| const unsigned char *label, size_t label_len, |
| size_t *olen, |
| const unsigned char *input, |
| unsigned char *output, |
| size_t output_max_len) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t ilen, i, pad_len; |
| unsigned char *p; |
| mbedtls_ct_condition_t bad, in_padding; |
| unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| unsigned char lhash[MBEDTLS_MD_MAX_SIZE]; |
| unsigned int hlen; |
| |
| /* |
| * Parameters sanity checks |
| */ |
| if (ctx->padding != MBEDTLS_RSA_PKCS_V21) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| ilen = ctx->len; |
| |
| if (ilen < 16 || ilen > sizeof(buf)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id); |
| if (hlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| // checking for integer underflow |
| if (2 * hlen + 2 > ilen) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * RSA operation |
| */ |
| ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf); |
| |
| if (ret != 0) { |
| goto cleanup; |
| } |
| |
| /* |
| * Unmask data and generate lHash |
| */ |
| /* seed: Apply seedMask to maskedSeed */ |
| if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1, |
| (mbedtls_md_type_t) ctx->hash_id)) != 0 || |
| /* DB: Apply dbMask to maskedDB */ |
| (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen, |
| (mbedtls_md_type_t) ctx->hash_id)) != 0) { |
| goto cleanup; |
| } |
| |
| /* Generate lHash */ |
| ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, |
| label, label_len, lhash); |
| if (ret != 0) { |
| goto cleanup; |
| } |
| |
| /* |
| * Check contents, in "constant-time" |
| */ |
| p = buf; |
| |
| bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */ |
| |
| p += hlen; /* Skip seed */ |
| |
| /* Check lHash */ |
| bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen))); |
| p += hlen; |
| |
| /* Get zero-padding len, but always read till end of buffer |
| * (minus one, for the 01 byte) */ |
| pad_len = 0; |
| in_padding = MBEDTLS_CT_TRUE; |
| for (i = 0; i < ilen - 2 * hlen - 2; i++) { |
| in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0)); |
| pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1); |
| } |
| |
| p += pad_len; |
| bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01)); |
| |
| /* |
| * The only information "leaked" is whether the padding was correct or not |
| * (eg, no data is copied if it was not correct). This meets the |
| * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between |
| * the different error conditions. |
| */ |
| if (bad != MBEDTLS_CT_FALSE) { |
| ret = MBEDTLS_ERR_RSA_INVALID_PADDING; |
| goto cleanup; |
| } |
| |
| if (ilen - ((size_t) (p - buf)) > output_max_len) { |
| ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE; |
| goto cleanup; |
| } |
| |
| *olen = ilen - ((size_t) (p - buf)); |
| if (*olen != 0) { |
| memcpy(output, p, *olen); |
| } |
| ret = 0; |
| |
| cleanup: |
| mbedtls_platform_zeroize(buf, sizeof(buf)); |
| mbedtls_platform_zeroize(lhash, sizeof(lhash)); |
| |
| return ret; |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| #if defined(MBEDTLS_PKCS1_V15) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function |
| */ |
| int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| size_t *olen, |
| const unsigned char *input, |
| unsigned char *output, |
| size_t output_max_len) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t ilen; |
| unsigned char buf[MBEDTLS_MPI_MAX_SIZE]; |
| |
| ilen = ctx->len; |
| |
| if (ctx->padding != MBEDTLS_RSA_PKCS_V15) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (ilen < 16 || ilen > sizeof(buf)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf); |
| |
| if (ret != 0) { |
| goto cleanup; |
| } |
| |
| ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen, |
| output, output_max_len, olen); |
| |
| cleanup: |
| mbedtls_platform_zeroize(buf, sizeof(buf)); |
| |
| return ret; |
| } |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| |
| /* |
| * Do an RSA operation, then remove the message padding |
| */ |
| int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| size_t *olen, |
| const unsigned char *input, |
| unsigned char *output, |
| size_t output_max_len) |
| { |
| switch (ctx->padding) { |
| #if defined(MBEDTLS_PKCS1_V15) |
| case MBEDTLS_RSA_PKCS_V15: |
| return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen, |
| input, output, output_max_len); |
| #endif |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| case MBEDTLS_RSA_PKCS_V21: |
| return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0, |
| olen, input, output, |
| output_max_len); |
| #endif |
| |
| default: |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| static int rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| int saltlen, |
| unsigned char *sig) |
| { |
| size_t olen; |
| unsigned char *p = sig; |
| unsigned char *salt = NULL; |
| size_t slen, min_slen, hlen, offset = 0; |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t msb; |
| mbedtls_md_type_t hash_id; |
| |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (f_rng == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| olen = ctx->len; |
| |
| if (md_alg != MBEDTLS_MD_NONE) { |
| /* Gather length of hash to sign */ |
| size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg); |
| if (exp_hashlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (hashlen != exp_hashlen) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| } |
| |
| hash_id = (mbedtls_md_type_t) ctx->hash_id; |
| if (hash_id == MBEDTLS_MD_NONE) { |
| hash_id = md_alg; |
| } |
| hlen = mbedtls_md_get_size_from_type(hash_id); |
| if (hlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) { |
| /* Calculate the largest possible salt length, up to the hash size. |
| * Normally this is the hash length, which is the maximum salt length |
| * according to FIPS 185-4 §5.5 (e) and common practice. If there is not |
| * enough room, use the maximum salt length that fits. The constraint is |
| * that the hash length plus the salt length plus 2 bytes must be at most |
| * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017 |
| * (PKCS#1 v2.2) §9.1.1 step 3. */ |
| min_slen = hlen - 2; |
| if (olen < hlen + min_slen + 2) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } else if (olen >= hlen + hlen + 2) { |
| slen = hlen; |
| } else { |
| slen = olen - hlen - 2; |
| } |
| } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } else { |
| slen = (size_t) saltlen; |
| } |
| |
| memset(sig, 0, olen); |
| |
| /* Note: EMSA-PSS encoding is over the length of N - 1 bits */ |
| msb = mbedtls_mpi_bitlen(&ctx->N) - 1; |
| p += olen - hlen - slen - 2; |
| *p++ = 0x01; |
| |
| /* Generate salt of length slen in place in the encoded message */ |
| salt = p; |
| if ((ret = f_rng(p_rng, salt, slen)) != 0) { |
| return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret); |
| } |
| |
| p += slen; |
| |
| /* Generate H = Hash( M' ) */ |
| ret = hash_mprime(hash, hashlen, salt, slen, p, hash_id); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* Compensate for boundary condition when applying mask */ |
| if (msb % 8 == 0) { |
| offset = 1; |
| } |
| |
| /* maskedDB: Apply dbMask to DB */ |
| ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, hash_id); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| msb = mbedtls_mpi_bitlen(&ctx->N) - 1; |
| sig[0] &= 0xFF >> (olen * 8 - msb); |
| |
| p += hlen; |
| *p++ = 0xBC; |
| |
| return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig); |
| } |
| |
| static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| int saltlen, |
| unsigned char *sig) |
| { |
| if (ctx->padding != MBEDTLS_RSA_PKCS_V21) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| if ((ctx->hash_id == MBEDTLS_MD_NONE) && (md_alg == MBEDTLS_MD_NONE)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, hashlen, hash, saltlen, |
| sig); |
| } |
| |
| int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| unsigned char *sig) |
| { |
| return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, |
| hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig); |
| } |
| |
| /* |
| * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with |
| * the option to pass in the salt length. |
| */ |
| int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| int saltlen, |
| unsigned char *sig) |
| { |
| return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, |
| hashlen, hash, saltlen, sig); |
| } |
| |
| /* |
| * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function |
| */ |
| int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| unsigned char *sig) |
| { |
| return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, |
| hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig); |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| #if defined(MBEDTLS_PKCS1_V15) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function |
| */ |
| |
| /* Construct a PKCS v1.5 encoding of a hashed message |
| * |
| * This is used both for signature generation and verification. |
| * |
| * Parameters: |
| * - md_alg: Identifies the hash algorithm used to generate the given hash; |
| * MBEDTLS_MD_NONE if raw data is signed. |
| * - hashlen: Length of hash. Must match md_alg if that's not NONE. |
| * - hash: Buffer containing the hashed message or the raw data. |
| * - dst_len: Length of the encoded message. |
| * - dst: Buffer to hold the encoded message. |
| * |
| * Assumptions: |
| * - hash has size hashlen. |
| * - dst points to a buffer of size at least dst_len. |
| * |
| */ |
| static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| size_t dst_len, |
| unsigned char *dst) |
| { |
| size_t oid_size = 0; |
| size_t nb_pad = dst_len; |
| unsigned char *p = dst; |
| const char *oid = NULL; |
| |
| /* Are we signing hashed or raw data? */ |
| if (md_alg != MBEDTLS_MD_NONE) { |
| unsigned char md_size = mbedtls_md_get_size_from_type(md_alg); |
| if (md_size == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (hashlen != md_size) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* Double-check that 8 + hashlen + oid_size can be used as a |
| * 1-byte ASN.1 length encoding and that there's no overflow. */ |
| if (8 + hashlen + oid_size >= 0x80 || |
| 10 + hashlen < hashlen || |
| 10 + hashlen + oid_size < 10 + hashlen) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * Static bounds check: |
| * - Need 10 bytes for five tag-length pairs. |
| * (Insist on 1-byte length encodings to protect against variants of |
| * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification) |
| * - Need hashlen bytes for hash |
| * - Need oid_size bytes for hash alg OID. |
| */ |
| if (nb_pad < 10 + hashlen + oid_size) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| nb_pad -= 10 + hashlen + oid_size; |
| } else { |
| if (nb_pad < hashlen) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| nb_pad -= hashlen; |
| } |
| |
| /* Need space for signature header and padding delimiter (3 bytes), |
| * and 8 bytes for the minimal padding */ |
| if (nb_pad < 3 + 8) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| nb_pad -= 3; |
| |
| /* Now nb_pad is the amount of memory to be filled |
| * with padding, and at least 8 bytes long. */ |
| |
| /* Write signature header and padding */ |
| *p++ = 0; |
| *p++ = MBEDTLS_RSA_SIGN; |
| memset(p, 0xFF, nb_pad); |
| p += nb_pad; |
| *p++ = 0; |
| |
| /* Are we signing raw data? */ |
| if (md_alg == MBEDTLS_MD_NONE) { |
| memcpy(p, hash, hashlen); |
| return 0; |
| } |
| |
| /* Signing hashed data, add corresponding ASN.1 structure |
| * |
| * DigestInfo ::= SEQUENCE { |
| * digestAlgorithm DigestAlgorithmIdentifier, |
| * digest Digest } |
| * DigestAlgorithmIdentifier ::= AlgorithmIdentifier |
| * Digest ::= OCTET STRING |
| * |
| * Schematic: |
| * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ] |
| * TAG-NULL + LEN [ NULL ] ] |
| * TAG-OCTET + LEN [ HASH ] ] |
| */ |
| *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
| *p++ = (unsigned char) (0x08 + oid_size + hashlen); |
| *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED; |
| *p++ = (unsigned char) (0x04 + oid_size); |
| *p++ = MBEDTLS_ASN1_OID; |
| *p++ = (unsigned char) oid_size; |
| memcpy(p, oid, oid_size); |
| p += oid_size; |
| *p++ = MBEDTLS_ASN1_NULL; |
| *p++ = 0x00; |
| *p++ = MBEDTLS_ASN1_OCTET_STRING; |
| *p++ = (unsigned char) hashlen; |
| memcpy(p, hash, hashlen); |
| p += hashlen; |
| |
| /* Just a sanity-check, should be automatic |
| * after the initial bounds check. */ |
| if (p != dst + dst_len) { |
| mbedtls_platform_zeroize(dst, dst_len); |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Do an RSA operation to sign the message digest |
| */ |
| int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| unsigned char *sig) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| unsigned char *sig_try = NULL, *verif = NULL; |
| |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (ctx->padding != MBEDTLS_RSA_PKCS_V15) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * Prepare PKCS1-v1.5 encoding (padding and hash identifier) |
| */ |
| |
| if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, |
| ctx->len, sig)) != 0) { |
| return ret; |
| } |
| |
| /* Private key operation |
| * |
| * In order to prevent Lenstra's attack, make the signature in a |
| * temporary buffer and check it before returning it. |
| */ |
| |
| sig_try = mbedtls_calloc(1, ctx->len); |
| if (sig_try == NULL) { |
| return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
| } |
| |
| verif = mbedtls_calloc(1, ctx->len); |
| if (verif == NULL) { |
| mbedtls_free(sig_try); |
| return MBEDTLS_ERR_MPI_ALLOC_FAILED; |
| } |
| |
| MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif)); |
| |
| if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) { |
| ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED; |
| goto cleanup; |
| } |
| |
| memcpy(sig, sig_try, ctx->len); |
| |
| cleanup: |
| mbedtls_zeroize_and_free(sig_try, ctx->len); |
| mbedtls_zeroize_and_free(verif, ctx->len); |
| |
| if (ret != 0) { |
| memset(sig, '!', ctx->len); |
| } |
| return ret; |
| } |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| |
| /* |
| * Do an RSA operation to sign the message digest |
| */ |
| int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx, |
| int (*f_rng)(void *, unsigned char *, size_t), |
| void *p_rng, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| unsigned char *sig) |
| { |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| switch (ctx->padding) { |
| #if defined(MBEDTLS_PKCS1_V15) |
| case MBEDTLS_RSA_PKCS_V15: |
| return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng, |
| md_alg, hashlen, hash, sig); |
| #endif |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| case MBEDTLS_RSA_PKCS_V21: |
| return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg, |
| hashlen, hash, sig); |
| #endif |
| |
| default: |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| } |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
| */ |
| int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| mbedtls_md_type_t mgf1_hash_id, |
| int expected_salt_len, |
| const unsigned char *sig) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| size_t siglen; |
| unsigned char *p; |
| unsigned char *hash_start; |
| unsigned char result[MBEDTLS_MD_MAX_SIZE]; |
| unsigned int hlen; |
| size_t observed_salt_len, msb; |
| unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 }; |
| |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| siglen = ctx->len; |
| |
| if (siglen < 16 || siglen > sizeof(buf)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| ret = mbedtls_rsa_public(ctx, sig, buf); |
| |
| if (ret != 0) { |
| return ret; |
| } |
| |
| p = buf; |
| |
| if (buf[siglen - 1] != 0xBC) { |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| |
| if (md_alg != MBEDTLS_MD_NONE) { |
| /* Gather length of hash to sign */ |
| size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg); |
| if (exp_hashlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| if (hashlen != exp_hashlen) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| } |
| |
| hlen = mbedtls_md_get_size_from_type(mgf1_hash_id); |
| if (hlen == 0) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* |
| * Note: EMSA-PSS verification is over the length of N - 1 bits |
| */ |
| msb = mbedtls_mpi_bitlen(&ctx->N) - 1; |
| |
| if (buf[0] >> (8 - siglen * 8 + msb)) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| /* Compensate for boundary condition when applying mask */ |
| if (msb % 8 == 0) { |
| p++; |
| siglen -= 1; |
| } |
| |
| if (siglen < hlen + 2) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| hash_start = p + siglen - hlen - 1; |
| |
| ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| buf[0] &= 0xFF >> (siglen * 8 - msb); |
| |
| while (p < hash_start - 1 && *p == 0) { |
| p++; |
| } |
| |
| if (*p++ != 0x01) { |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| |
| observed_salt_len = (size_t) (hash_start - p); |
| |
| if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY && |
| observed_salt_len != (size_t) expected_salt_len) { |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| |
| /* |
| * Generate H = Hash( M' ) |
| */ |
| ret = hash_mprime(hash, hashlen, p, observed_salt_len, |
| result, mgf1_hash_id); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| if (memcmp(hash_start, result, hlen) != 0) { |
| return MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function |
| */ |
| int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| const unsigned char *sig) |
| { |
| mbedtls_md_type_t mgf1_hash_id; |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE) |
| ? (mbedtls_md_type_t) ctx->hash_id |
| : md_alg; |
| |
| return mbedtls_rsa_rsassa_pss_verify_ext(ctx, |
| md_alg, hashlen, hash, |
| mgf1_hash_id, |
| MBEDTLS_RSA_SALT_LEN_ANY, |
| sig); |
| |
| } |
| #endif /* MBEDTLS_PKCS1_V21 */ |
| |
| #if defined(MBEDTLS_PKCS1_V15) |
| /* |
| * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function |
| */ |
| int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| const unsigned char *sig) |
| { |
| int ret = 0; |
| size_t sig_len; |
| unsigned char *encoded = NULL, *encoded_expected = NULL; |
| |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| sig_len = ctx->len; |
| |
| /* |
| * Prepare expected PKCS1 v1.5 encoding of hash. |
| */ |
| |
| if ((encoded = mbedtls_calloc(1, sig_len)) == NULL || |
| (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) { |
| ret = MBEDTLS_ERR_MPI_ALLOC_FAILED; |
| goto cleanup; |
| } |
| |
| if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len, |
| encoded_expected)) != 0) { |
| goto cleanup; |
| } |
| |
| /* |
| * Apply RSA primitive to get what should be PKCS1 encoded hash. |
| */ |
| |
| ret = mbedtls_rsa_public(ctx, sig, encoded); |
| if (ret != 0) { |
| goto cleanup; |
| } |
| |
| /* |
| * Compare |
| */ |
| |
| if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected, |
| sig_len)) != 0) { |
| ret = MBEDTLS_ERR_RSA_VERIFY_FAILED; |
| goto cleanup; |
| } |
| |
| cleanup: |
| |
| if (encoded != NULL) { |
| mbedtls_zeroize_and_free(encoded, sig_len); |
| } |
| |
| if (encoded_expected != NULL) { |
| mbedtls_zeroize_and_free(encoded_expected, sig_len); |
| } |
| |
| return ret; |
| } |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| |
| /* |
| * Do an RSA operation and check the message digest |
| */ |
| int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx, |
| mbedtls_md_type_t md_alg, |
| unsigned int hashlen, |
| const unsigned char *hash, |
| const unsigned char *sig) |
| { |
| if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) { |
| return MBEDTLS_ERR_RSA_BAD_INPUT_DATA; |
| } |
| |
| switch (ctx->padding) { |
| #if defined(MBEDTLS_PKCS1_V15) |
| case MBEDTLS_RSA_PKCS_V15: |
| return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg, |
| hashlen, hash, sig); |
| #endif |
| |
| #if defined(MBEDTLS_PKCS1_V21) |
| case MBEDTLS_RSA_PKCS_V21: |
| return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg, |
| hashlen, hash, sig); |
| #endif |
| |
| default: |
| return MBEDTLS_ERR_RSA_INVALID_PADDING; |
| } |
| } |
| |
| /* |
| * Copy the components of an RSA key |
| */ |
| int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src) |
| { |
| int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; |
| |
| dst->len = src->len; |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q)); |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ)); |
| #endif |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf)); |
| |
| dst->padding = src->padding; |
| dst->hash_id = src->hash_id; |
| |
| cleanup: |
| if (ret != 0) { |
| mbedtls_rsa_free(dst); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * Free the components of an RSA key |
| */ |
| void mbedtls_rsa_free(mbedtls_rsa_context *ctx) |
| { |
| if (ctx == NULL) { |
| return; |
| } |
| |
| mbedtls_mpi_free(&ctx->Vi); |
| mbedtls_mpi_free(&ctx->Vf); |
| mbedtls_mpi_free(&ctx->RN); |
| mbedtls_mpi_free(&ctx->D); |
| mbedtls_mpi_free(&ctx->Q); |
| mbedtls_mpi_free(&ctx->P); |
| mbedtls_mpi_free(&ctx->E); |
| mbedtls_mpi_free(&ctx->N); |
| |
| #if !defined(MBEDTLS_RSA_NO_CRT) |
| mbedtls_mpi_free(&ctx->RQ); |
| mbedtls_mpi_free(&ctx->RP); |
| mbedtls_mpi_free(&ctx->QP); |
| mbedtls_mpi_free(&ctx->DQ); |
| mbedtls_mpi_free(&ctx->DP); |
| #endif /* MBEDTLS_RSA_NO_CRT */ |
| |
| #if defined(MBEDTLS_THREADING_C) |
| /* Free the mutex, but only if it hasn't been freed already. */ |
| if (ctx->ver != 0) { |
| mbedtls_mutex_free(&ctx->mutex); |
| ctx->ver = 0; |
| } |
| #endif |
| } |
| |
| #endif /* !MBEDTLS_RSA_ALT */ |
| |
| #if defined(MBEDTLS_SELF_TEST) |
| |
| |
| /* |
| * Example RSA-1024 keypair, for test purposes |
| */ |
| #define KEY_LEN 128 |
| |
| #define RSA_N "9292758453063D803DD603D5E777D788" \ |
| "8ED1D5BF35786190FA2F23EBC0848AEA" \ |
| "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ |
| "7130B9CED7ACDF54CFC7555AC14EEBAB" \ |
| "93A89813FBF3C4F8066D2D800F7C38A8" \ |
| "1AE31942917403FF4946B0A83D3D3E05" \ |
| "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ |
| "5E94BB77B07507233A0BC7BAC8F90F79" |
| |
| #define RSA_E "10001" |
| |
| #define RSA_D "24BF6185468786FDD303083D25E64EFC" \ |
| "66CA472BC44D253102F8B4A9D3BFA750" \ |
| "91386C0077937FE33FA3252D28855837" \ |
| "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ |
| "DF79C5CE07EE72C7F123142198164234" \ |
| "CABB724CF78B8173B9F880FC86322407" \ |
| "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ |
| "071513A1E85B5DFA031F21ECAE91A34D" |
| |
| #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ |
| "2C01CAD19EA484A87EA4377637E75500" \ |
| "FCB2005C5C7DD6EC4AC023CDA285D796" \ |
| "C3D9E75E1EFC42488BB4F1D13AC30A57" |
| |
| #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \ |
| "E211C2B9E5DB1ED0BF61D0D9899620F4" \ |
| "910E4168387E3C30AA1E00C339A79508" \ |
| "8452DD96A9A5EA5D9DCA68DA636032AF" |
| |
| #define PT_LEN 24 |
| #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ |
| "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD" |
| |
| #if defined(MBEDTLS_PKCS1_V15) |
| static int myrand(void *rng_state, unsigned char *output, size_t len) |
| { |
| #if !defined(__OpenBSD__) && !defined(__NetBSD__) |
| size_t i; |
| |
| if (rng_state != NULL) { |
| rng_state = NULL; |
| } |
| |
| for (i = 0; i < len; ++i) { |
| output[i] = rand(); |
| } |
| #else |
| if (rng_state != NULL) { |
| rng_state = NULL; |
| } |
| |
| arc4random_buf(output, len); |
| #endif /* !OpenBSD && !NetBSD */ |
| |
| return 0; |
| } |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| |
| /* |
| * Checkup routine |
| */ |
| int mbedtls_rsa_self_test(int verbose) |
| { |
| int ret = 0; |
| #if defined(MBEDTLS_PKCS1_V15) |
| size_t len; |
| mbedtls_rsa_context rsa; |
| unsigned char rsa_plaintext[PT_LEN]; |
| unsigned char rsa_decrypted[PT_LEN]; |
| unsigned char rsa_ciphertext[KEY_LEN]; |
| #if defined(MBEDTLS_MD_CAN_SHA1) |
| unsigned char sha1sum[20]; |
| #endif |
| |
| mbedtls_mpi K; |
| |
| mbedtls_mpi_init(&K); |
| mbedtls_rsa_init(&rsa); |
| |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL)); |
| MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E)); |
| MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K)); |
| |
| MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa)); |
| |
| if (verbose != 0) { |
| mbedtls_printf(" RSA key validation: "); |
| } |
| |
| if (mbedtls_rsa_check_pubkey(&rsa) != 0 || |
| mbedtls_rsa_check_privkey(&rsa) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (verbose != 0) { |
| mbedtls_printf("passed\n PKCS#1 encryption : "); |
| } |
| |
| memcpy(rsa_plaintext, RSA_PT, PT_LEN); |
| |
| if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL, |
| PT_LEN, rsa_plaintext, |
| rsa_ciphertext) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (verbose != 0) { |
| mbedtls_printf("passed\n PKCS#1 decryption : "); |
| } |
| |
| if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL, |
| &len, rsa_ciphertext, rsa_decrypted, |
| sizeof(rsa_decrypted)) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (verbose != 0) { |
| mbedtls_printf("passed\n"); |
| } |
| |
| #if defined(MBEDTLS_MD_CAN_SHA1) |
| if (verbose != 0) { |
| mbedtls_printf(" PKCS#1 data sign : "); |
| } |
| |
| if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1), |
| rsa_plaintext, PT_LEN, sha1sum) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| return 1; |
| } |
| |
| if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL, |
| MBEDTLS_MD_SHA1, 20, |
| sha1sum, rsa_ciphertext) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (verbose != 0) { |
| mbedtls_printf("passed\n PKCS#1 sig. verify: "); |
| } |
| |
| if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20, |
| sha1sum, rsa_ciphertext) != 0) { |
| if (verbose != 0) { |
| mbedtls_printf("failed\n"); |
| } |
| |
| ret = 1; |
| goto cleanup; |
| } |
| |
| if (verbose != 0) { |
| mbedtls_printf("passed\n"); |
| } |
| #endif /* MBEDTLS_MD_CAN_SHA1 */ |
| |
| if (verbose != 0) { |
| mbedtls_printf("\n"); |
| } |
| |
| cleanup: |
| mbedtls_mpi_free(&K); |
| mbedtls_rsa_free(&rsa); |
| #else /* MBEDTLS_PKCS1_V15 */ |
| ((void) verbose); |
| #endif /* MBEDTLS_PKCS1_V15 */ |
| return ret; |
| } |
| |
| #endif /* MBEDTLS_SELF_TEST */ |
| |
| #endif /* MBEDTLS_RSA_C */ |