blob: 08b1aa4b6efe0c8ba5cb72d5841d7080cd38080a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2021-2022 Stefan Roese <sr@denx.de>
*/
#include <cyclic.h>
#include <dm.h>
#include <ram.h>
#include <time.h>
#include <asm/gpio.h>
#include <mach/octeon_ddr.h>
#include <mach/cvmx-qlm.h>
#include <mach/octeon_qlm.h>
#include <mach/octeon_fdt.h>
#include <mach/cvmx-helper.h>
#include <mach/cvmx-helper-cfg.h>
#include <mach/cvmx-helper-util.h>
#include <mach/cvmx-bgxx-defs.h>
#include <mach/cvmx-dtx-defs.h>
#include "board_ddr.h"
/**
* cvmx_spem#_cfg_rd
*
* This register allows read access to the configuration in the PCIe core.
*
*/
union cvmx_spemx_cfg_rd {
u64 u64;
struct cvmx_spemx_cfg_rd_s {
u64 data : 32;
u64 addr : 32;
} s;
struct cvmx_spemx_cfg_rd_s cn73xx;
};
/**
* cvmx_spem#_cfg_wr
*
* This register allows write access to the configuration in the PCIe core.
*
*/
union cvmx_spemx_cfg_wr {
u64 u64;
struct cvmx_spemx_cfg_wr_s {
u64 data : 32;
u64 addr : 32;
} s;
struct cvmx_spemx_cfg_wr_s cn73xx;
};
/**
* cvmx_spem#_flr_pf_stopreq
*
* PF function level reset stop outbound requests register.
* Hardware automatically sets the STOPREQ bit for the PF when it enters a
* function level reset (FLR). Software is responsible for clearing the STOPREQ
* bit but must not do so prior to hardware taking down the FLR, which could be
* as long as 100ms. It may be appropriate for software to wait longer before clearing
* STOPREQ, software may need to drain deep DPI queues for example.
* Whenever SPEM receives a PF or child VF request mastered by CNXXXX over S2M (i.e. P or NP),
* when STOPREQ is set for the function, SPEM will discard the outgoing request
* before sending it to the PCIe core. If a NP, SPEM will schedule an immediate
* SWI_RSP_ERROR completion for the request - no timeout is required.
* In both cases, SPEM()_DBG_PF()_INFO[P()_BMD_E] will be set and a error
* interrupt is generated.
*
* STOPREQ mimics the behavior of PCIEEP()_CFG001[ME] for outbound requests that will
* master the PCIe bus (P and NP).
*
* STOPREQ will have no effect on completions returned by CNXXXX over the S2M,
* nor on M2S traffic.
*
* When a PF()_STOPREQ is set, none of the associated
* PEM()_FLR_PF()_VF_STOPREQ[VF_STOPREQ] will be set.
*
* STOPREQ is reset when the MAC is reset, and is not reset after a chip soft reset.
*/
union cvmx_spemx_flr_pf_stopreq {
u64 u64;
struct cvmx_spemx_flr_pf_stopreq_s {
u64 reserved_3_63 : 61;
u64 pf2_stopreq : 1;
u64 pf1_stopreq : 1;
u64 pf0_stopreq : 1;
} s;
struct cvmx_spemx_flr_pf_stopreq_s cn73xx;
};
#define CVMX_SPEMX_CFG_WR(offset) 0x00011800C0000028ull
#define CVMX_SPEMX_CFG_RD(offset) 0x00011800C0000030ull
#define CVMX_SPEMX_FLR_PF_STOPREQ(offset) 0x00011800C0000218ull
#define DTX_SELECT_LTSSM 0x0
#define DTX_SELECT_LTSSM_ENA 0x3ff
#define LTSSM_L0 0x11
#define NIC23_DEF_DRAM_FREQ 800
static u32 pci_cfgspace_reg0[2] = { 0, 0 };
static u8 octeon_nic23_cfg0_spd_values[512] = {
OCTEON_NIC23_CFG0_SPD_VALUES
};
static struct ddr_conf board_ddr_conf[] = {
OCTEON_NIC23_DDR_CONFIGURATION
};
struct ddr_conf *octeon_ddr_conf_table_get(int *count, int *def_ddr_freq)
{
*count = ARRAY_SIZE(board_ddr_conf);
*def_ddr_freq = NIC23_DEF_DRAM_FREQ;
return board_ddr_conf;
}
int board_fix_fdt(void *fdt)
{
u32 range_data[5 * 8];
bool rev4;
int node;
int rc;
/*
* ToDo:
* Read rev4 info from EEPROM or where the original U-Boot does
* and don't hard-code it here.
*/
rev4 = true;
debug("%s() rev4: %s\n", __func__, rev4 ? "true" : "false");
/* Patch the PHY configuration based on board revision */
rc = octeon_fdt_patch_rename(fdt,
rev4 ? "4,nor-flash" : "4,no-nor-flash",
"cavium,board-trim", false, NULL, NULL);
if (!rev4) {
/* Modify the ranges for CS 0 */
node = fdt_node_offset_by_compatible(fdt, -1,
"cavium,octeon-3860-bootbus");
if (node < 0) {
printf("%s: Error: cannot find boot bus in device tree!\n",
__func__);
return -1;
}
rc = fdtdec_get_int_array(fdt, node, "ranges",
range_data, 5 * 8);
if (rc) {
printf("%s: Error reading ranges from boot bus FDT\n",
__func__);
return -1;
}
range_data[2] = cpu_to_fdt32(0x10000);
range_data[3] = 0;
range_data[4] = 0;
rc = fdt_setprop(fdt, node, "ranges", range_data,
sizeof(range_data));
if (rc) {
printf("%s: Error updating boot bus ranges in fdt\n",
__func__);
}
}
return rc;
}
int board_early_init_f(void)
{
struct gpio_desc gpio = {};
ofnode node;
/* Initial GPIO configuration */
/* GPIO 7: Vitesse reset */
node = ofnode_by_compatible(ofnode_null(), "vitesse,vsc7224");
if (ofnode_valid(node)) {
gpio_request_by_name_nodev(node, "los", 0, &gpio, GPIOD_IS_IN);
dm_gpio_free(gpio.dev, &gpio);
gpio_request_by_name_nodev(node, "reset", 0, &gpio,
GPIOD_IS_OUT);
if (dm_gpio_is_valid(&gpio)) {
/* Vitesse reset */
debug("%s: Setting GPIO 7 to 1\n", __func__);
dm_gpio_set_value(&gpio, 1);
}
dm_gpio_free(gpio.dev, &gpio);
}
/* SFP+ transmitters */
ofnode_for_each_compatible_node(node, "ethernet,sfp-slot") {
gpio_request_by_name_nodev(node, "tx_disable", 0,
&gpio, GPIOD_IS_OUT);
if (dm_gpio_is_valid(&gpio)) {
debug("%s: Setting GPIO %d to 1\n", __func__,
gpio.offset);
dm_gpio_set_value(&gpio, 1);
}
dm_gpio_free(gpio.dev, &gpio);
gpio_request_by_name_nodev(node, "mod_abs", 0, &gpio,
GPIOD_IS_IN);
dm_gpio_free(gpio.dev, &gpio);
gpio_request_by_name_nodev(node, "tx_error", 0, &gpio,
GPIOD_IS_IN);
dm_gpio_free(gpio.dev, &gpio);
gpio_request_by_name_nodev(node, "rx_los", 0, &gpio,
GPIOD_IS_IN);
dm_gpio_free(gpio.dev, &gpio);
}
return 0;
}
void board_configure_qlms(void)
{
octeon_configure_qlm(4, 3000, CVMX_QLM_MODE_SATA_2X1, 0, 0, 0, 0);
octeon_configure_qlm(5, 103125, CVMX_QLM_MODE_XFI_1X2, 0, 0, 2, 0);
/* Apply amplitude tuning to 10G interface */
octeon_qlm_tune_v3(0, 4, 3000, -1, -1, 7, -1);
octeon_qlm_tune_v3(0, 5, 103125, 0x19, 0x0, -1, -1);
octeon_qlm_set_channel_v3(0, 5, 0);
octeon_qlm_dfe_disable(0, 5, -1, 103125, CVMX_QLM_MODE_XFI_1X2);
debug("QLM 4 reference clock: %d\n"
"DLM 5 reference clock: %d\n",
cvmx_qlm_measure_clock(4), cvmx_qlm_measure_clock(5));
}
/**
* If there is a PF FLR then the PCI EEPROM is not re-read. In this case
* we need to re-program the vendor and device ID immediately after hardware
* completes FLR.
*
* PCI spec requires FLR to be completed within 100ms. The user who triggered
* FLR expects hardware to finish FLR within 100ms, otherwise the user will
* end up reading DEVICE_ID incorrectly from the reset value.
* CN23XX exits FLR at any point between 66 and 99ms, so U-Boot has to wait
* 99ms to let hardware finish its part, then finish reprogramming the
* correct device ID before the end of 100ms.
*
* Note: this solution only works properly when there is no other activity
* within U-Boot for 100ms from the time FLR is triggered.
*
* This function gets called every 100usec. If FLR happens during any
* other activity like bootloader/image update then it is possible that
* this function does not get called for more than the FLR period which will
* cause the PF device ID restore to happen after whoever initiated the FLR to
* read the incorrect device ID 0x9700 (reset value) instead of 0x9702
* (restored value).
*/
static void octeon_board_restore_pf(void *ctx)
{
union cvmx_spemx_flr_pf_stopreq stopreq;
static bool start_initialized[2] = {false, false};
bool pf0_flag, pf1_flag;
u64 ltssm_bits;
const u64 pf_flr_wait_usecs = 99700;
u64 elapsed_usecs;
union cvmx_spemx_cfg_wr cfg_wr;
union cvmx_spemx_cfg_rd cfg_rd;
static u64 start_us[2];
int pf_num;
csr_wr(CVMX_DTX_SPEM_SELX(0), DTX_SELECT_LTSSM);
csr_rd(CVMX_DTX_SPEM_SELX(0));
csr_wr(CVMX_DTX_SPEM_ENAX(0), DTX_SELECT_LTSSM_ENA);
csr_rd(CVMX_DTX_SPEM_ENAX(0));
ltssm_bits = csr_rd(CVMX_DTX_SPEM_DATX(0));
if (((ltssm_bits >> 3) & 0x3f) != LTSSM_L0)
return;
stopreq.u64 = csr_rd(CVMX_SPEMX_FLR_PF_STOPREQ(0));
pf0_flag = stopreq.s.pf0_stopreq;
pf1_flag = stopreq.s.pf1_stopreq;
/* See if PF interrupt happened */
if (!(pf0_flag || pf1_flag))
return;
if (pf0_flag && !start_initialized[0]) {
start_initialized[0] = true;
start_us[0] = get_timer_us(0);
}
/* Store programmed PCIe DevID SPEM0 PF0 */
if (pf0_flag && !pci_cfgspace_reg0[0]) {
cfg_rd.s.addr = (0 << 24) | 0x0;
csr_wr(CVMX_SPEMX_CFG_RD(0), cfg_rd.u64);
cfg_rd.u64 = csr_rd(CVMX_SPEMX_CFG_RD(0));
pci_cfgspace_reg0[0] = cfg_rd.s.data;
}
if (pf1_flag && !start_initialized[1]) {
start_initialized[1] = true;
start_us[1] = get_timer_us(0);
}
/* Store programmed PCIe DevID SPEM0 PF1 */
if (pf1_flag && !pci_cfgspace_reg0[1]) {
cfg_rd.s.addr = (1 << 24) | 0x0;
csr_wr(CVMX_SPEMX_CFG_RD(0), cfg_rd.u64);
cfg_rd.u64 = csr_rd(CVMX_SPEMX_CFG_RD(0));
pci_cfgspace_reg0[1] = cfg_rd.s.data;
}
/* For PF, rewrite pci config space reg 0 */
for (pf_num = 0; pf_num < 2; pf_num++) {
if (!start_initialized[pf_num])
continue;
elapsed_usecs = get_timer_us(0) - start_us[pf_num];
if (elapsed_usecs > pf_flr_wait_usecs) {
/* Here, our measured FLR duration has passed;
* check if device ID has been reset,
* which indicates FLR completion (per MA team).
*/
cfg_rd.s.addr = (pf_num << 24) | 0x0;
csr_wr(CVMX_SPEMX_CFG_RD(0), cfg_rd.u64);
cfg_rd.u64 = csr_rd(CVMX_SPEMX_CFG_RD(0));
/* if DevID has NOT been reset, FLR is not yet
* complete
*/
if (cfg_rd.s.data != pci_cfgspace_reg0[pf_num]) {
stopreq.s.pf0_stopreq = (pf_num == 0) ? 1 : 0;
stopreq.s.pf1_stopreq = (pf_num == 1) ? 1 : 0;
csr_wr(CVMX_SPEMX_FLR_PF_STOPREQ(0), stopreq.u64);
cfg_wr.u64 = 0;
cfg_wr.s.addr = (pf_num << 24) | 0;
cfg_wr.s.data = pci_cfgspace_reg0[pf_num];
csr_wr(CVMX_SPEMX_CFG_WR(0), cfg_wr.u64);
start_initialized[pf_num] = false;
}
}
}
}
int board_late_init(void)
{
struct cyclic_info *cyclic;
struct gpio_desc gpio = {};
ofnode node;
/* Turn on SFP+ transmitters */
ofnode_for_each_compatible_node(node, "ethernet,sfp-slot") {
gpio_request_by_name_nodev(node, "tx_disable", 0,
&gpio, GPIOD_IS_OUT);
if (dm_gpio_is_valid(&gpio)) {
debug("%s: Setting GPIO %d to 0\n", __func__,
gpio.offset);
dm_gpio_set_value(&gpio, 0);
}
dm_gpio_free(gpio.dev, &gpio);
}
board_configure_qlms();
/* Register cyclic function for PCIe FLR fixup */
cyclic = cyclic_register(octeon_board_restore_pf, 100,
"pcie_flr_fix", NULL);
if (!cyclic)
printf("Registering of cyclic function failed\n");
return 0;
}
int last_stage_init(void)
{
struct gpio_desc gpio = {};
ofnode node;
node = ofnode_by_compatible(ofnode_null(), "vitesse,vsc7224");
if (!ofnode_valid(node)) {
printf("Vitesse SPF DT node not found!");
return 0;
}
gpio_request_by_name_nodev(node, "reset", 0, &gpio, GPIOD_IS_OUT);
if (dm_gpio_is_valid(&gpio)) {
/* Take Vitesse retimer out of reset */
debug("%s: Setting GPIO 7 to 0\n", __func__);
dm_gpio_set_value(&gpio, 0);
mdelay(50);
}
dm_gpio_free(gpio.dev, &gpio);
return 0;
}