blob: eb43b8ddd7e499af70b1d212000a329cfb95d3b1 [file] [log] [blame]
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <uci.h>
#include "wifi-test-tool.h"
static int _syscmd(char *cmd, char *retBuf, int retBufSize)
{
FILE *f;
char *ptr = retBuf;
int bufSize=retBufSize, bufbytes=0, readbytes=0, cmd_ret=0;
if((f = popen(cmd, "r")) == NULL) {
fprintf(stderr,"\npopen %s error\n", cmd);
return RETURN_ERR;
}
while(!feof(f))
{
*ptr = 0;
if(bufSize>=128) {
bufbytes=128;
} else {
bufbytes=bufSize-1;
}
fgets(ptr,bufbytes,f);
readbytes=strlen(ptr);
if(!readbytes)
break;
bufSize-=readbytes;
ptr += readbytes;
}
cmd_ret = pclose(f);
retBuf[retBufSize-1]=0;
return cmd_ret >> 8;
}
int phy_index_to_radio(int phyIndex)
{
char cmd[128] = {0};
char buf[64] = {0};
int radioIndex = 0;
snprintf(cmd, sizeof(cmd), "ls /tmp | grep phy%d | cut -d '-' -f2 | tr -d '\n'", phyIndex);
_syscmd(cmd, buf, sizeof(buf));
if (strlen(buf) == 0 || strstr(buf, "wifi") == NULL) {
fprintf(stderr, "%s: failed to get wifi index\n", __func__);
return RETURN_ERR;
}
sscanf(buf, "wifi%d", &radioIndex);
fprintf(stderr, "%s: radio index = %d \n", __func__, radioIndex);
return radioIndex;
}
void set_channel(wifi_radio_param *radio_param, char *channel)
{
if (strcmp(channel, "auto") == 0) {
radio_param->auto_channel = TRUE;
radio_param->channel = 0;
} else {
radio_param->auto_channel = FALSE;
radio_param->channel = strtol(channel, NULL, 10);
}
return;
}
void set_country(wifi_radio_param *radio_param, char *country)
{
strcpy(radio_param->country, country);
}
void set_band(wifi_radio_param *radio_param, char *band)
{
strcpy(radio_param->band, band);
}
void set_noscan(wifi_radio_param *radio_param, char *noscan)
{
snprintf(radio_param->noscan, 2, "%s", noscan);
radio_param->noscan[1] = '\0';
}
void set_hwmode(wifi_radio_param *radio_param, char *hwmode)
{
if (strncmp(hwmode, "11a", 3) == 0)
strcpy(radio_param->hwmode, "a");
if (strncmp(hwmode, "11b", 3) == 0)
strcpy(radio_param->hwmode, "b");
if (strncmp(hwmode, "11g", 3) == 0)
strcpy(radio_param->hwmode, "g");
}
void set_htmode(wifi_radio_param *radio_param, char *htmode)
{
char tmp[16] = {0};
char *ptr = htmode;
ULONG bandwidth = 0;
radio_param->bandwidth = 20;
while (*ptr) {
if (isdigit(*ptr)) {
bandwidth = strtoul(ptr, NULL, 10);
radio_param->bandwidth = bandwidth;
break;
}
ptr++;
}
// HT40 -> 11NGHT40PLUS
// VHT40+ -> 11ACVHT40PLUS
// HE80 -> 11AXHE80
if (strstr(htmode, "+") != NULL) {
strncpy(tmp, htmode, strlen(htmode) - 1);
strcat(tmp, "PLUS");
} else if (strstr(htmode, "-") != NULL) {
strncpy(tmp, htmode, strlen(htmode) - 1);
strcat(tmp, "MINUS");
} else
strcpy(tmp, htmode);
if (strstr(htmode, "VHT") != NULL) {
snprintf(radio_param->htmode, sizeof(radio_param->htmode), "11AC%s", tmp);
} else if (strstr(htmode, "HT") != NULL && strstr(htmode, "NO") == NULL) {
snprintf(radio_param->htmode, sizeof(radio_param->htmode), "11NG%s", tmp);
} else if (strstr(htmode, "HE") != NULL) {
snprintf(radio_param->htmode, sizeof(radio_param->htmode), "11AX%s", tmp);
} else { // NOHT or NONE should be parsed with the band, so just fill the original string.
strcpy(radio_param->htmode, tmp);
}
}
void set_disable(wifi_radio_param *radio_param, char *disable)
{
if (strcmp(disable, "1") == 0)
radio_param->disabled = TRUE;
else
radio_param->disabled = FALSE;
}
void set_radionum(wifi_ap_param *ap_param, char *radio_name)
{
int radio_num;
char *ptr = radio_name;
int phyId = 0;
while (*ptr) {
if (isdigit(*ptr)) {
radio_num = strtoul(ptr, NULL, 10);
phyId = phy_index_to_radio(radio_num);
ap_param->radio_index = phyId;
break;
}
ptr++;
}
}
void set_ssid(wifi_ap_param *ap_param, char *ssid)
{
strncpy(ap_param->ssid, ssid, 32);
}
void set_encryption(wifi_ap_param *ap_param, char *encryption_mode)
{
if (strcmp(encryption_mode, "none") == 0) {
ap_param->security.mode = wifi_security_mode_none;
ap_param->security.encr = wifi_encryption_none;
}else if(strncmp(encryption_mode, "psk2", 4) == 0){
ap_param->security.mode = wifi_security_mode_wpa2_personal;
}else if(strncmp(encryption_mode, "psk-",4) == 0){
ap_param->security.mode = wifi_security_mode_wpa_wpa2_personal;
}else if(strncmp(encryption_mode, "psk",3) == 0){
ap_param->security.mode = wifi_security_mode_wpa_personal;
}else if(strncmp(encryption_mode, "wpa2",4) == 0){
ap_param->security.mode = wifi_security_mode_wpa2_enterprise;
}else if(strncmp(encryption_mode, "wpa-",4) == 0){
ap_param->security.mode = wifi_security_mode_wpa_wpa2_enterprise;
}else if(strcmp(encryption_mode, "sae") == 0){
ap_param->security.mode = wifi_security_mode_wpa3_personal;
}else if(strcmp(encryption_mode, "wpa3") == 0){
ap_param->security.mode = wifi_security_mode_wpa3_enterprise;
}else if(strcmp(encryption_mode, "sae-mixed") == 0){
ap_param->security.mode = wifi_security_mode_wpa3_transition;
}
if(strstr(encryption_mode, "tkip") && (strstr(encryption_mode, "ccmp") || strstr(encryption_mode, "aes") )){
ap_param->security.encr = wifi_encryption_aes_tkip;
}else if (strstr(encryption_mode, "tkip")){
ap_param->security.encr = wifi_encryption_tkip;
}else{
ap_param->security.encr = wifi_encryption_aes;
}
if(!strcmp(encryption_mode, "wpa3") || !strcmp(encryption_mode, "sae")){
ap_param->security.mfp = wifi_mfp_cfg_required;
}else if (!strcmp(encryption_mode, "sae-mixed")){
ap_param->security.mfp = wifi_mfp_cfg_optional;
}else{
ap_param->security.mfp = wifi_mfp_cfg_disabled;
}
if (!strcmp(encryption_mode, "sae")){
ap_param->security.u.key.type = wifi_security_key_type_sae;
}else if (!strcmp(encryption_mode, "sae-mixed")){
ap_param->security.u.key.type = wifi_security_key_type_psk_sae;
}else{
ap_param->security.u.key.type = wifi_security_key_type_psk;
}
}
void set_key(wifi_ap_param *ap_param, char *key)
{
strncpy(ap_param->security.u.key.key, key, 64);
}
int set_ap_bssid(int radio_index, int offset, mac_address_t *bssid)
{
FILE *f;
char mac_file[64] = {0};
char mac_address[20] = {0};
char *tmp = NULL;
sprintf(mac_file, "/sys/class/net/wlan%d/address", radio_index);
f = fopen(mac_file, "r");
if (f == NULL)
return -1;
fgets(mac_address, 20, f);
fclose(f);
sscanf(mac_address, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &(*bssid)[0], &(*bssid)[1], &(*bssid)[2], &(*bssid)[3], &(*bssid)[4], &(*bssid)[5]);
(*bssid)[0] += (offset + 1)*2;
return 0;
}
void set_radio_param(wifi_radio_param radio_parameter)
{
BOOL enable;
BOOL current;
int ret = 0;
struct params param;
wifi_radio_operationParam_t operationParam = {0};
if(radio_parameter.radio_index == -1)
return;
if (radio_parameter.disabled == TRUE) {
wifi_setRadioEnable(radio_parameter.radio_index, FALSE);
return;
}
fprintf(stderr, "Start setting radio\n");
wifi_setRadioEnable(radio_parameter.radio_index, TRUE);
sleep(1);
// Country
fprintf(stderr, "Set Country: %s\n", radio_parameter.country);
ret = wifi_setRadioCountryCode(radio_parameter.radio_index, radio_parameter.country);
if (ret != RETURN_OK)
fprintf(stderr, "[Set Country failed!!!]\n");
ret = 0;
// hwmode
fprintf(stderr, "Set hwmode: %s\n", radio_parameter.hwmode);
ret = wifi_setRadioHwMode(radio_parameter.radio_index, radio_parameter.hwmode);
if (ret != RETURN_OK)
fprintf(stderr, "[Set hwmode failed!!!]\n");
ret = 0;
// noscan
fprintf(stderr, "Set noscan: %s \n", radio_parameter.noscan);
if(strlen(radio_parameter.noscan)){
ret = wifi_setNoscan(radio_parameter.radio_index, radio_parameter.noscan);
if (ret != RETURN_OK)
fprintf(stderr, "[Set noscan failed!!!]\n");
}
ret = 0;
// Get current radio setting
ret = wifi_getRadioOperatingParameters(radio_parameter.radio_index, &operationParam);
if (ret != RETURN_OK)
fprintf(stderr, "[Get OperatingParameters failed!!!]\n");
operationParam.enable = TRUE;
// Channel
operationParam.autoChannelEnabled = radio_parameter.auto_channel;
operationParam.channel = radio_parameter.channel;
//bandwidth
if (radio_parameter.bandwidth == 20){
operationParam.channelWidth = WIFI_CHANNELBANDWIDTH_20MHZ;
}else if (radio_parameter.bandwidth == 40){
operationParam.channelWidth = WIFI_CHANNELBANDWIDTH_40MHZ;
}else if (radio_parameter.bandwidth == 80){
operationParam.channelWidth = WIFI_CHANNELBANDWIDTH_80MHZ;
}else if (radio_parameter.bandwidth == 160){
operationParam.channelWidth = WIFI_CHANNELBANDWIDTH_160MHZ;
}
// htmode
unsigned int mode = 0; // enum wifi_ieee80211Variant_t
if (strcmp(radio_parameter.band, "2g") == 0) {
mode |= WIFI_80211_VARIANT_B | WIFI_80211_VARIANT_G;
if (strcmp(radio_parameter.htmode, "NOHT") == 0 || strcmp(radio_parameter.htmode, "NONE") == 0)
strcpy(radio_parameter.htmode, "11G");
if (strstr(radio_parameter.htmode, "HE") != NULL)
mode |= WIFI_80211_VARIANT_N | WIFI_80211_VARIANT_AX;
} else if (strcmp(radio_parameter.band, "5g") == 0) {
mode |= WIFI_80211_VARIANT_A;
if (strcmp(radio_parameter.htmode, "NOHT") == 0 || strcmp(radio_parameter.htmode, "NONE") == 0)
strcpy(radio_parameter.htmode, "11A");
if (strstr(radio_parameter.htmode, "HE") != NULL)
mode |= WIFI_80211_VARIANT_N | WIFI_80211_VARIANT_AC | WIFI_80211_VARIANT_AX;
}else if (strcmp(radio_parameter.band, "6g") == 0) {
mode |= WIFI_80211_VARIANT_A | WIFI_80211_VARIANT_N | WIFI_80211_VARIANT_AC | WIFI_80211_VARIANT_AX;;
}
if (strstr(radio_parameter.htmode, "VHT") != NULL)
mode |= WIFI_80211_VARIANT_N | WIFI_80211_VARIANT_AC;
else if (strstr(radio_parameter.htmode, "HT") != NULL && strstr(radio_parameter.htmode, "NO") == NULL)
mode |= WIFI_80211_VARIANT_N;
operationParam.variant = mode;
// apply setting
ret = wifi_setRadioOperatingParameters(radio_parameter.radio_index, &operationParam);
if (ret != RETURN_OK)
fprintf(stderr, "[Apply setting failed!!!]\n");
}
void set_ap_param(wifi_ap_param ap_param , wifi_vap_info_map_t *map)
{
int ret = 0;
int vap_index_in_map = 0;
wifi_vap_info_t vap_info = {0};
BOOL radio_enable = FALSE;
if(ap_param.radio_index == -1)
return;
wifi_getRadioEnable(ap_param.radio_index, &radio_enable);
if (radio_enable == FALSE)
return;
// get the index of the map
for (int i = 0; i < map->num_vaps; i++) {
if (map->vap_array[i].vap_index == ap_param.ap_index) {
vap_index_in_map = i;
break;
}
}
fprintf(stderr, "Start setting ap\n");
vap_info = map->vap_array[vap_index_in_map];
vap_info.u.bss_info.enabled = TRUE;
if (set_ap_bssid(vap_info.radio_index, vap_index_in_map, &vap_info.u.bss_info.bssid) == -1) {
fprintf(stderr, "Get mac address failed.\n");
return -1;
}
// SSID
strncpy(vap_info.u.bss_info.ssid, ap_param.ssid, 33);
vap_info.u.bss_info.ssid[32] = '\0';
vap_info.u.bss_info.security.mode = ap_param.security.mode;
vap_info.u.bss_info.security.encr = ap_param.security.encr;
vap_info.u.bss_info.security.mfp = ap_param.security.mfp;
vap_info.u.bss_info.security.u.key.type = ap_param.security.u.key.type;
strncpy(vap_info.u.bss_info.security.u.key.key, ap_param.security.u.key.key, 64);
// Replace the setting with uci config
map->vap_array[vap_index_in_map] = vap_info;
}
int apply_uci_config ()
{
struct uci_context *uci_ctx = uci_alloc_context();
struct uci_package *uci_pkg = NULL;
struct uci_element *e;
// struct uci_section *s;
const char cfg_name[] = "wireless";
int max_radio_num = 0;
BOOL parsing_radio = FALSE;
int apCount[3] = {0};
wifi_vap_info_map_t vap_map[3] = {0};
int ret = 0;
int i = 0;
wifi_getMaxRadioNumber(&max_radio_num);
fprintf(stderr, "max radio number: %d\n", max_radio_num);
for (i = 0; i < max_radio_num ;i++ ){
ret = wifi_getRadioVapInfoMap(i, &vap_map[i]);
if (ret != RETURN_OK) { // if failed, we set assume this vap as the first vap.
fprintf(stderr, "[Get vap map failed!!!]\n");
vap_map[i].num_vaps = MAX_NUM_VAP_PER_RADIO;
}
}
if (uci_load(uci_ctx, cfg_name, &uci_pkg) != UCI_OK) {
uci_free_context(uci_ctx);
fprintf(stderr, "%s: load uci failed.\n", __func__);
return RETURN_ERR;
}
uci_foreach_element(&uci_pkg->sections, e) {
struct uci_section *s = uci_to_section(e);
struct uci_element *option = NULL;
wifi_radio_param radio_param = {0};
wifi_ap_param ap_param = {0};
int phyId = 0;
radio_param.radio_index = -1;
ap_param.ap_index = -1;
if (strcmp(s->type, "wifi-device") == 0) {
sscanf(s->e.name, "radio%d", &phyId);
radio_param.radio_index = phy_index_to_radio(phyId);
parsing_radio = TRUE;
fprintf(stderr, "\n----- Start parsing radio %d config. -----\n", radio_param.radio_index);
} else if (strcmp(s->type, "wifi-iface") == 0) {
parsing_radio = FALSE;
}
uci_foreach_element(&s->options, option) {
struct uci_option *op = uci_to_option(option);
if (parsing_radio == TRUE) {
// transform the type from input string and store the value in radio_param.
if (strcmp(op->e.name, "channel") == 0)
set_channel(&radio_param, op->v.string);
else if (strcmp(op->e.name, "hwmode") == 0)
set_hwmode(&radio_param, op->v.string);
else if (strcmp(op->e.name, "htmode") == 0)
set_htmode(&radio_param, op->v.string);
else if (strcmp(op->e.name, "disabled") == 0)
set_disable(&radio_param, op->v.string);
else if (strcmp(op->e.name, "band") == 0)
set_band(&radio_param, op->v.string);
else if (strcmp(op->e.name, "country") == 0)
set_country(&radio_param, op->v.string);
else if (strcmp(op->e.name, "noscan") == 0)
set_noscan(&radio_param, op->v.string);
else
fprintf(stderr, "[%s %s not set!]\n", op->e.name, op->v.string);
} else {
// parsing iface
if (strcmp(op->e.name, "device") == 0){
set_radionum(&ap_param, op->v.string);
if (ap_param.radio_index != -1){
ap_param.ap_index = ap_param.radio_index + apCount[ap_param.radio_index]*max_radio_num;
fprintf(stderr, "\n----- Start parsing ap %d config. -----\n", ap_param.ap_index);
apCount[ap_param.radio_index] ++ ;
}
}else if (strcmp(op->e.name, "ssid") == 0){
set_ssid(&ap_param, op->v.string);
}else if (strcmp(op->e.name, "encryption") == 0){
set_encryption(&ap_param, op->v.string);
}else if (strcmp(op->e.name, "key") == 0){
set_key(&ap_param, op->v.string);
}else{
fprintf(stderr, "[%s %s not set!]\n", op->e.name, op->v.string);
}
}
}
if (parsing_radio == TRUE)
set_radio_param(radio_param);
else
set_ap_param(ap_param, &vap_map[ap_param.radio_index]);
}
for (i = 0; i < max_radio_num ;i++ ){
ret = wifi_createVAP(i, &vap_map[i]);
if (ret != RETURN_OK)
fprintf(stderr, "[Apply vap setting failed!!!]\n");
}
uci_unload(uci_ctx, uci_pkg);
uci_free_context(uci_ctx);
return RETURN_OK;
}
int main(int argc, char **argv)
{
if (argc != 2 || strcmp(argv[1], "reload") != 0) {
fprintf(stderr, "Usage: wifi reload.\nThis tool is only for RDKB MSP/SQC test.\n");
return -1;
}
apply_uci_config();
return 0;
}