Jiafei Pan | 2f71dbf | 2021-09-10 14:57:49 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2018-2021 NXP |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <endian.h> |
| 8 | |
| 9 | #include <arch.h> |
| 10 | #include <caam.h> |
| 11 | #include <cassert.h> |
| 12 | #include <cci.h> |
| 13 | #include <common/debug.h> |
| 14 | #include <dcfg.h> |
| 15 | #include <i2c.h> |
| 16 | #include <lib/xlat_tables/xlat_tables_v2.h> |
| 17 | #include <ls_interconnect.h> |
| 18 | #include <mmio.h> |
Jiafei Pan | 6f85ef2 | 2021-09-27 11:50:08 +0800 | [diff] [blame] | 19 | #ifdef POLICY_FUSE_PROVISION |
| 20 | #include <nxp_gpio.h> |
| 21 | #endif |
Jiafei Pan | 2f71dbf | 2021-09-10 14:57:49 +0800 | [diff] [blame] | 22 | #if TRUSTED_BOARD_BOOT |
| 23 | #include <nxp_smmu.h> |
| 24 | #endif |
| 25 | #include <nxp_timer.h> |
Jiafei Pan | 2f71dbf | 2021-09-10 14:57:49 +0800 | [diff] [blame] | 26 | #include <plat_console.h> |
| 27 | #include <plat_gic.h> |
| 28 | #include <plat_tzc400.h> |
| 29 | #include <pmu.h> |
| 30 | #include <scfg.h> |
| 31 | #if defined(NXP_SFP_ENABLED) |
| 32 | #include <sfp.h> |
| 33 | #endif |
| 34 | |
| 35 | #include <errata.h> |
Jiafei Pan | 033f93a | 2022-01-20 16:09:37 +0800 | [diff] [blame] | 36 | #ifdef CONFIG_OCRAM_ECC_EN |
| 37 | #include <ocram.h> |
| 38 | #endif |
Jiafei Pan | 2f71dbf | 2021-09-10 14:57:49 +0800 | [diff] [blame] | 39 | #include "plat_common.h" |
| 40 | #include "platform_def.h" |
| 41 | #include "soc.h" |
| 42 | |
| 43 | static dcfg_init_info_t dcfg_init_data = { |
| 44 | .g_nxp_dcfg_addr = NXP_DCFG_ADDR, |
| 45 | .nxp_sysclk_freq = NXP_SYSCLK_FREQ, |
| 46 | .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, |
| 47 | .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, |
| 48 | }; |
| 49 | |
| 50 | static struct soc_type soc_list[] = { |
| 51 | SOC_ENTRY(LS1017AN, LS1017AN, 1, 1), |
| 52 | SOC_ENTRY(LS1017AE, LS1017AE, 1, 1), |
| 53 | SOC_ENTRY(LS1018AN, LS1018AN, 1, 1), |
| 54 | SOC_ENTRY(LS1018AE, LS1018AE, 1, 1), |
| 55 | SOC_ENTRY(LS1027AN, LS1027AN, 1, 2), |
| 56 | SOC_ENTRY(LS1027AE, LS1027AE, 1, 2), |
| 57 | SOC_ENTRY(LS1028AN, LS1028AN, 1, 2), |
| 58 | SOC_ENTRY(LS1028AE, LS1028AE, 1, 2), |
| 59 | }; |
| 60 | |
| 61 | CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, |
| 62 | assert_invalid_ls1028a_cluster_count); |
| 63 | |
| 64 | /* |
| 65 | * Function returns the base counter frequency |
| 66 | * after reading the first entry at CNTFID0 (0x20 offset). |
| 67 | * |
| 68 | * Function is used by: |
| 69 | * 1. ARM common code for PSCI management. |
| 70 | * 2. ARM Generic Timer init. |
| 71 | * |
| 72 | */ |
| 73 | unsigned int plat_get_syscnt_freq2(void) |
| 74 | { |
| 75 | unsigned int counter_base_frequency; |
| 76 | /* |
| 77 | * Below register specifies the base frequency of the system counter. |
| 78 | * As per NXP Board Manuals: |
| 79 | * The system counter always works with SYS_REF_CLK/4 frequency clock. |
| 80 | */ |
| 81 | counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); |
| 82 | |
| 83 | return counter_base_frequency; |
| 84 | } |
| 85 | |
| 86 | #ifdef IMAGE_BL2 |
Jiafei Pan | 6f85ef2 | 2021-09-27 11:50:08 +0800 | [diff] [blame] | 87 | |
| 88 | #ifdef POLICY_FUSE_PROVISION |
| 89 | static gpio_init_info_t gpio_init_data = { |
| 90 | .gpio1_base_addr = NXP_GPIO1_ADDR, |
| 91 | .gpio2_base_addr = NXP_GPIO2_ADDR, |
| 92 | .gpio3_base_addr = NXP_GPIO3_ADDR, |
| 93 | }; |
| 94 | #endif |
| 95 | |
Jiafei Pan | 2f71dbf | 2021-09-10 14:57:49 +0800 | [diff] [blame] | 96 | void soc_preload_setup(void) |
| 97 | { |
| 98 | } |
| 99 | |
| 100 | void soc_early_init(void) |
| 101 | { |
| 102 | uint8_t num_clusters, cores_per_cluster; |
| 103 | |
| 104 | #ifdef CONFIG_OCRAM_ECC_EN |
| 105 | ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); |
| 106 | #endif |
| 107 | dcfg_init(&dcfg_init_data); |
| 108 | enable_timer_base_to_cluster(NXP_PMU_ADDR); |
| 109 | enable_core_tb(NXP_PMU_ADDR); |
| 110 | dram_regions_info_t *dram_regions_info = get_dram_regions_info(); |
| 111 | |
| 112 | #ifdef POLICY_FUSE_PROVISION |
| 113 | gpio_init(&gpio_init_data); |
| 114 | sec_init(NXP_CAAM_ADDR); |
| 115 | #endif |
| 116 | |
| 117 | #if LOG_LEVEL > 0 |
| 118 | /* Initialize the console to provide early debug support */ |
| 119 | plat_console_init(NXP_CONSOLE_ADDR, |
| 120 | NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| 121 | #endif |
| 122 | enum boot_device dev = get_boot_dev(); |
| 123 | /* |
| 124 | * Mark the buffer for SD in OCRAM as non secure. |
| 125 | * The buffer is assumed to be at end of OCRAM for |
| 126 | * the logic below to calculate TZPC programming |
| 127 | */ |
| 128 | if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) { |
| 129 | /* |
| 130 | * Calculate the region in OCRAM which is secure |
| 131 | * The buffer for SD needs to be marked non-secure |
| 132 | * to allow SD to do DMA operations on it |
| 133 | */ |
| 134 | uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE); |
| 135 | uint32_t mask = secure_region/TZPC_BLOCK_SIZE; |
| 136 | |
| 137 | mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask); |
| 138 | |
| 139 | /* Add the entry for buffer in MMU Table */ |
| 140 | mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, |
| 141 | NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS); |
| 142 | } |
| 143 | |
| 144 | #if TRUSTED_BOARD_BOOT |
| 145 | uint32_t mode; |
| 146 | |
| 147 | sfp_init(NXP_SFP_ADDR); |
| 148 | |
| 149 | /* |
| 150 | * For secure boot disable SMMU. |
| 151 | * Later when platform security policy comes in picture, |
| 152 | * this might get modified based on the policy |
| 153 | */ |
| 154 | if (check_boot_mode_secure(&mode) == true) { |
| 155 | bypass_smmu(NXP_SMMU_ADDR); |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * For Mbedtls currently crypto is not supported via CAAM |
| 160 | * enable it when that support is there. In tbbr.mk |
| 161 | * the CAAM_INTEG is set as 0. |
| 162 | */ |
| 163 | #ifndef MBEDTLS_X509 |
| 164 | /* Initialize the crypto accelerator if enabled */ |
| 165 | if (is_sec_enabled()) { |
| 166 | sec_init(NXP_CAAM_ADDR); |
| 167 | } else { |
| 168 | INFO("SEC is disabled.\n"); |
| 169 | } |
| 170 | #endif |
| 171 | #endif |
| 172 | |
| 173 | /* Set eDDRTQ for DDR performance */ |
| 174 | scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f); |
| 175 | |
| 176 | soc_errata(); |
| 177 | |
| 178 | /* |
| 179 | * Initialize Interconnect for this cluster during cold boot. |
| 180 | * No need for locks as no other CPU is active. |
| 181 | */ |
| 182 | cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); |
| 183 | |
| 184 | /* |
| 185 | * Enable Interconnect coherency for the primary CPU's cluster. |
| 186 | */ |
| 187 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 188 | plat_ls_interconnect_enter_coherency(num_clusters); |
| 189 | |
| 190 | delay_timer_init(NXP_TIMER_ADDR); |
| 191 | i2c_init(NXP_I2C_ADDR); |
| 192 | dram_regions_info->total_dram_size = init_ddr(); |
| 193 | } |
| 194 | |
| 195 | void soc_bl2_prepare_exit(void) |
| 196 | { |
| 197 | #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) |
| 198 | set_sfp_wr_disable(); |
| 199 | #endif |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * This function returns the boot device based on RCW_SRC |
| 204 | */ |
| 205 | enum boot_device get_boot_dev(void) |
| 206 | { |
| 207 | enum boot_device src = BOOT_DEVICE_NONE; |
| 208 | uint32_t porsr1; |
| 209 | uint32_t rcw_src; |
| 210 | |
| 211 | porsr1 = read_reg_porsr1(); |
| 212 | |
| 213 | rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; |
| 214 | switch (rcw_src) { |
| 215 | case FLEXSPI_NOR: |
| 216 | src = BOOT_DEVICE_FLEXSPI_NOR; |
| 217 | INFO("RCW BOOT SRC is FLEXSPI NOR\n"); |
| 218 | break; |
| 219 | case FLEXSPI_NAND2K_VAL: |
| 220 | case FLEXSPI_NAND4K_VAL: |
| 221 | INFO("RCW BOOT SRC is FLEXSPI NAND\n"); |
| 222 | src = BOOT_DEVICE_FLEXSPI_NAND; |
| 223 | break; |
| 224 | case SDHC1_VAL: |
| 225 | src = BOOT_DEVICE_EMMC; |
| 226 | INFO("RCW BOOT SRC is SD\n"); |
| 227 | break; |
| 228 | case SDHC2_VAL: |
| 229 | src = BOOT_DEVICE_SDHC2_EMMC; |
| 230 | INFO("RCW BOOT SRC is EMMC\n"); |
| 231 | break; |
| 232 | default: |
| 233 | break; |
| 234 | } |
| 235 | |
| 236 | return src; |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * This function sets up access permissions on memory regions |
| 241 | ****************************************************************************/ |
| 242 | void soc_mem_access(void) |
| 243 | { |
| 244 | dram_regions_info_t *info_dram_regions = get_dram_regions_info(); |
| 245 | struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; |
| 246 | int dram_idx = 0; |
| 247 | /* index 0 is reserved for region-0 */ |
| 248 | int index = 1; |
| 249 | |
| 250 | for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions; |
| 251 | dram_idx++) { |
| 252 | if (info_dram_regions->region[dram_idx].size == 0) { |
| 253 | ERROR("DDR init failure, or"); |
| 254 | ERROR("DRAM regions not populated correctly.\n"); |
| 255 | break; |
| 256 | } |
| 257 | |
| 258 | index = populate_tzc400_reg_list(tzc400_reg_list, |
| 259 | dram_idx, index, |
| 260 | info_dram_regions->region[dram_idx].addr, |
| 261 | info_dram_regions->region[dram_idx].size, |
| 262 | NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); |
| 263 | } |
| 264 | |
| 265 | mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list); |
| 266 | } |
| 267 | |
| 268 | #else |
| 269 | |
| 270 | static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2]; |
| 271 | /* |
| 272 | * This function dynamically constructs the topology according to |
| 273 | * SoC Flavor and returns it. |
| 274 | */ |
| 275 | const unsigned char *plat_get_power_domain_tree_desc(void) |
| 276 | { |
| 277 | uint8_t num_clusters, cores_per_cluster; |
| 278 | unsigned int i; |
| 279 | |
| 280 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 281 | /* |
| 282 | * The highest level is the system level. The next level is constituted |
| 283 | * by clusters and then cores in clusters. |
| 284 | */ |
| 285 | _power_domain_tree_desc[0] = 1; |
| 286 | _power_domain_tree_desc[1] = num_clusters; |
| 287 | |
| 288 | for (i = 0; i < _power_domain_tree_desc[1]; i++) |
| 289 | _power_domain_tree_desc[i + 2] = cores_per_cluster; |
| 290 | |
| 291 | return _power_domain_tree_desc; |
| 292 | } |
| 293 | |
| 294 | /* |
| 295 | * This function returns the core count within the cluster corresponding to |
| 296 | * `mpidr`. |
| 297 | */ |
| 298 | unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) |
| 299 | { |
| 300 | uint8_t num_clusters, cores_per_cluster; |
| 301 | |
| 302 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 303 | return num_clusters; |
| 304 | } |
| 305 | |
| 306 | void soc_early_platform_setup2(void) |
| 307 | { |
| 308 | dcfg_init(&dcfg_init_data); |
| 309 | /* Initialize system level generic timer for Socs */ |
| 310 | delay_timer_init(NXP_TIMER_ADDR); |
| 311 | |
| 312 | #if LOG_LEVEL > 0 |
| 313 | /* Initialize the console to provide early debug support */ |
| 314 | plat_console_init(NXP_CONSOLE_ADDR, |
| 315 | NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| 316 | #endif |
| 317 | } |
| 318 | |
| 319 | void soc_platform_setup(void) |
| 320 | { |
| 321 | /* Initialize the GIC driver, cpu and distributor interfaces */ |
| 322 | static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; |
| 323 | static interrupt_prop_t ls_interrupt_props[] = { |
| 324 | PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), |
| 325 | PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) |
| 326 | }; |
| 327 | |
| 328 | plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, |
| 329 | PLATFORM_CORE_COUNT, |
| 330 | ls_interrupt_props, |
| 331 | ARRAY_SIZE(ls_interrupt_props), |
| 332 | target_mask_array, |
| 333 | plat_core_pos); |
| 334 | |
| 335 | plat_ls_gic_init(); |
| 336 | enable_init_timer(); |
| 337 | } |
| 338 | |
| 339 | /* This function initializes the soc from the BL31 module */ |
| 340 | void soc_init(void) |
| 341 | { |
| 342 | uint8_t num_clusters, cores_per_cluster; |
| 343 | |
| 344 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 345 | |
| 346 | /* Low-level init of the soc */ |
| 347 | soc_init_lowlevel(); |
| 348 | _init_global_data(); |
| 349 | soc_init_percpu(); |
| 350 | _initialize_psci(); |
| 351 | |
| 352 | /* |
| 353 | * Initialize Interconnect for this cluster during cold boot. |
| 354 | * No need for locks as no other CPU is active. |
| 355 | */ |
| 356 | cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); |
| 357 | |
| 358 | /* Enable Interconnect coherency for the primary CPU's cluster. */ |
| 359 | plat_ls_interconnect_enter_coherency(num_clusters); |
| 360 | |
| 361 | /* Set platform security policies */ |
| 362 | _set_platform_security(); |
| 363 | |
| 364 | /* Init SEC Engine which will be used by SiP */ |
| 365 | if (is_sec_enabled()) { |
| 366 | sec_init(NXP_CAAM_ADDR); |
| 367 | } else { |
| 368 | INFO("SEC is disabled.\n"); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | #ifdef NXP_WDOG_RESTART |
| 373 | static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags, |
| 374 | void *handle, void *cookie) |
| 375 | { |
| 376 | uint8_t data = WDOG_RESET_FLAG; |
| 377 | |
| 378 | wr_nv_app_data(WDT_RESET_FLAG_OFFSET, |
| 379 | (uint8_t *)&data, sizeof(data)); |
| 380 | |
| 381 | mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT); |
| 382 | |
| 383 | return 0; |
| 384 | } |
| 385 | #endif |
| 386 | |
| 387 | void soc_runtime_setup(void) |
| 388 | { |
| 389 | #ifdef NXP_WDOG_RESTART |
| 390 | request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler); |
| 391 | #endif |
| 392 | } |
| 393 | |
| 394 | /* This function returns the total number of cores in the SoC. */ |
| 395 | unsigned int get_tot_num_cores(void) |
| 396 | { |
| 397 | uint8_t num_clusters, cores_per_cluster; |
| 398 | |
| 399 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 400 | return (num_clusters * cores_per_cluster); |
| 401 | } |
| 402 | |
| 403 | /* This function returns the PMU IDLE Cluster mask. */ |
| 404 | unsigned int get_pmu_idle_cluster_mask(void) |
| 405 | { |
| 406 | uint8_t num_clusters, cores_per_cluster; |
| 407 | |
| 408 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 409 | return ((1 << num_clusters) - 2); |
| 410 | } |
| 411 | |
| 412 | /* This function returns the PMU Flush Cluster mask. */ |
| 413 | unsigned int get_pmu_flush_cluster_mask(void) |
| 414 | { |
| 415 | uint8_t num_clusters, cores_per_cluster; |
| 416 | |
| 417 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 418 | return ((1 << num_clusters) - 2); |
| 419 | } |
| 420 | |
| 421 | /* This function returns the PMU idle core mask. */ |
| 422 | unsigned int get_pmu_idle_core_mask(void) |
| 423 | { |
| 424 | return ((1 << get_tot_num_cores()) - 2); |
| 425 | } |
| 426 | |
| 427 | /* Function to return the SoC SYS CLK */ |
| 428 | unsigned int get_sys_clk(void) |
| 429 | { |
| 430 | return NXP_SYSCLK_FREQ; |
| 431 | } |
| 432 | #endif |