blob: 63b3c31ccdc771a0c454c7f0cd38363957345e8c [file] [log] [blame]
Sandrine Bailleux0123b8c2024-01-23 15:30:48 +01001Booting Firmware Update images
2------------------------------
3
4When Firmware Update (FWU) is enabled there are at least 2 new images
5that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
6FWU FIP.
7
8The additional fip images must be loaded with:
9
10::
11
12 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
13 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
14
15The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
16In the same way, the address ns_bl2u_base_address is the value of
17NS_BL2U_BASE.
18
19Booting an EL3 payload
20----------------------
21
22The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
23the secondary CPUs holding pen to work properly. Unfortunately, its reset value
24is undefined on the FVP platform and the FVP platform code doesn't clear it.
25Therefore, one must modify the way the model is normally invoked in order to
26clear the mailbox at start-up.
27
28One way to do that is to create an 8-byte file containing all zero bytes using
29the following command:
30
31.. code:: shell
32
33 dd if=/dev/zero of=mailbox.dat bs=1 count=8
34
35and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
36using the following model parameters:
37
38::
39
40 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
41 --data=mailbox.dat@0x04000000 [Foundation FVP]
42
43To provide the model with the EL3 payload image, the following methods may be
44used:
45
46#. If the EL3 payload is able to execute in place, it may be programmed into
47 flash memory. On Base Cortex and AEM FVPs, the following model parameter
48 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
49 used for the FIP):
50
51 ::
52
53 -C bp.flashloader1.fname="<path-to>/<el3-payload>"
54
55 On Foundation FVP, there is no flash loader component and the EL3 payload
56 may be programmed anywhere in flash using method 3 below.
57
58#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
59 command may be used to load the EL3 payload ELF image over JTAG:
60
61 ::
62
63 load <path-to>/el3-payload.elf
64
65#. The EL3 payload may be pre-loaded in volatile memory using the following
66 model parameters:
67
68 ::
69
70 --data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
71 --data="<path-to>/<el3-payload>"@address [Foundation FVP]
72
73 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
74 used when building TF-A.
75
76Booting a preloaded kernel image (Base FVP)
77-------------------------------------------
78
79The following example uses a simplified boot flow by directly jumping from the
80TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
81useful if both the kernel and the device tree blob (DTB) are already present in
82memory (like in FVP).
83
84For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
85address ``0x82000000``, the firmware can be built like this:
86
87.. code:: shell
88
89 CROSS_COMPILE=aarch64-none-elf- \
90 make PLAT=fvp DEBUG=1 \
91 RESET_TO_BL31=1 \
92 ARM_LINUX_KERNEL_AS_BL33=1 \
93 PRELOADED_BL33_BASE=0x80080000 \
94 ARM_PRELOADED_DTB_BASE=0x82000000 \
95 all fip
96
97Now, it is needed to modify the DTB so that the kernel knows the address of the
98ramdisk. The following script generates a patched DTB from the provided one,
99assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
100script assumes that the user is using a ramdisk image prepared for U-Boot, like
101the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
102offset in ``INITRD_START`` has to be removed.
103
104.. code:: bash
105
106 #!/bin/bash
107
108 # Path to the input DTB
109 KERNEL_DTB=<path-to>/<fdt>
110 # Path to the output DTB
111 PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
112 # Base address of the ramdisk
113 INITRD_BASE=0x84000000
114 # Path to the ramdisk
115 INITRD=<path-to>/<ramdisk.img>
116
117 # Skip uboot header (64 bytes)
118 INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
119 INITRD_SIZE=$(stat -Lc %s ${INITRD})
120 INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
121
122 CHOSEN_NODE=$(echo \
123 "/ { \
124 chosen { \
125 linux,initrd-start = <${INITRD_START}>; \
126 linux,initrd-end = <${INITRD_END}>; \
127 }; \
128 };")
129
130 echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
131 dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
132
133And the FVP binary can be run with the following command:
134
135.. code:: shell
136
137 <path-to>/FVP_Base_AEMv8A-AEMv8A \
138 -C pctl.startup=0.0.0.0 \
139 -C bp.secure_memory=1 \
140 -C cluster0.NUM_CORES=4 \
141 -C cluster1.NUM_CORES=4 \
142 -C cache_state_modelled=1 \
143 -C cluster0.cpu0.RVBAR=0x04001000 \
144 -C cluster0.cpu1.RVBAR=0x04001000 \
145 -C cluster0.cpu2.RVBAR=0x04001000 \
146 -C cluster0.cpu3.RVBAR=0x04001000 \
147 -C cluster1.cpu0.RVBAR=0x04001000 \
148 -C cluster1.cpu1.RVBAR=0x04001000 \
149 -C cluster1.cpu2.RVBAR=0x04001000 \
150 -C cluster1.cpu3.RVBAR=0x04001000 \
151 --data cluster0.cpu0="<path-to>/bl31.bin"@0x04001000 \
152 --data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
153 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
154 --data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
155
156Obtaining the Flattened Device Trees
157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
158
159Depending on the FVP configuration and Linux configuration used, different
160FDT files are required. FDT source files for the Foundation and Base FVPs can
161be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
162a subset of the Base FVP components. For example, the Foundation FVP lacks
163CLCD and MMC support, and has only one CPU cluster.
164
165.. note::
166 It is not recommended to use the FDTs built along the kernel because not
167 all FDTs are available from there.
168
169The dynamic configuration capability is enabled in the firmware for FVPs.
170This means that the firmware can authenticate and load the FDT if present in
171FIP. A default FDT is packaged into FIP during the build based on
172the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
173or ``FVP_HW_CONFIG_DTS`` build options (refer to
174:ref:`build_options_arm_fvp_platform` for details on the options).
175
176- ``fvp-base-gicv2-psci.dts``
177
178 For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
179 without shifted affinities and with Base memory map configuration.
180
181- ``fvp-base-gicv3-psci.dts``
182
183 For use with models such as the Cortex-A57-A53 or Cortex-A32 Base FVPs
184 without shifted affinities and with Base memory map configuration and
185 Linux GICv3 support.
186
187- ``fvp-base-gicv3-psci-1t.dts``
188
189 For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
190 single threaded CPUs, Base memory map configuration and Linux GICv3 support.
191
192- ``fvp-base-gicv3-psci-dynamiq.dts``
193
194 For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
195 single cluster, single threaded CPUs, Base memory map configuration and Linux
196 GICv3 support.
197
198- ``fvp-foundation-gicv2-psci.dts``
199
200 For use with Foundation FVP with Base memory map configuration.
201
202- ``fvp-foundation-gicv3-psci.dts``
203
204 (Default) For use with Foundation FVP with Base memory map configuration
205 and Linux GICv3 support.
206
207--------------
208
209*Copyright (c) 2019-2024, Arm Limited. All rights reserved.*