Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 1 | /* |
David Horstmann | a65a8ff | 2021-03-01 19:34:37 +0000 | [diff] [blame] | 2 | * Copyright (c) 2018-2021, ARM Limited and Contributors. All rights reserved. |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | /* Helper functions to offer easier navigation of Device Tree Blob */ |
| 8 | |
| 9 | #include <assert.h> |
David Horstmann | a65a8ff | 2021-03-01 19:34:37 +0000 | [diff] [blame] | 10 | #include <errno.h> |
Antonio Nino Diaz | d85c878 | 2018-06-26 10:34:07 +0100 | [diff] [blame] | 11 | #include <string.h> |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 12 | |
Antonio Nino Diaz | e0f9063 | 2018-12-14 00:18:21 +0000 | [diff] [blame] | 13 | #include <libfdt.h> |
| 14 | |
| 15 | #include <common/debug.h> |
| 16 | #include <common/fdt_wrappers.h> |
David Horstmann | a65a8ff | 2021-03-01 19:34:37 +0000 | [diff] [blame] | 17 | #include <common/uuid.h> |
Antonio Nino Diaz | e0f9063 | 2018-12-14 00:18:21 +0000 | [diff] [blame] | 18 | |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 19 | /* |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 20 | * Read cells from a given property of the given node. Any number of 32-bit |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 21 | * cells of the property can be read. Returns 0 on success, or a negative |
| 22 | * FDT error value otherwise. |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 23 | */ |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 24 | int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name, |
| 25 | unsigned int cells, uint32_t *value) |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 26 | { |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 27 | const fdt32_t *prop; |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 28 | int value_len; |
| 29 | |
| 30 | assert(dtb != NULL); |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 31 | assert(prop_name != NULL); |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 32 | assert(value != NULL); |
| 33 | assert(node >= 0); |
| 34 | |
| 35 | /* Access property and obtain its length (in bytes) */ |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 36 | prop = fdt_getprop(dtb, node, prop_name, &value_len); |
| 37 | if (prop == NULL) { |
| 38 | WARN("Couldn't find property %s in dtb\n", prop_name); |
| 39 | return -FDT_ERR_NOTFOUND; |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 40 | } |
| 41 | |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 42 | /* Verify that property length can fill the entire array. */ |
| 43 | if (NCELLS((unsigned int)value_len) < cells) { |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 44 | WARN("Property length mismatch\n"); |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 45 | return -FDT_ERR_BADVALUE; |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 46 | } |
| 47 | |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 48 | for (unsigned int i = 0U; i < cells; i++) { |
Andre Przywara | 6cf6a1b | 2020-03-30 23:21:13 +0100 | [diff] [blame] | 49 | value[i] = fdt32_to_cpu(prop[i]); |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 50 | } |
| 51 | |
Andre Przywara | fe5bdf5 | 2020-03-26 11:22:37 +0000 | [diff] [blame] | 52 | return 0; |
| 53 | } |
| 54 | |
| 55 | int fdt_read_uint32(const void *dtb, int node, const char *prop_name, |
| 56 | uint32_t *value) |
| 57 | { |
| 58 | return fdt_read_uint32_array(dtb, node, prop_name, 1, value); |
| 59 | } |
| 60 | |
Andre Przywara | 2d5690c | 2020-03-26 11:50:33 +0000 | [diff] [blame] | 61 | uint32_t fdt_read_uint32_default(const void *dtb, int node, |
| 62 | const char *prop_name, uint32_t dflt_value) |
| 63 | { |
| 64 | uint32_t ret = dflt_value; |
| 65 | int err = fdt_read_uint32(dtb, node, prop_name, &ret); |
| 66 | |
| 67 | if (err < 0) { |
| 68 | return dflt_value; |
| 69 | } |
| 70 | |
| 71 | return ret; |
| 72 | } |
| 73 | |
Andre Przywara | fe5bdf5 | 2020-03-26 11:22:37 +0000 | [diff] [blame] | 74 | int fdt_read_uint64(const void *dtb, int node, const char *prop_name, |
| 75 | uint64_t *value) |
| 76 | { |
| 77 | uint32_t array[2] = {0, 0}; |
| 78 | int ret; |
| 79 | |
| 80 | ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array); |
| 81 | if (ret < 0) { |
| 82 | return ret; |
| 83 | } |
| 84 | |
| 85 | *value = ((uint64_t)array[0] << 32) | array[1]; |
Antonio Nino Diaz | 3fddfbb | 2018-06-26 10:34:10 +0100 | [diff] [blame] | 86 | return 0; |
| 87 | } |
| 88 | |
| 89 | /* |
Alexei Fedorov | 2de82fc | 2020-01-29 16:21:28 +0000 | [diff] [blame] | 90 | * Read bytes from a given property of the given node. Any number of |
| 91 | * bytes of the property can be read. The fdt pointer is updated. |
| 92 | * Returns 0 on success, and -1 on error. |
| 93 | */ |
| 94 | int fdtw_read_bytes(const void *dtb, int node, const char *prop, |
| 95 | unsigned int length, void *value) |
| 96 | { |
| 97 | const void *ptr; |
| 98 | int value_len; |
| 99 | |
| 100 | assert(dtb != NULL); |
| 101 | assert(prop != NULL); |
| 102 | assert(value != NULL); |
| 103 | assert(node >= 0); |
| 104 | |
| 105 | /* Access property and obtain its length (in bytes) */ |
| 106 | ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), |
| 107 | &value_len); |
| 108 | if (ptr == NULL) { |
| 109 | WARN("Couldn't find property %s in dtb\n", prop); |
| 110 | return -1; |
| 111 | } |
| 112 | |
| 113 | /* Verify that property length is not less than number of bytes */ |
| 114 | if ((unsigned int)value_len < length) { |
| 115 | WARN("Property length mismatch\n"); |
| 116 | return -1; |
| 117 | } |
| 118 | |
| 119 | (void)memcpy(value, ptr, length); |
| 120 | |
| 121 | return 0; |
| 122 | } |
| 123 | |
| 124 | /* |
Antonio Nino Diaz | d85c878 | 2018-06-26 10:34:07 +0100 | [diff] [blame] | 125 | * Read string from a given property of the given node. Up to 'size - 1' |
| 126 | * characters are read, and a NUL terminator is added. Returns 0 on success, |
| 127 | * and -1 upon error. |
| 128 | */ |
| 129 | int fdtw_read_string(const void *dtb, int node, const char *prop, |
| 130 | char *str, size_t size) |
| 131 | { |
| 132 | const char *ptr; |
| 133 | size_t len; |
| 134 | |
| 135 | assert(dtb != NULL); |
| 136 | assert(node >= 0); |
| 137 | assert(prop != NULL); |
| 138 | assert(str != NULL); |
| 139 | assert(size > 0U); |
| 140 | |
| 141 | ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL); |
| 142 | if (ptr == NULL) { |
| 143 | WARN("Couldn't find property %s in dtb\n", prop); |
| 144 | return -1; |
| 145 | } |
| 146 | |
| 147 | len = strlcpy(str, ptr, size); |
| 148 | if (len >= size) { |
| 149 | WARN("String of property %s in dtb has been truncated\n", prop); |
| 150 | return -1; |
| 151 | } |
| 152 | |
| 153 | return 0; |
| 154 | } |
| 155 | |
| 156 | /* |
David Horstmann | a65a8ff | 2021-03-01 19:34:37 +0000 | [diff] [blame] | 157 | * Read UUID from a given property of the given node. Returns 0 on success, |
| 158 | * and a negative value upon error. |
| 159 | */ |
| 160 | int fdtw_read_uuid(const void *dtb, int node, const char *prop, |
| 161 | unsigned int length, uint8_t *uuid) |
| 162 | { |
| 163 | /* Buffer for UUID string (plus NUL terminator) */ |
| 164 | char uuid_string[UUID_STRING_LENGTH + 1U]; |
| 165 | int err; |
| 166 | |
| 167 | assert(dtb != NULL); |
| 168 | assert(prop != NULL); |
| 169 | assert(uuid != NULL); |
| 170 | assert(node >= 0); |
| 171 | |
| 172 | if (length < UUID_BYTES_LENGTH) { |
| 173 | return -EINVAL; |
| 174 | } |
| 175 | |
| 176 | err = fdtw_read_string(dtb, node, prop, uuid_string, |
| 177 | UUID_STRING_LENGTH + 1U); |
| 178 | if (err != 0) { |
| 179 | return err; |
| 180 | } |
| 181 | |
| 182 | if (read_uuid(uuid, uuid_string) != 0) { |
| 183 | return -FDT_ERR_BADVALUE; |
| 184 | } |
| 185 | |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | /* |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 190 | * Write cells in place to a given property of the given node. At most 2 cells |
| 191 | * of the property are written. Returns 0 on success, and -1 upon error. |
| 192 | */ |
| 193 | int fdtw_write_inplace_cells(void *dtb, int node, const char *prop, |
| 194 | unsigned int cells, void *value) |
| 195 | { |
| 196 | int err, len; |
| 197 | |
Soby Mathew | cc36484 | 2018-02-21 01:16:39 +0000 | [diff] [blame] | 198 | assert(dtb != NULL); |
| 199 | assert(prop != NULL); |
| 200 | assert(value != NULL); |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 201 | assert(node >= 0); |
| 202 | |
| 203 | /* We expect either 1 or 2 cell property */ |
Soby Mathew | cc36484 | 2018-02-21 01:16:39 +0000 | [diff] [blame] | 204 | assert(cells <= 2U); |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 205 | |
Soby Mathew | cc36484 | 2018-02-21 01:16:39 +0000 | [diff] [blame] | 206 | if (cells == 2U) |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 207 | *(uint64_t *)value = cpu_to_fdt64(*(uint64_t *)value); |
| 208 | else |
| 209 | *(uint32_t *)value = cpu_to_fdt32(*(uint32_t *)value); |
| 210 | |
Soby Mathew | cc36484 | 2018-02-21 01:16:39 +0000 | [diff] [blame] | 211 | len = (int)cells * 4; |
Soby Mathew | b9fccca | 2017-11-06 13:56:40 +0000 | [diff] [blame] | 212 | |
| 213 | /* Set property value in place */ |
| 214 | err = fdt_setprop_inplace(dtb, node, prop, value, len); |
| 215 | if (err != 0) { |
| 216 | WARN("Modify property %s failed with error %d\n", prop, err); |
| 217 | return -1; |
| 218 | } |
| 219 | |
| 220 | return 0; |
| 221 | } |
Alexei Fedorov | 2de82fc | 2020-01-29 16:21:28 +0000 | [diff] [blame] | 222 | |
| 223 | /* |
| 224 | * Write bytes in place to a given property of the given node. |
| 225 | * Any number of bytes of the property can be written. |
| 226 | * Returns 0 on success, and < 0 on error. |
| 227 | */ |
| 228 | int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop, |
| 229 | unsigned int length, const void *data) |
| 230 | { |
| 231 | const void *ptr; |
| 232 | int namelen, value_len, err; |
| 233 | |
| 234 | assert(dtb != NULL); |
| 235 | assert(prop != NULL); |
| 236 | assert(data != NULL); |
| 237 | assert(node >= 0); |
| 238 | |
| 239 | namelen = (int)strlen(prop); |
| 240 | |
| 241 | /* Access property and obtain its length in bytes */ |
| 242 | ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len); |
| 243 | if (ptr == NULL) { |
| 244 | WARN("Couldn't find property %s in dtb\n", prop); |
| 245 | return -1; |
| 246 | } |
| 247 | |
| 248 | /* Verify that property length is not less than number of bytes */ |
| 249 | if ((unsigned int)value_len < length) { |
| 250 | WARN("Property length mismatch\n"); |
| 251 | return -1; |
| 252 | } |
| 253 | |
| 254 | /* Set property value in place */ |
| 255 | err = fdt_setprop_inplace_namelen_partial(dtb, node, prop, |
| 256 | namelen, 0, |
| 257 | data, (int)length); |
| 258 | if (err != 0) { |
| 259 | WARN("Set property %s failed with error %d\n", prop, err); |
| 260 | } |
| 261 | |
| 262 | return err; |
| 263 | } |
Andre Przywara | e183e15 | 2020-03-26 11:57:43 +0000 | [diff] [blame] | 264 | |
| 265 | static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells) |
| 266 | { |
| 267 | uint64_t reg = fdt32_to_cpu(prop[0]); |
| 268 | |
| 269 | if (nr_cells > 1) { |
| 270 | reg = (reg << 32) | fdt32_to_cpu(prop[1]); |
| 271 | } |
| 272 | |
| 273 | return reg; |
| 274 | } |
| 275 | |
| 276 | int fdt_get_reg_props_by_index(const void *dtb, int node, int index, |
| 277 | uintptr_t *base, size_t *size) |
| 278 | { |
| 279 | const fdt32_t *prop; |
| 280 | int parent, len; |
| 281 | int ac, sc; |
| 282 | int cell; |
| 283 | |
| 284 | parent = fdt_parent_offset(dtb, node); |
| 285 | if (parent < 0) { |
| 286 | return -FDT_ERR_BADOFFSET; |
| 287 | } |
| 288 | |
| 289 | ac = fdt_address_cells(dtb, parent); |
| 290 | sc = fdt_size_cells(dtb, parent); |
| 291 | |
| 292 | cell = index * (ac + sc); |
| 293 | |
| 294 | prop = fdt_getprop(dtb, node, "reg", &len); |
| 295 | if (prop == NULL) { |
| 296 | WARN("Couldn't find \"reg\" property in dtb\n"); |
| 297 | return -FDT_ERR_NOTFOUND; |
| 298 | } |
| 299 | |
| 300 | if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) { |
| 301 | return -FDT_ERR_BADVALUE; |
| 302 | } |
| 303 | |
| 304 | if (base != NULL) { |
| 305 | *base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac); |
| 306 | } |
| 307 | |
| 308 | if (size != NULL) { |
| 309 | *size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc); |
| 310 | } |
| 311 | |
| 312 | return 0; |
| 313 | } |
Andre Przywara | 4a1c874 | 2020-03-26 12:11:34 +0000 | [diff] [blame] | 314 | |
| 315 | /******************************************************************************* |
| 316 | * This function fills reg node info (base & size) with an index found by |
| 317 | * checking the reg-names node. |
| 318 | * Returns 0 on success and a negative FDT error code on failure. |
| 319 | ******************************************************************************/ |
| 320 | int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name, |
| 321 | uintptr_t *base, size_t *size) |
| 322 | { |
| 323 | int index; |
| 324 | |
| 325 | index = fdt_stringlist_search(dtb, node, "reg-names", name); |
| 326 | if (index < 0) { |
| 327 | return index; |
| 328 | } |
| 329 | |
| 330 | return fdt_get_reg_props_by_index(dtb, node, index, base, size); |
| 331 | } |
Andre Przywara | a0eaca5 | 2020-03-26 12:52:06 +0000 | [diff] [blame] | 332 | |
| 333 | /******************************************************************************* |
| 334 | * This function gets the stdout path node. |
| 335 | * It reads the value indicated inside the device tree. |
| 336 | * Returns node offset on success and a negative FDT error code on failure. |
| 337 | ******************************************************************************/ |
| 338 | int fdt_get_stdout_node_offset(const void *dtb) |
| 339 | { |
| 340 | int node; |
| 341 | const char *prop, *path; |
| 342 | int len; |
| 343 | |
| 344 | /* The /secure-chosen node takes precedence over the standard one. */ |
| 345 | node = fdt_path_offset(dtb, "/secure-chosen"); |
| 346 | if (node < 0) { |
| 347 | node = fdt_path_offset(dtb, "/chosen"); |
| 348 | if (node < 0) { |
| 349 | return -FDT_ERR_NOTFOUND; |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | prop = fdt_getprop(dtb, node, "stdout-path", NULL); |
| 354 | if (prop == NULL) { |
| 355 | return -FDT_ERR_NOTFOUND; |
| 356 | } |
| 357 | |
| 358 | /* Determine the actual path length, as a colon terminates the path. */ |
| 359 | path = strchr(prop, ':'); |
| 360 | if (path == NULL) { |
| 361 | len = strlen(prop); |
| 362 | } else { |
| 363 | len = path - prop; |
| 364 | } |
| 365 | |
| 366 | /* Aliases cannot start with a '/', so it must be the actual path. */ |
| 367 | if (prop[0] == '/') { |
| 368 | return fdt_path_offset_namelen(dtb, prop, len); |
| 369 | } |
| 370 | |
| 371 | /* Lookup the alias, as this contains the actual path. */ |
| 372 | path = fdt_get_alias_namelen(dtb, prop, len); |
| 373 | if (path == NULL) { |
| 374 | return -FDT_ERR_NOTFOUND; |
| 375 | } |
| 376 | |
| 377 | return fdt_path_offset(dtb, path); |
| 378 | } |
Madhukar Pappireddy | 361c1b3 | 2020-03-24 10:03:34 -0500 | [diff] [blame] | 379 | |
| 380 | |
| 381 | /******************************************************************************* |
| 382 | * Only devices which are direct children of root node use CPU address domain. |
| 383 | * All other devices use addresses that are local to the device node and cannot |
| 384 | * directly used by CPU. Device tree provides an address translation mechanism |
| 385 | * through "ranges" property which provides mappings from local address space to |
| 386 | * parent address space. Since a device could be a child of a child node to the |
| 387 | * root node, there can be more than one level of address translation needed to |
| 388 | * map the device local address space to CPU address space. |
| 389 | * fdtw_translate_address() API performs address translation of a local address |
| 390 | * to a global address with help of various helper functions. |
| 391 | ******************************************************************************/ |
| 392 | |
| 393 | static bool fdtw_xlat_hit(const uint32_t *value, int child_addr_size, |
| 394 | int parent_addr_size, int range_size, uint64_t base_address, |
| 395 | uint64_t *translated_addr) |
| 396 | { |
| 397 | uint64_t local_address, parent_address, addr_range; |
| 398 | |
| 399 | local_address = fdt_read_prop_cells(value, child_addr_size); |
| 400 | parent_address = fdt_read_prop_cells(value + child_addr_size, |
| 401 | parent_addr_size); |
| 402 | addr_range = fdt_read_prop_cells(value + child_addr_size + |
| 403 | parent_addr_size, |
| 404 | range_size); |
| 405 | VERBOSE("DT: Address %llx mapped to %llx with range %llx\n", |
| 406 | local_address, parent_address, addr_range); |
| 407 | |
| 408 | /* Perform range check */ |
| 409 | if ((base_address < local_address) || |
| 410 | (base_address >= local_address + addr_range)) { |
| 411 | return false; |
| 412 | } |
| 413 | |
| 414 | /* Found hit for the addr range that needs to be translated */ |
| 415 | *translated_addr = parent_address + (base_address - local_address); |
| 416 | VERBOSE("DT: child address %llx mapped to %llx in parent bus\n", |
| 417 | local_address, parent_address); |
| 418 | return true; |
| 419 | } |
| 420 | |
| 421 | #define ILLEGAL_ADDR ULL(~0) |
| 422 | |
| 423 | static uint64_t fdtw_search_all_xlat_entries(const void *dtb, |
| 424 | const struct fdt_property *ranges_prop, |
| 425 | int local_bus, uint64_t base_address) |
| 426 | { |
| 427 | uint64_t translated_addr; |
| 428 | const uint32_t *next_entry; |
| 429 | int parent_bus_node, nxlat_entries, length; |
| 430 | int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat; |
| 431 | |
| 432 | /* |
| 433 | * The number of cells in one translation entry in ranges is the sum of |
| 434 | * the following values: |
| 435 | * self#address-cells + parent#address-cells + self#size-cells |
| 436 | * Ex: the iofpga ranges property has one translation entry with 4 cells |
| 437 | * They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells |
| 438 | * = 1 + 2 + 1 |
| 439 | */ |
| 440 | |
| 441 | parent_bus_node = fdt_parent_offset(dtb, local_bus); |
| 442 | self_addr_cells = fdt_address_cells(dtb, local_bus); |
| 443 | self_size_cells = fdt_size_cells(dtb, local_bus); |
| 444 | parent_addr_cells = fdt_address_cells(dtb, parent_bus_node); |
| 445 | |
| 446 | /* Number of cells per translation entry i.e., mapping */ |
| 447 | ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells; |
| 448 | |
| 449 | assert(ncells_xlat > 0); |
| 450 | |
| 451 | /* |
| 452 | * Find the number of translations(mappings) specified in the current |
| 453 | * `ranges` property. Note that length represents number of bytes and |
| 454 | * is stored in big endian mode. |
| 455 | */ |
| 456 | length = fdt32_to_cpu(ranges_prop->len); |
| 457 | nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat; |
| 458 | |
| 459 | assert(nxlat_entries > 0); |
| 460 | |
| 461 | next_entry = (const uint32_t *)ranges_prop->data; |
| 462 | |
| 463 | /* Iterate over the entries in the "ranges" */ |
| 464 | for (int i = 0; i < nxlat_entries; i++) { |
| 465 | if (fdtw_xlat_hit(next_entry, self_addr_cells, |
| 466 | parent_addr_cells, self_size_cells, base_address, |
| 467 | &translated_addr)){ |
| 468 | return translated_addr; |
| 469 | } |
| 470 | next_entry = next_entry + ncells_xlat; |
| 471 | } |
| 472 | |
| 473 | INFO("DT: No translation found for address %llx in node %s\n", |
| 474 | base_address, fdt_get_name(dtb, local_bus, NULL)); |
| 475 | return ILLEGAL_ADDR; |
| 476 | } |
| 477 | |
| 478 | |
| 479 | /******************************************************************************* |
| 480 | * address mapping needs to be done recursively starting from current node to |
| 481 | * root node through all intermediate parent nodes. |
| 482 | * Sample device tree is shown here: |
| 483 | |
| 484 | smb@0,0 { |
| 485 | compatible = "simple-bus"; |
| 486 | |
| 487 | #address-cells = <2>; |
| 488 | #size-cells = <1>; |
| 489 | ranges = <0 0 0 0x08000000 0x04000000>, |
| 490 | <1 0 0 0x14000000 0x04000000>, |
| 491 | <2 0 0 0x18000000 0x04000000>, |
| 492 | <3 0 0 0x1c000000 0x04000000>, |
| 493 | <4 0 0 0x0c000000 0x04000000>, |
| 494 | <5 0 0 0x10000000 0x04000000>; |
| 495 | |
| 496 | motherboard { |
| 497 | arm,v2m-memory-map = "rs1"; |
| 498 | compatible = "arm,vexpress,v2m-p1", "simple-bus"; |
| 499 | #address-cells = <2>; |
| 500 | #size-cells = <1>; |
| 501 | ranges; |
| 502 | |
| 503 | iofpga@3,00000000 { |
| 504 | compatible = "arm,amba-bus", "simple-bus"; |
| 505 | #address-cells = <1>; |
| 506 | #size-cells = <1>; |
| 507 | ranges = <0 3 0 0x200000>; |
| 508 | v2m_serial1: uart@a0000 { |
| 509 | compatible = "arm,pl011", "arm,primecell"; |
| 510 | reg = <0x0a0000 0x1000>; |
| 511 | interrupts = <0 6 4>; |
| 512 | clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>; |
| 513 | clock-names = "uartclk", "apb_pclk"; |
| 514 | }; |
| 515 | }; |
| 516 | }; |
| 517 | |
| 518 | * As seen above, there are 3 levels of address translations needed. An empty |
| 519 | * `ranges` property denotes identity mapping (as seen in `motherboard` node). |
| 520 | * Each ranges property can map a set of child addresses to parent bus. Hence |
| 521 | * there can be more than 1 (translation) entry in the ranges property as seen |
| 522 | * in the `smb` node which has 6 translation entries. |
| 523 | ******************************************************************************/ |
| 524 | |
| 525 | /* Recursive implementation */ |
| 526 | uint64_t fdtw_translate_address(const void *dtb, int node, |
| 527 | uint64_t base_address) |
| 528 | { |
| 529 | int length, local_bus_node; |
| 530 | const char *node_name; |
| 531 | uint64_t global_address; |
| 532 | |
| 533 | local_bus_node = fdt_parent_offset(dtb, node); |
| 534 | node_name = fdt_get_name(dtb, local_bus_node, NULL); |
| 535 | |
| 536 | /* |
| 537 | * In the example given above, starting from the leaf node: |
| 538 | * uart@a000 represents the current node |
| 539 | * iofpga@3,00000000 represents the local bus |
| 540 | * motherboard represents the parent bus |
| 541 | */ |
| 542 | |
| 543 | /* Read the ranges property */ |
| 544 | const struct fdt_property *property = fdt_get_property(dtb, |
| 545 | local_bus_node, "ranges", &length); |
| 546 | |
| 547 | if (property == NULL) { |
| 548 | if (local_bus_node == 0) { |
| 549 | /* |
| 550 | * root node doesn't have range property as addresses |
| 551 | * are in CPU address space. |
| 552 | */ |
| 553 | return base_address; |
| 554 | } |
| 555 | INFO("DT: Couldn't find ranges property in node %s\n", |
| 556 | node_name); |
| 557 | return ILLEGAL_ADDR; |
| 558 | } else if (length == 0) { |
| 559 | /* empty ranges indicates identity map to parent bus */ |
| 560 | return fdtw_translate_address(dtb, local_bus_node, base_address); |
| 561 | } |
| 562 | |
| 563 | VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name, |
| 564 | local_bus_node); |
| 565 | global_address = fdtw_search_all_xlat_entries(dtb, property, |
| 566 | local_bus_node, base_address); |
| 567 | |
| 568 | if (global_address == ILLEGAL_ADDR) { |
| 569 | return ILLEGAL_ADDR; |
| 570 | } |
| 571 | |
| 572 | /* Translate the local device address recursively */ |
| 573 | return fdtw_translate_address(dtb, local_bus_node, global_address); |
| 574 | } |
Chris Kay | 93c9db0 | 2021-09-28 16:06:25 +0100 | [diff] [blame] | 575 | |
| 576 | /* |
| 577 | * For every CPU node (`/cpus/cpu@n`) in an FDT, execute a callback passing a |
| 578 | * pointer to the FDT and the offset of the CPU node. If the return value of the |
| 579 | * callback is negative, it is treated as an error and the loop is aborted. In |
| 580 | * this situation, the value of the callback is returned from the function. |
| 581 | * |
| 582 | * Returns `0` on success, or a negative integer representing an error code. |
| 583 | */ |
| 584 | int fdtw_for_each_cpu(const void *dtb, |
| 585 | int (*callback)(const void *dtb, int node, uintptr_t mpidr)) |
| 586 | { |
| 587 | int ret = 0; |
| 588 | int parent, node = 0; |
| 589 | |
| 590 | parent = fdt_path_offset(dtb, "/cpus"); |
| 591 | if (parent < 0) { |
| 592 | return parent; |
| 593 | } |
| 594 | |
| 595 | fdt_for_each_subnode(node, dtb, parent) { |
| 596 | const char *name; |
| 597 | int len; |
| 598 | |
| 599 | uintptr_t mpidr = 0U; |
| 600 | |
| 601 | name = fdt_get_name(dtb, node, &len); |
| 602 | if (strncmp(name, "cpu@", 4) != 0) { |
| 603 | continue; |
| 604 | } |
| 605 | |
| 606 | ret = fdt_get_reg_props_by_index(dtb, node, 0, &mpidr, NULL); |
| 607 | if (ret < 0) { |
| 608 | break; |
| 609 | } |
| 610 | |
| 611 | ret = callback(dtb, node, mpidr); |
| 612 | if (ret < 0) { |
| 613 | break; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | return ret; |
| 618 | } |