Varun Wadekar | b374103 | 2017-09-25 13:27:45 -0700 | [diff] [blame] | 1 | /* |
Varun Wadekar | 6070155 | 2020-01-10 16:52:23 -0800 | [diff] [blame] | 2 | * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. |
Varun Wadekar | b374103 | 2017-09-25 13:27:45 -0700 | [diff] [blame] | 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <arch_helpers.h> |
| 8 | #include <assert.h> |
Varun Wadekar | 6070155 | 2020-01-10 16:52:23 -0800 | [diff] [blame] | 9 | #include <common/debug.h> |
Varun Wadekar | b374103 | 2017-09-25 13:27:45 -0700 | [diff] [blame] | 10 | #include <errno.h> |
Varun Wadekar | b860976 | 2018-12-21 10:53:53 -0800 | [diff] [blame] | 11 | #include <stdbool.h> |
Varun Wadekar | b374103 | 2017-09-25 13:27:45 -0700 | [diff] [blame] | 12 | #include <stddef.h> |
| 13 | #include <string.h> |
| 14 | |
| 15 | #include "ivc.h" |
| 16 | |
| 17 | /* |
| 18 | * IVC channel reset protocol. |
| 19 | * |
| 20 | * Each end uses its tx_channel.state to indicate its synchronization state. |
| 21 | */ |
| 22 | enum { |
| 23 | /* |
| 24 | * This value is zero for backwards compatibility with services that |
| 25 | * assume channels to be initially zeroed. Such channels are in an |
| 26 | * initially valid state, but cannot be asynchronously reset, and must |
| 27 | * maintain a valid state at all times. |
| 28 | * |
| 29 | * The transmitting end can enter the established state from the sync or |
| 30 | * ack state when it observes the receiving endpoint in the ack or |
| 31 | * established state, indicating that has cleared the counters in our |
| 32 | * rx_channel. |
| 33 | */ |
| 34 | ivc_state_established = U(0), |
| 35 | |
| 36 | /* |
| 37 | * If an endpoint is observed in the sync state, the remote endpoint is |
| 38 | * allowed to clear the counters it owns asynchronously with respect to |
| 39 | * the current endpoint. Therefore, the current endpoint is no longer |
| 40 | * allowed to communicate. |
| 41 | */ |
| 42 | ivc_state_sync = U(1), |
| 43 | |
| 44 | /* |
| 45 | * When the transmitting end observes the receiving end in the sync |
| 46 | * state, it can clear the w_count and r_count and transition to the ack |
| 47 | * state. If the remote endpoint observes us in the ack state, it can |
| 48 | * return to the established state once it has cleared its counters. |
| 49 | */ |
| 50 | ivc_state_ack = U(2) |
| 51 | }; |
| 52 | |
| 53 | /* |
| 54 | * This structure is divided into two-cache aligned parts, the first is only |
| 55 | * written through the tx_channel pointer, while the second is only written |
| 56 | * through the rx_channel pointer. This delineates ownership of the cache lines, |
| 57 | * which is critical to performance and necessary in non-cache coherent |
| 58 | * implementations. |
| 59 | */ |
| 60 | struct ivc_channel_header { |
| 61 | struct { |
| 62 | /* fields owned by the transmitting end */ |
| 63 | uint32_t w_count; |
| 64 | uint32_t state; |
| 65 | uint32_t w_rsvd[IVC_CHHDR_TX_FIELDS - 2]; |
| 66 | }; |
| 67 | struct { |
| 68 | /* fields owned by the receiving end */ |
| 69 | uint32_t r_count; |
| 70 | uint32_t r_rsvd[IVC_CHHDR_RX_FIELDS - 1]; |
| 71 | }; |
| 72 | }; |
| 73 | |
| 74 | static inline bool ivc_channel_empty(const struct ivc *ivc, |
| 75 | volatile const struct ivc_channel_header *ch) |
| 76 | { |
| 77 | /* |
| 78 | * This function performs multiple checks on the same values with |
| 79 | * security implications, so sample the counters' current values in |
| 80 | * shared memory to ensure that these checks use the same values. |
| 81 | */ |
| 82 | uint32_t wr_count = ch->w_count; |
| 83 | uint32_t rd_count = ch->r_count; |
| 84 | bool ret = false; |
| 85 | |
| 86 | (void)ivc; |
| 87 | |
| 88 | /* |
| 89 | * Perform an over-full check to prevent denial of service attacks where |
| 90 | * a server could be easily fooled into believing that there's an |
| 91 | * extremely large number of frames ready, since receivers are not |
| 92 | * expected to check for full or over-full conditions. |
| 93 | * |
| 94 | * Although the channel isn't empty, this is an invalid case caused by |
| 95 | * a potentially malicious peer, so returning empty is safer, because it |
| 96 | * gives the impression that the channel has gone silent. |
| 97 | */ |
| 98 | if (((wr_count - rd_count) > ivc->nframes) || (wr_count == rd_count)) { |
| 99 | ret = true; |
| 100 | } |
| 101 | |
| 102 | return ret; |
| 103 | } |
| 104 | |
| 105 | static inline bool ivc_channel_full(const struct ivc *ivc, |
| 106 | volatile const struct ivc_channel_header *ch) |
| 107 | { |
| 108 | uint32_t wr_count = ch->w_count; |
| 109 | uint32_t rd_count = ch->r_count; |
| 110 | |
| 111 | (void)ivc; |
| 112 | |
| 113 | /* |
| 114 | * Invalid cases where the counters indicate that the queue is over |
| 115 | * capacity also appear full. |
| 116 | */ |
| 117 | return ((wr_count - rd_count) >= ivc->nframes); |
| 118 | } |
| 119 | |
| 120 | static inline uint32_t ivc_channel_avail_count(const struct ivc *ivc, |
| 121 | volatile const struct ivc_channel_header *ch) |
| 122 | { |
| 123 | uint32_t wr_count = ch->w_count; |
| 124 | uint32_t rd_count = ch->r_count; |
| 125 | |
| 126 | (void)ivc; |
| 127 | |
| 128 | /* |
| 129 | * This function isn't expected to be used in scenarios where an |
| 130 | * over-full situation can lead to denial of service attacks. See the |
| 131 | * comment in ivc_channel_empty() for an explanation about special |
| 132 | * over-full considerations. |
| 133 | */ |
| 134 | return (wr_count - rd_count); |
| 135 | } |
| 136 | |
| 137 | static inline void ivc_advance_tx(struct ivc *ivc) |
| 138 | { |
| 139 | ivc->tx_channel->w_count++; |
| 140 | |
| 141 | if (ivc->w_pos == (ivc->nframes - (uint32_t)1U)) { |
| 142 | ivc->w_pos = 0U; |
| 143 | } else { |
| 144 | ivc->w_pos++; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | static inline void ivc_advance_rx(struct ivc *ivc) |
| 149 | { |
| 150 | ivc->rx_channel->r_count++; |
| 151 | |
| 152 | if (ivc->r_pos == (ivc->nframes - (uint32_t)1U)) { |
| 153 | ivc->r_pos = 0U; |
| 154 | } else { |
| 155 | ivc->r_pos++; |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | static inline int32_t ivc_check_read(const struct ivc *ivc) |
| 160 | { |
| 161 | /* |
| 162 | * tx_channel->state is set locally, so it is not synchronized with |
| 163 | * state from the remote peer. The remote peer cannot reset its |
| 164 | * transmit counters until we've acknowledged its synchronization |
| 165 | * request, so no additional synchronization is required because an |
| 166 | * asynchronous transition of rx_channel->state to ivc_state_ack is not |
| 167 | * allowed. |
| 168 | */ |
| 169 | if (ivc->tx_channel->state != ivc_state_established) { |
| 170 | return -ECONNRESET; |
| 171 | } |
| 172 | |
| 173 | /* |
| 174 | * Avoid unnecessary invalidations when performing repeated accesses to |
| 175 | * an IVC channel by checking the old queue pointers first. |
| 176 | * Synchronization is only necessary when these pointers indicate empty |
| 177 | * or full. |
| 178 | */ |
| 179 | if (!ivc_channel_empty(ivc, ivc->rx_channel)) { |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | return ivc_channel_empty(ivc, ivc->rx_channel) ? -ENOMEM : 0; |
| 184 | } |
| 185 | |
| 186 | static inline int32_t ivc_check_write(const struct ivc *ivc) |
| 187 | { |
| 188 | if (ivc->tx_channel->state != ivc_state_established) { |
| 189 | return -ECONNRESET; |
| 190 | } |
| 191 | |
| 192 | if (!ivc_channel_full(ivc, ivc->tx_channel)) { |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | return ivc_channel_full(ivc, ivc->tx_channel) ? -ENOMEM : 0; |
| 197 | } |
| 198 | |
| 199 | bool tegra_ivc_can_read(const struct ivc *ivc) |
| 200 | { |
| 201 | return ivc_check_read(ivc) == 0; |
| 202 | } |
| 203 | |
| 204 | bool tegra_ivc_can_write(const struct ivc *ivc) |
| 205 | { |
| 206 | return ivc_check_write(ivc) == 0; |
| 207 | } |
| 208 | |
| 209 | bool tegra_ivc_tx_empty(const struct ivc *ivc) |
| 210 | { |
| 211 | return ivc_channel_empty(ivc, ivc->tx_channel); |
| 212 | } |
| 213 | |
| 214 | static inline uintptr_t calc_frame_offset(uint32_t frame_index, |
| 215 | uint32_t frame_size, uint32_t frame_offset) |
| 216 | { |
| 217 | return ((uintptr_t)frame_index * (uintptr_t)frame_size) + |
| 218 | (uintptr_t)frame_offset; |
| 219 | } |
| 220 | |
| 221 | static void *ivc_frame_pointer(const struct ivc *ivc, |
| 222 | volatile const struct ivc_channel_header *ch, |
| 223 | uint32_t frame) |
| 224 | { |
| 225 | assert(frame < ivc->nframes); |
| 226 | return (void *)((uintptr_t)(&ch[1]) + |
| 227 | calc_frame_offset(frame, ivc->frame_size, 0)); |
| 228 | } |
| 229 | |
| 230 | int32_t tegra_ivc_read(struct ivc *ivc, void *buf, size_t max_read) |
| 231 | { |
| 232 | const void *src; |
| 233 | int32_t result; |
| 234 | |
| 235 | if (buf == NULL) { |
| 236 | return -EINVAL; |
| 237 | } |
| 238 | |
| 239 | if (max_read > ivc->frame_size) { |
| 240 | return -E2BIG; |
| 241 | } |
| 242 | |
| 243 | result = ivc_check_read(ivc); |
| 244 | if (result != 0) { |
| 245 | return result; |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * Order observation of w_pos potentially indicating new data before |
| 250 | * data read. |
| 251 | */ |
| 252 | dmbish(); |
| 253 | |
| 254 | src = ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); |
| 255 | |
| 256 | (void)memcpy(buf, src, max_read); |
| 257 | |
| 258 | ivc_advance_rx(ivc); |
| 259 | |
| 260 | /* |
| 261 | * Ensure our write to r_pos occurs before our read from w_pos. |
| 262 | */ |
| 263 | dmbish(); |
| 264 | |
| 265 | /* |
| 266 | * Notify only upon transition from full to non-full. |
| 267 | * The available count can only asynchronously increase, so the |
| 268 | * worst possible side-effect will be a spurious notification. |
| 269 | */ |
| 270 | if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) { |
| 271 | ivc->notify(ivc); |
| 272 | } |
| 273 | |
| 274 | return (int32_t)max_read; |
| 275 | } |
| 276 | |
| 277 | /* directly peek at the next frame rx'ed */ |
| 278 | void *tegra_ivc_read_get_next_frame(const struct ivc *ivc) |
| 279 | { |
| 280 | if (ivc_check_read(ivc) != 0) { |
| 281 | return NULL; |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Order observation of w_pos potentially indicating new data before |
| 286 | * data read. |
| 287 | */ |
| 288 | dmbld(); |
| 289 | |
| 290 | return ivc_frame_pointer(ivc, ivc->rx_channel, ivc->r_pos); |
| 291 | } |
| 292 | |
| 293 | int32_t tegra_ivc_read_advance(struct ivc *ivc) |
| 294 | { |
| 295 | /* |
| 296 | * No read barriers or synchronization here: the caller is expected to |
| 297 | * have already observed the channel non-empty. This check is just to |
| 298 | * catch programming errors. |
| 299 | */ |
| 300 | int32_t result = ivc_check_read(ivc); |
| 301 | if (result != 0) { |
| 302 | return result; |
| 303 | } |
| 304 | |
| 305 | ivc_advance_rx(ivc); |
| 306 | |
| 307 | /* |
| 308 | * Ensure our write to r_pos occurs before our read from w_pos. |
| 309 | */ |
| 310 | dmbish(); |
| 311 | |
| 312 | /* |
| 313 | * Notify only upon transition from full to non-full. |
| 314 | * The available count can only asynchronously increase, so the |
| 315 | * worst possible side-effect will be a spurious notification. |
| 316 | */ |
| 317 | if (ivc_channel_avail_count(ivc, ivc->rx_channel) == (ivc->nframes - (uint32_t)1U)) { |
| 318 | ivc->notify(ivc); |
| 319 | } |
| 320 | |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | int32_t tegra_ivc_write(struct ivc *ivc, const void *buf, size_t size) |
| 325 | { |
| 326 | void *p; |
| 327 | int32_t result; |
| 328 | |
| 329 | if ((buf == NULL) || (ivc == NULL)) { |
| 330 | return -EINVAL; |
| 331 | } |
| 332 | |
| 333 | if (size > ivc->frame_size) { |
| 334 | return -E2BIG; |
| 335 | } |
| 336 | |
| 337 | result = ivc_check_write(ivc); |
| 338 | if (result != 0) { |
| 339 | return result; |
| 340 | } |
| 341 | |
| 342 | p = ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); |
| 343 | |
| 344 | (void)memset(p, 0, ivc->frame_size); |
| 345 | (void)memcpy(p, buf, size); |
| 346 | |
| 347 | /* |
| 348 | * Ensure that updated data is visible before the w_pos counter |
| 349 | * indicates that it is ready. |
| 350 | */ |
| 351 | dmbst(); |
| 352 | |
| 353 | ivc_advance_tx(ivc); |
| 354 | |
| 355 | /* |
| 356 | * Ensure our write to w_pos occurs before our read from r_pos. |
| 357 | */ |
| 358 | dmbish(); |
| 359 | |
| 360 | /* |
| 361 | * Notify only upon transition from empty to non-empty. |
| 362 | * The available count can only asynchronously decrease, so the |
| 363 | * worst possible side-effect will be a spurious notification. |
| 364 | */ |
| 365 | if (ivc_channel_avail_count(ivc, ivc->tx_channel) == 1U) { |
| 366 | ivc->notify(ivc); |
| 367 | } |
| 368 | |
| 369 | return (int32_t)size; |
| 370 | } |
| 371 | |
| 372 | /* directly poke at the next frame to be tx'ed */ |
| 373 | void *tegra_ivc_write_get_next_frame(const struct ivc *ivc) |
| 374 | { |
| 375 | if (ivc_check_write(ivc) != 0) { |
| 376 | return NULL; |
| 377 | } |
| 378 | |
| 379 | return ivc_frame_pointer(ivc, ivc->tx_channel, ivc->w_pos); |
| 380 | } |
| 381 | |
| 382 | /* advance the tx buffer */ |
| 383 | int32_t tegra_ivc_write_advance(struct ivc *ivc) |
| 384 | { |
| 385 | int32_t result = ivc_check_write(ivc); |
| 386 | |
| 387 | if (result != 0) { |
| 388 | return result; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Order any possible stores to the frame before update of w_pos. |
| 393 | */ |
| 394 | dmbst(); |
| 395 | |
| 396 | ivc_advance_tx(ivc); |
| 397 | |
| 398 | /* |
| 399 | * Ensure our write to w_pos occurs before our read from r_pos. |
| 400 | */ |
| 401 | dmbish(); |
| 402 | |
| 403 | /* |
| 404 | * Notify only upon transition from empty to non-empty. |
| 405 | * The available count can only asynchronously decrease, so the |
| 406 | * worst possible side-effect will be a spurious notification. |
| 407 | */ |
| 408 | if (ivc_channel_avail_count(ivc, ivc->tx_channel) == (uint32_t)1U) { |
| 409 | ivc->notify(ivc); |
| 410 | } |
| 411 | |
| 412 | return 0; |
| 413 | } |
| 414 | |
| 415 | void tegra_ivc_channel_reset(const struct ivc *ivc) |
| 416 | { |
| 417 | ivc->tx_channel->state = ivc_state_sync; |
| 418 | ivc->notify(ivc); |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * =============================================================== |
| 423 | * IVC State Transition Table - see tegra_ivc_channel_notified() |
| 424 | * =============================================================== |
| 425 | * |
| 426 | * local remote action |
| 427 | * ----- ------ ----------------------------------- |
| 428 | * SYNC EST <none> |
| 429 | * SYNC ACK reset counters; move to EST; notify |
| 430 | * SYNC SYNC reset counters; move to ACK; notify |
| 431 | * ACK EST move to EST; notify |
| 432 | * ACK ACK move to EST; notify |
| 433 | * ACK SYNC reset counters; move to ACK; notify |
| 434 | * EST EST <none> |
| 435 | * EST ACK <none> |
| 436 | * EST SYNC reset counters; move to ACK; notify |
| 437 | * |
| 438 | * =============================================================== |
| 439 | */ |
| 440 | int32_t tegra_ivc_channel_notified(struct ivc *ivc) |
| 441 | { |
| 442 | uint32_t peer_state; |
| 443 | |
| 444 | /* Copy the receiver's state out of shared memory. */ |
| 445 | peer_state = ivc->rx_channel->state; |
| 446 | |
| 447 | if (peer_state == (uint32_t)ivc_state_sync) { |
| 448 | /* |
| 449 | * Order observation of ivc_state_sync before stores clearing |
| 450 | * tx_channel. |
| 451 | */ |
| 452 | dmbld(); |
| 453 | |
| 454 | /* |
| 455 | * Reset tx_channel counters. The remote end is in the SYNC |
| 456 | * state and won't make progress until we change our state, |
| 457 | * so the counters are not in use at this time. |
| 458 | */ |
| 459 | ivc->tx_channel->w_count = 0U; |
| 460 | ivc->rx_channel->r_count = 0U; |
| 461 | |
| 462 | ivc->w_pos = 0U; |
| 463 | ivc->r_pos = 0U; |
| 464 | |
| 465 | /* |
| 466 | * Ensure that counters appear cleared before new state can be |
| 467 | * observed. |
| 468 | */ |
| 469 | dmbst(); |
| 470 | |
| 471 | /* |
| 472 | * Move to ACK state. We have just cleared our counters, so it |
| 473 | * is now safe for the remote end to start using these values. |
| 474 | */ |
| 475 | ivc->tx_channel->state = ivc_state_ack; |
| 476 | |
| 477 | /* |
| 478 | * Notify remote end to observe state transition. |
| 479 | */ |
| 480 | ivc->notify(ivc); |
| 481 | |
| 482 | } else if ((ivc->tx_channel->state == (uint32_t)ivc_state_sync) && |
| 483 | (peer_state == (uint32_t)ivc_state_ack)) { |
| 484 | /* |
| 485 | * Order observation of ivc_state_sync before stores clearing |
| 486 | * tx_channel. |
| 487 | */ |
| 488 | dmbld(); |
| 489 | |
| 490 | /* |
| 491 | * Reset tx_channel counters. The remote end is in the ACK |
| 492 | * state and won't make progress until we change our state, |
| 493 | * so the counters are not in use at this time. |
| 494 | */ |
| 495 | ivc->tx_channel->w_count = 0U; |
| 496 | ivc->rx_channel->r_count = 0U; |
| 497 | |
| 498 | ivc->w_pos = 0U; |
| 499 | ivc->r_pos = 0U; |
| 500 | |
| 501 | /* |
| 502 | * Ensure that counters appear cleared before new state can be |
| 503 | * observed. |
| 504 | */ |
| 505 | dmbst(); |
| 506 | |
| 507 | /* |
| 508 | * Move to ESTABLISHED state. We know that the remote end has |
| 509 | * already cleared its counters, so it is safe to start |
| 510 | * writing/reading on this channel. |
| 511 | */ |
| 512 | ivc->tx_channel->state = ivc_state_established; |
| 513 | |
| 514 | /* |
| 515 | * Notify remote end to observe state transition. |
| 516 | */ |
| 517 | ivc->notify(ivc); |
| 518 | |
| 519 | } else if (ivc->tx_channel->state == (uint32_t)ivc_state_ack) { |
| 520 | /* |
| 521 | * At this point, we have observed the peer to be in either |
| 522 | * the ACK or ESTABLISHED state. Next, order observation of |
| 523 | * peer state before storing to tx_channel. |
| 524 | */ |
| 525 | dmbld(); |
| 526 | |
| 527 | /* |
| 528 | * Move to ESTABLISHED state. We know that we have previously |
| 529 | * cleared our counters, and we know that the remote end has |
| 530 | * cleared its counters, so it is safe to start writing/reading |
| 531 | * on this channel. |
| 532 | */ |
| 533 | ivc->tx_channel->state = ivc_state_established; |
| 534 | |
| 535 | /* |
| 536 | * Notify remote end to observe state transition. |
| 537 | */ |
| 538 | ivc->notify(ivc); |
| 539 | |
| 540 | } else { |
| 541 | /* |
| 542 | * There is no need to handle any further action. Either the |
| 543 | * channel is already fully established, or we are waiting for |
| 544 | * the remote end to catch up with our current state. Refer |
| 545 | * to the diagram in "IVC State Transition Table" above. |
| 546 | */ |
| 547 | } |
| 548 | |
| 549 | return ((ivc->tx_channel->state == (uint32_t)ivc_state_established) ? 0 : -EAGAIN); |
| 550 | } |
| 551 | |
| 552 | size_t tegra_ivc_align(size_t size) |
| 553 | { |
| 554 | return (size + (IVC_ALIGN - 1U)) & ~(IVC_ALIGN - 1U); |
| 555 | } |
| 556 | |
| 557 | size_t tegra_ivc_total_queue_size(size_t queue_size) |
| 558 | { |
| 559 | if ((queue_size & (IVC_ALIGN - 1U)) != 0U) { |
| 560 | ERROR("queue_size (%d) must be %d-byte aligned\n", |
| 561 | (int32_t)queue_size, IVC_ALIGN); |
| 562 | return 0; |
| 563 | } |
| 564 | return queue_size + sizeof(struct ivc_channel_header); |
| 565 | } |
| 566 | |
| 567 | static int32_t check_ivc_params(uintptr_t queue_base1, uintptr_t queue_base2, |
| 568 | uint32_t nframes, uint32_t frame_size) |
| 569 | { |
| 570 | assert((offsetof(struct ivc_channel_header, w_count) |
| 571 | & (IVC_ALIGN - 1U)) == 0U); |
| 572 | assert((offsetof(struct ivc_channel_header, r_count) |
| 573 | & (IVC_ALIGN - 1U)) == 0U); |
| 574 | assert((sizeof(struct ivc_channel_header) & (IVC_ALIGN - 1U)) == 0U); |
| 575 | |
| 576 | if (((uint64_t)nframes * (uint64_t)frame_size) >= 0x100000000ULL) { |
| 577 | ERROR("nframes * frame_size overflows\n"); |
| 578 | return -EINVAL; |
| 579 | } |
| 580 | |
| 581 | /* |
| 582 | * The headers must at least be aligned enough for counters |
| 583 | * to be accessed atomically. |
| 584 | */ |
| 585 | if ((queue_base1 & (IVC_ALIGN - 1U)) != 0U) { |
| 586 | ERROR("ivc channel start not aligned: %lx\n", queue_base1); |
| 587 | return -EINVAL; |
| 588 | } |
| 589 | if ((queue_base2 & (IVC_ALIGN - 1U)) != 0U) { |
| 590 | ERROR("ivc channel start not aligned: %lx\n", queue_base2); |
| 591 | return -EINVAL; |
| 592 | } |
| 593 | |
| 594 | if ((frame_size & (IVC_ALIGN - 1U)) != 0U) { |
| 595 | ERROR("frame size not adequately aligned: %u\n", |
| 596 | frame_size); |
| 597 | return -EINVAL; |
| 598 | } |
| 599 | |
| 600 | if (queue_base1 < queue_base2) { |
| 601 | if ((queue_base1 + ((uint64_t)frame_size * nframes)) > queue_base2) { |
| 602 | ERROR("queue regions overlap: %lx + %x, %x\n", |
| 603 | queue_base1, frame_size, |
| 604 | frame_size * nframes); |
| 605 | return -EINVAL; |
| 606 | } |
| 607 | } else { |
| 608 | if ((queue_base2 + ((uint64_t)frame_size * nframes)) > queue_base1) { |
| 609 | ERROR("queue regions overlap: %lx + %x, %x\n", |
| 610 | queue_base2, frame_size, |
| 611 | frame_size * nframes); |
| 612 | return -EINVAL; |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | return 0; |
| 617 | } |
| 618 | |
| 619 | int32_t tegra_ivc_init(struct ivc *ivc, uintptr_t rx_base, uintptr_t tx_base, |
| 620 | uint32_t nframes, uint32_t frame_size, |
| 621 | ivc_notify_function notify) |
| 622 | { |
| 623 | int32_t result; |
| 624 | |
| 625 | /* sanity check input params */ |
| 626 | if ((ivc == NULL) || (notify == NULL)) { |
| 627 | return -EINVAL; |
| 628 | } |
| 629 | |
| 630 | result = check_ivc_params(rx_base, tx_base, nframes, frame_size); |
| 631 | if (result != 0) { |
| 632 | return result; |
| 633 | } |
| 634 | |
| 635 | /* |
| 636 | * All sizes that can be returned by communication functions should |
| 637 | * fit in a 32-bit integer. |
| 638 | */ |
| 639 | if (frame_size > (1u << 31)) { |
| 640 | return -E2BIG; |
| 641 | } |
| 642 | |
| 643 | ivc->rx_channel = (struct ivc_channel_header *)rx_base; |
| 644 | ivc->tx_channel = (struct ivc_channel_header *)tx_base; |
| 645 | ivc->notify = notify; |
| 646 | ivc->frame_size = frame_size; |
| 647 | ivc->nframes = nframes; |
| 648 | ivc->w_pos = 0U; |
| 649 | ivc->r_pos = 0U; |
| 650 | |
| 651 | INFO("%s: done\n", __func__); |
| 652 | |
| 653 | return 0; |
| 654 | } |