johpow01 | 9d13402 | 2021-06-16 17:57:28 -0500 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2021, Arm Limited. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <assert.h> |
| 8 | #include <errno.h> |
| 9 | #include <limits.h> |
| 10 | #include <stdint.h> |
| 11 | |
| 12 | #include <arch.h> |
| 13 | #include <arch_helpers.h> |
| 14 | #include <common/debug.h> |
| 15 | #include "gpt_rme_private.h" |
| 16 | #include <lib/gpt_rme/gpt_rme.h> |
| 17 | #include <lib/smccc.h> |
| 18 | #include <lib/spinlock.h> |
| 19 | #include <lib/xlat_tables/xlat_tables_v2.h> |
| 20 | |
| 21 | #if !ENABLE_RME |
| 22 | #error "ENABLE_RME must be enabled to use the GPT library." |
| 23 | #endif |
| 24 | |
| 25 | /* |
| 26 | * Lookup T from PPS |
| 27 | * |
| 28 | * PPS Size T |
| 29 | * 0b000 4GB 32 |
| 30 | * 0b001 64GB 36 |
| 31 | * 0b010 1TB 40 |
| 32 | * 0b011 4TB 42 |
| 33 | * 0b100 16TB 44 |
| 34 | * 0b101 256TB 48 |
| 35 | * 0b110 4PB 52 |
| 36 | * |
| 37 | * See section 15.1.27 of the RME specification. |
| 38 | */ |
| 39 | static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T, |
| 40 | PPS_1TB_T, PPS_4TB_T, |
| 41 | PPS_16TB_T, PPS_256TB_T, |
| 42 | PPS_4PB_T}; |
| 43 | |
| 44 | /* |
| 45 | * Lookup P from PGS |
| 46 | * |
| 47 | * PGS Size P |
| 48 | * 0b00 4KB 12 |
| 49 | * 0b10 16KB 14 |
| 50 | * 0b01 64KB 16 |
| 51 | * |
| 52 | * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo. |
| 53 | * |
| 54 | * See section 15.1.27 of the RME specification. |
| 55 | */ |
| 56 | static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P}; |
| 57 | |
| 58 | /* |
| 59 | * This structure contains GPT configuration data. |
| 60 | */ |
| 61 | typedef struct { |
| 62 | uintptr_t plat_gpt_l0_base; |
| 63 | gpccr_pps_e pps; |
| 64 | gpt_t_val_e t; |
| 65 | gpccr_pgs_e pgs; |
| 66 | gpt_p_val_e p; |
| 67 | } gpt_config_t; |
| 68 | |
| 69 | static gpt_config_t gpt_config; |
| 70 | |
| 71 | /* These variables are used during initialization of the L1 tables. */ |
| 72 | static unsigned int gpt_next_l1_tbl_idx; |
| 73 | static uintptr_t gpt_l1_tbl; |
| 74 | |
| 75 | /* |
| 76 | * This function checks to see if a GPI value is valid. |
| 77 | * |
| 78 | * These are valid GPI values. |
| 79 | * GPT_GPI_NO_ACCESS U(0x0) |
| 80 | * GPT_GPI_SECURE U(0x8) |
| 81 | * GPT_GPI_NS U(0x9) |
| 82 | * GPT_GPI_ROOT U(0xA) |
| 83 | * GPT_GPI_REALM U(0xB) |
| 84 | * GPT_GPI_ANY U(0xF) |
| 85 | * |
| 86 | * Parameters |
| 87 | * gpi GPI to check for validity. |
| 88 | * |
| 89 | * Return |
| 90 | * true for a valid GPI, false for an invalid one. |
| 91 | */ |
| 92 | static bool gpt_is_gpi_valid(unsigned int gpi) |
| 93 | { |
| 94 | if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) || |
| 95 | ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) { |
| 96 | return true; |
| 97 | } else { |
| 98 | return false; |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | * This function checks to see if two PAS regions overlap. |
| 104 | * |
| 105 | * Parameters |
| 106 | * base_1: base address of first PAS |
| 107 | * size_1: size of first PAS |
| 108 | * base_2: base address of second PAS |
| 109 | * size_2: size of second PAS |
| 110 | * |
| 111 | * Return |
| 112 | * True if PAS regions overlap, false if they do not. |
| 113 | */ |
| 114 | static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1, |
| 115 | uintptr_t base_2, size_t size_2) |
| 116 | { |
| 117 | if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) { |
| 118 | return true; |
| 119 | } else { |
| 120 | return false; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | /* |
| 125 | * This helper function checks to see if a PAS region from index 0 to |
| 126 | * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table. |
| 127 | * |
| 128 | * Parameters |
| 129 | * l0_idx: Index of the L0 entry to check |
| 130 | * pas_regions: PAS region array |
| 131 | * pas_idx: Upper bound of the PAS array index. |
| 132 | * |
| 133 | * Return |
| 134 | * True if a PAS region occupies the L0 region in question, false if not. |
| 135 | */ |
| 136 | static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx, |
| 137 | pas_region_t *pas_regions, |
| 138 | unsigned int pas_idx) |
| 139 | { |
| 140 | /* Iterate over PAS regions up to pas_idx. */ |
| 141 | for (unsigned int i = 0U; i < pas_idx; i++) { |
| 142 | if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx), |
| 143 | GPT_L0GPTSZ_ACTUAL_SIZE, |
| 144 | pas_regions[i].base_pa, pas_regions[i].size)) { |
| 145 | return true; |
| 146 | } |
| 147 | } |
| 148 | return false; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * This function iterates over all of the PAS regions and checks them to ensure |
| 153 | * proper alignment of base and size, that the GPI is valid, and that no regions |
| 154 | * overlap. As a part of the overlap checks, this function checks existing L0 |
| 155 | * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables |
| 156 | * is called multiple times to place L1 tables in different areas of memory. It |
| 157 | * also counts the number of L1 tables needed and returns it on success. |
| 158 | * |
| 159 | * Parameters |
| 160 | * *pas_regions Pointer to array of PAS region structures. |
| 161 | * pas_region_cnt Total number of PAS regions in the array. |
| 162 | * |
| 163 | * Return |
| 164 | * Negative Linux error code in the event of a failure, number of L1 regions |
| 165 | * required when successful. |
| 166 | */ |
| 167 | static int gpt_validate_pas_mappings(pas_region_t *pas_regions, |
| 168 | unsigned int pas_region_cnt) |
| 169 | { |
| 170 | unsigned int idx; |
| 171 | unsigned int l1_cnt = 0U; |
| 172 | unsigned int pas_l1_cnt; |
| 173 | uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| 174 | |
| 175 | assert(pas_regions != NULL); |
| 176 | assert(pas_region_cnt != 0U); |
| 177 | |
| 178 | for (idx = 0U; idx < pas_region_cnt; idx++) { |
| 179 | /* Check for arithmetic overflow in region. */ |
| 180 | if ((ULONG_MAX - pas_regions[idx].base_pa) < |
| 181 | pas_regions[idx].size) { |
| 182 | ERROR("[GPT] Address overflow in PAS[%u]!\n", idx); |
| 183 | return -EOVERFLOW; |
| 184 | } |
| 185 | |
| 186 | /* Initial checks for PAS validity. */ |
| 187 | if (((pas_regions[idx].base_pa + pas_regions[idx].size) > |
| 188 | GPT_PPS_ACTUAL_SIZE(gpt_config.t)) || |
| 189 | !gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) { |
| 190 | ERROR("[GPT] PAS[%u] is invalid!\n", idx); |
| 191 | return -EFAULT; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * Make sure this PAS does not overlap with another one. We |
| 196 | * start from idx + 1 instead of 0 since prior PAS mappings will |
| 197 | * have already checked themselves against this one. |
| 198 | */ |
| 199 | for (unsigned int i = idx + 1; i < pas_region_cnt; i++) { |
| 200 | if (gpt_check_pas_overlap(pas_regions[idx].base_pa, |
| 201 | pas_regions[idx].size, |
| 202 | pas_regions[i].base_pa, |
| 203 | pas_regions[i].size)) { |
| 204 | ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n", |
| 205 | i, idx); |
| 206 | return -EFAULT; |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * Since this function can be called multiple times with |
| 212 | * separate L1 tables we need to check the existing L0 mapping |
| 213 | * to see if this PAS would fall into one that has already been |
| 214 | * initialized. |
| 215 | */ |
| 216 | for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa); |
| 217 | i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1); |
| 218 | i++) { |
| 219 | if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) && |
| 220 | (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) { |
| 221 | /* This descriptor is unused so continue. */ |
| 222 | continue; |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * This descriptor has been initialized in a previous |
| 227 | * call to this function so cannot be initialized again. |
| 228 | */ |
| 229 | ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n", |
| 230 | idx, i); |
| 231 | return -EFAULT; |
| 232 | } |
| 233 | |
| 234 | /* Check for block mapping (L0) type. */ |
| 235 | if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| 236 | GPT_PAS_ATTR_MAP_TYPE_BLOCK) { |
| 237 | /* Make sure base and size are block-aligned. */ |
| 238 | if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) || |
| 239 | !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) { |
| 240 | ERROR("[GPT] PAS[%u] is not block-aligned!\n", |
| 241 | idx); |
| 242 | return -EFAULT; |
| 243 | } |
| 244 | |
| 245 | continue; |
| 246 | } |
| 247 | |
| 248 | /* Check for granule mapping (L1) type. */ |
| 249 | if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| 250 | GPT_PAS_ATTR_MAP_TYPE_GRANULE) { |
| 251 | /* Make sure base and size are granule-aligned. */ |
| 252 | if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) || |
| 253 | !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) { |
| 254 | ERROR("[GPT] PAS[%u] is not granule-aligned!\n", |
| 255 | idx); |
| 256 | return -EFAULT; |
| 257 | } |
| 258 | |
| 259 | /* Find how many L1 tables this PAS occupies. */ |
| 260 | pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa + |
| 261 | pas_regions[idx].size - 1) - |
| 262 | GPT_L0_IDX(pas_regions[idx].base_pa) + 1); |
| 263 | |
| 264 | /* |
| 265 | * This creates a situation where, if multiple PAS |
| 266 | * regions occupy the same table descriptor, we can get |
| 267 | * an artificially high total L1 table count. The way we |
| 268 | * handle this is by checking each PAS against those |
| 269 | * before it in the array, and if they both occupy the |
| 270 | * same PAS we subtract from pas_l1_cnt and only the |
| 271 | * first PAS in the array gets to count it. |
| 272 | */ |
| 273 | |
| 274 | /* |
| 275 | * If L1 count is greater than 1 we know the start and |
| 276 | * end PAs are in different L0 regions so we must check |
| 277 | * both for overlap against other PAS. |
| 278 | */ |
| 279 | if (pas_l1_cnt > 1) { |
| 280 | if (gpt_does_previous_pas_exist_here( |
| 281 | GPT_L0_IDX(pas_regions[idx].base_pa + |
| 282 | pas_regions[idx].size - 1), |
| 283 | pas_regions, idx)) { |
| 284 | pas_l1_cnt = pas_l1_cnt - 1; |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | if (gpt_does_previous_pas_exist_here( |
| 289 | GPT_L0_IDX(pas_regions[idx].base_pa), |
| 290 | pas_regions, idx)) { |
| 291 | pas_l1_cnt = pas_l1_cnt - 1; |
| 292 | } |
| 293 | |
| 294 | l1_cnt += pas_l1_cnt; |
| 295 | continue; |
| 296 | } |
| 297 | |
| 298 | /* If execution reaches this point, mapping type is invalid. */ |
| 299 | ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx, |
| 300 | GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs)); |
| 301 | return -EINVAL; |
| 302 | } |
| 303 | |
| 304 | return l1_cnt; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * This function validates L0 initialization parameters. |
| 309 | * |
| 310 | * Parameters |
| 311 | * l0_mem_base Base address of memory used for L0 tables. |
| 312 | * l1_mem_size Size of memory available for L0 tables. |
| 313 | * |
| 314 | * Return |
| 315 | * Negative Linux error code in the event of a failure, 0 for success. |
| 316 | */ |
| 317 | static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base, |
| 318 | size_t l0_mem_size) |
| 319 | { |
| 320 | size_t l0_alignment; |
| 321 | |
| 322 | /* |
| 323 | * Make sure PPS is valid and then store it since macros need this value |
| 324 | * to work. |
| 325 | */ |
| 326 | if (pps > GPT_PPS_MAX) { |
| 327 | ERROR("[GPT] Invalid PPS: 0x%x\n", pps); |
| 328 | return -EINVAL; |
| 329 | } |
| 330 | gpt_config.pps = pps; |
| 331 | gpt_config.t = gpt_t_lookup[pps]; |
| 332 | |
| 333 | /* Alignment must be the greater of 4k or l0 table size. */ |
| 334 | l0_alignment = PAGE_SIZE_4KB; |
| 335 | if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) { |
| 336 | l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t); |
| 337 | } |
| 338 | |
| 339 | /* Check base address. */ |
| 340 | if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) { |
| 341 | ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base); |
| 342 | return -EFAULT; |
| 343 | } |
| 344 | |
| 345 | /* Check size. */ |
| 346 | if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) { |
| 347 | ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n", |
| 348 | GPT_L0_TABLE_SIZE(gpt_config.t), |
| 349 | l0_mem_size); |
| 350 | return -ENOMEM; |
| 351 | } |
| 352 | |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | /* |
| 357 | * In the event that L1 tables are needed, this function validates |
| 358 | * the L1 table generation parameters. |
| 359 | * |
| 360 | * Parameters |
| 361 | * l1_mem_base Base address of memory used for L1 table allocation. |
| 362 | * l1_mem_size Total size of memory available for L1 tables. |
| 363 | * l1_gpt_cnt Number of L1 tables needed. |
| 364 | * |
| 365 | * Return |
| 366 | * Negative Linux error code in the event of a failure, 0 for success. |
| 367 | */ |
| 368 | static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size, |
| 369 | unsigned int l1_gpt_cnt) |
| 370 | { |
| 371 | size_t l1_gpt_mem_sz; |
| 372 | |
| 373 | /* Check if the granularity is supported */ |
| 374 | if (!xlat_arch_is_granule_size_supported( |
| 375 | GPT_PGS_ACTUAL_SIZE(gpt_config.p))) { |
| 376 | return -EPERM; |
| 377 | } |
| 378 | |
| 379 | /* Make sure L1 tables are aligned to their size. */ |
| 380 | if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) { |
| 381 | ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n", |
| 382 | l1_mem_base); |
| 383 | return -EFAULT; |
| 384 | } |
| 385 | |
| 386 | /* Get total memory needed for L1 tables. */ |
| 387 | l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p); |
| 388 | |
| 389 | /* Check for overflow. */ |
| 390 | if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) { |
| 391 | ERROR("[GPT] Overflow calculating L1 memory size.\n"); |
| 392 | return -ENOMEM; |
| 393 | } |
| 394 | |
| 395 | /* Make sure enough space was supplied. */ |
| 396 | if (l1_mem_size < l1_gpt_mem_sz) { |
| 397 | ERROR("[GPT] Inadequate memory for L1 GPTs. "); |
| 398 | ERROR(" Expected 0x%lx bytes. Got 0x%lx bytes\n", |
| 399 | l1_gpt_mem_sz, l1_mem_size); |
| 400 | return -ENOMEM; |
| 401 | } |
| 402 | |
| 403 | VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz); |
| 404 | return 0; |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * This function initializes L0 block descriptors (regions that cannot be |
| 409 | * transitioned at the granule level) according to the provided PAS. |
| 410 | * |
| 411 | * Parameters |
| 412 | * *pas Pointer to the structure defining the PAS region to |
| 413 | * initialize. |
| 414 | */ |
| 415 | static void gpt_generate_l0_blk_desc(pas_region_t *pas) |
| 416 | { |
| 417 | uint64_t gpt_desc; |
| 418 | unsigned int end_idx; |
| 419 | unsigned int idx; |
| 420 | uint64_t *l0_gpt_arr; |
| 421 | |
| 422 | assert(gpt_config.plat_gpt_l0_base != 0U); |
| 423 | assert(pas != NULL); |
| 424 | |
| 425 | /* |
| 426 | * Checking of PAS parameters has already been done in |
| 427 | * gpt_validate_pas_mappings so no need to check the same things again. |
| 428 | */ |
| 429 | |
| 430 | l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| 431 | |
| 432 | /* Create the GPT Block descriptor for this PAS region */ |
| 433 | gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs)); |
| 434 | |
| 435 | /* Start index of this region in L0 GPTs */ |
| 436 | idx = pas->base_pa >> GPT_L0_IDX_SHIFT; |
| 437 | |
| 438 | /* |
| 439 | * Determine number of L0 GPT descriptors covered by |
| 440 | * this PAS region and use the count to populate these |
| 441 | * descriptors. |
| 442 | */ |
| 443 | end_idx = (pas->base_pa + pas->size) >> GPT_L0_IDX_SHIFT; |
| 444 | |
| 445 | /* Generate the needed block descriptors. */ |
| 446 | for (; idx < end_idx; idx++) { |
| 447 | l0_gpt_arr[idx] = gpt_desc; |
| 448 | VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%llx (0x%llx)\n", |
| 449 | idx, &l0_gpt_arr[idx], |
| 450 | (gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) & |
| 451 | GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /* |
| 456 | * Helper function to determine if the end physical address lies in the same L0 |
| 457 | * region as the current physical address. If true, the end physical address is |
| 458 | * returned else, the start address of the next region is returned. |
| 459 | * |
| 460 | * Parameters |
| 461 | * cur_pa Physical address of the current PA in the loop through |
| 462 | * the range. |
| 463 | * end_pa Physical address of the end PA in a PAS range. |
| 464 | * |
| 465 | * Return |
| 466 | * The PA of the end of the current range. |
| 467 | */ |
| 468 | static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa) |
| 469 | { |
| 470 | uintptr_t cur_idx; |
| 471 | uintptr_t end_idx; |
| 472 | |
| 473 | cur_idx = cur_pa >> GPT_L0_IDX_SHIFT; |
| 474 | end_idx = end_pa >> GPT_L0_IDX_SHIFT; |
| 475 | |
| 476 | assert(cur_idx <= end_idx); |
| 477 | |
| 478 | if (cur_idx == end_idx) { |
| 479 | return end_pa; |
| 480 | } |
| 481 | |
| 482 | return (cur_idx + 1U) << GPT_L0_IDX_SHIFT; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Helper function to fill out GPI entries in a single L1 table. This function |
| 487 | * fills out entire L1 descriptors at a time to save memory writes. |
| 488 | * |
| 489 | * Parameters |
| 490 | * gpi GPI to set this range to |
| 491 | * l1 Pointer to L1 table to fill out |
| 492 | * first Address of first granule in range. |
| 493 | * last Address of last granule in range (inclusive). |
| 494 | */ |
| 495 | static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first, |
| 496 | uintptr_t last) |
| 497 | { |
| 498 | uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi); |
| 499 | uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF; |
| 500 | |
| 501 | assert(first <= last); |
| 502 | assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U); |
| 503 | assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U); |
| 504 | assert(GPT_L0_IDX(first) == GPT_L0_IDX(last)); |
| 505 | assert(l1 != NULL); |
| 506 | |
| 507 | /* Shift the mask if we're starting in the middle of an L1 entry. */ |
| 508 | gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2); |
| 509 | |
| 510 | /* Fill out each L1 entry for this region. */ |
| 511 | for (unsigned int i = GPT_L1_IDX(gpt_config.p, first); |
| 512 | i <= GPT_L1_IDX(gpt_config.p, last); i++) { |
| 513 | /* Account for stopping in the middle of an L1 entry. */ |
| 514 | if (i == GPT_L1_IDX(gpt_config.p, last)) { |
| 515 | gpi_mask &= (gpi_mask >> ((15 - |
| 516 | GPT_L1_GPI_IDX(gpt_config.p, last)) << 2)); |
| 517 | } |
| 518 | |
| 519 | /* Write GPI values. */ |
| 520 | assert((l1[i] & gpi_mask) == |
| 521 | (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask)); |
| 522 | l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field); |
| 523 | |
| 524 | /* Reset mask. */ |
| 525 | gpi_mask = 0xFFFFFFFFFFFFFFFF; |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | /* |
| 530 | * This function finds the next available unused L1 table and initializes all |
| 531 | * granules descriptor entries to GPI_ANY. This ensures that there are no chunks |
| 532 | * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the |
| 533 | * event that a PAS region stops midway through an L1 table, thus guaranteeing |
| 534 | * that all memory not explicitly assigned is GPI_ANY. This function does not |
| 535 | * check for overflow conditions, that should be done by the caller. |
| 536 | * |
| 537 | * Return |
| 538 | * Pointer to the next available L1 table. |
| 539 | */ |
| 540 | static uint64_t *gpt_get_new_l1_tbl(void) |
| 541 | { |
| 542 | /* Retrieve the next L1 table. */ |
| 543 | uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) + |
| 544 | (GPT_L1_TABLE_SIZE(gpt_config.p) * |
| 545 | gpt_next_l1_tbl_idx)); |
| 546 | |
| 547 | /* Increment L1 counter. */ |
| 548 | gpt_next_l1_tbl_idx++; |
| 549 | |
| 550 | /* Initialize all GPIs to GPT_GPI_ANY */ |
| 551 | for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) { |
| 552 | l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY); |
| 553 | } |
| 554 | |
| 555 | return l1; |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | * When L1 tables are needed, this function creates the necessary L0 table |
| 560 | * descriptors and fills out the L1 table entries according to the supplied |
| 561 | * PAS range. |
| 562 | * |
| 563 | * Parameters |
| 564 | * *pas Pointer to the structure defining the PAS region. |
| 565 | */ |
| 566 | static void gpt_generate_l0_tbl_desc(pas_region_t *pas) |
| 567 | { |
| 568 | uintptr_t end_pa; |
| 569 | uintptr_t cur_pa; |
| 570 | uintptr_t last_gran_pa; |
| 571 | uint64_t *l0_gpt_base; |
| 572 | uint64_t *l1_gpt_arr; |
| 573 | unsigned int l0_idx; |
| 574 | |
| 575 | assert(gpt_config.plat_gpt_l0_base != 0U); |
| 576 | assert(pas != NULL); |
| 577 | |
| 578 | /* |
| 579 | * Checking of PAS parameters has already been done in |
| 580 | * gpt_validate_pas_mappings so no need to check the same things again. |
| 581 | */ |
| 582 | |
| 583 | end_pa = pas->base_pa + pas->size; |
| 584 | l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| 585 | |
| 586 | /* We start working from the granule at base PA */ |
| 587 | cur_pa = pas->base_pa; |
| 588 | |
| 589 | /* Iterate over each L0 region in this memory range. */ |
| 590 | for (l0_idx = GPT_L0_IDX(pas->base_pa); |
| 591 | l0_idx <= GPT_L0_IDX(end_pa - 1U); |
| 592 | l0_idx++) { |
| 593 | |
| 594 | /* |
| 595 | * See if the L0 entry is already a table descriptor or if we |
| 596 | * need to create one. |
| 597 | */ |
| 598 | if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) { |
| 599 | /* Get the L1 array from the L0 entry. */ |
| 600 | l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]); |
| 601 | } else { |
| 602 | /* Get a new L1 table from the L1 memory space. */ |
| 603 | l1_gpt_arr = gpt_get_new_l1_tbl(); |
| 604 | |
| 605 | /* Fill out the L0 descriptor and flush it. */ |
| 606 | l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr); |
| 607 | } |
| 608 | |
| 609 | VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%llx)\n", |
| 610 | l0_idx, &l0_gpt_base[l0_idx], |
| 611 | (unsigned long long)(l1_gpt_arr), |
| 612 | l0_gpt_base[l0_idx]); |
| 613 | |
| 614 | /* |
| 615 | * Determine the PA of the last granule in this L0 descriptor. |
| 616 | */ |
| 617 | last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) - |
| 618 | GPT_PGS_ACTUAL_SIZE(gpt_config.p); |
| 619 | |
| 620 | /* |
| 621 | * Fill up L1 GPT entries between these two addresses. This |
| 622 | * function needs the addresses of the first granule and last |
| 623 | * granule in the range. |
| 624 | */ |
| 625 | gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr, |
| 626 | cur_pa, last_gran_pa); |
| 627 | |
| 628 | /* Advance cur_pa to first granule in next L0 region. */ |
| 629 | cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /* |
| 634 | * This function flushes a range of L0 descriptors used by a given PAS region |
| 635 | * array. There is a chance that some unmodified L0 descriptors would be flushed |
| 636 | * in the case that there are "holes" in an array of PAS regions but overall |
| 637 | * this should be faster than individually flushing each modified L0 descriptor |
| 638 | * as they are created. |
| 639 | * |
| 640 | * Parameters |
| 641 | * *pas Pointer to an array of PAS regions. |
| 642 | * pas_count Number of entries in the PAS array. |
| 643 | */ |
| 644 | static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count) |
| 645 | { |
| 646 | unsigned int idx; |
| 647 | unsigned int start_idx; |
| 648 | unsigned int end_idx; |
| 649 | uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| 650 | |
| 651 | assert(pas != NULL); |
| 652 | assert(pas_count > 0); |
| 653 | |
| 654 | /* Initial start and end values. */ |
| 655 | start_idx = GPT_L0_IDX(pas[0].base_pa); |
| 656 | end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1); |
| 657 | |
| 658 | /* Find lowest and highest L0 indices used in this PAS array. */ |
| 659 | for (idx = 1; idx < pas_count; idx++) { |
| 660 | if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) { |
| 661 | start_idx = GPT_L0_IDX(pas[idx].base_pa); |
| 662 | } |
| 663 | if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) { |
| 664 | end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1); |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * Flush all covered L0 descriptors, add 1 because we need to include |
| 670 | * the end index value. |
| 671 | */ |
| 672 | flush_dcache_range((uintptr_t)&l0[start_idx], |
| 673 | ((end_idx + 1) - start_idx) * sizeof(uint64_t)); |
| 674 | } |
| 675 | |
| 676 | /* |
| 677 | * Public API to enable granule protection checks once the tables have all been |
| 678 | * initialized. This function is called at first initialization and then again |
| 679 | * later during warm boots of CPU cores. |
| 680 | * |
| 681 | * Return |
| 682 | * Negative Linux error code in the event of a failure, 0 for success. |
| 683 | */ |
| 684 | int gpt_enable(void) |
| 685 | { |
| 686 | u_register_t gpccr_el3; |
| 687 | |
| 688 | /* |
| 689 | * Granule tables must be initialised before enabling |
| 690 | * granule protection. |
| 691 | */ |
| 692 | if (gpt_config.plat_gpt_l0_base == 0U) { |
| 693 | ERROR("[GPT] Tables have not been initialized!\n"); |
| 694 | return -EPERM; |
| 695 | } |
| 696 | |
| 697 | /* Invalidate any stale TLB entries */ |
| 698 | tlbipaallos(); |
| 699 | dsb(); |
| 700 | |
| 701 | /* Write the base address of the L0 tables into GPTBR */ |
| 702 | write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT) |
| 703 | >> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK); |
| 704 | |
| 705 | /* GPCCR_EL3.PPS */ |
| 706 | gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps); |
| 707 | |
| 708 | /* GPCCR_EL3.PGS */ |
| 709 | gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs); |
| 710 | |
| 711 | /* Set shareability attribute to Outher Shareable */ |
| 712 | gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_OS); |
| 713 | |
| 714 | /* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */ |
| 715 | gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA); |
| 716 | gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA); |
| 717 | |
| 718 | /* Enable GPT */ |
| 719 | gpccr_el3 |= GPCCR_GPC_BIT; |
| 720 | |
| 721 | /* TODO: Configure GPCCR_EL3_GPCP for Fault control. */ |
| 722 | write_gpccr_el3(gpccr_el3); |
| 723 | tlbipaallos(); |
| 724 | dsb(); |
| 725 | isb(); |
| 726 | |
| 727 | return 0; |
| 728 | } |
| 729 | |
| 730 | /* |
| 731 | * Public API to disable granule protection checks. |
| 732 | */ |
| 733 | void gpt_disable(void) |
| 734 | { |
| 735 | u_register_t gpccr_el3 = read_gpccr_el3(); |
| 736 | |
| 737 | write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT); |
| 738 | dsbsy(); |
| 739 | isb(); |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Public API that initializes the entire protected space to GPT_GPI_ANY using |
| 744 | * the L0 tables (block descriptors). Ideally, this function is invoked prior |
| 745 | * to DDR discovery and initialization. The MMU must be initialized before |
| 746 | * calling this function. |
| 747 | * |
| 748 | * Parameters |
| 749 | * pps PPS value to use for table generation |
| 750 | * l0_mem_base Base address of L0 tables in memory. |
| 751 | * l0_mem_size Total size of memory available for L0 tables. |
| 752 | * |
| 753 | * Return |
| 754 | * Negative Linux error code in the event of a failure, 0 for success. |
| 755 | */ |
| 756 | int gpt_init_l0_tables(unsigned int pps, uintptr_t l0_mem_base, |
| 757 | size_t l0_mem_size) |
| 758 | { |
| 759 | int ret; |
| 760 | uint64_t gpt_desc; |
| 761 | |
| 762 | /* Ensure that MMU and caches are enabled. */ |
| 763 | assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| 764 | |
| 765 | /* Validate other parameters. */ |
| 766 | ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size); |
| 767 | if (ret < 0) { |
| 768 | return ret; |
| 769 | } |
| 770 | |
| 771 | /* Create the descriptor to initialize L0 entries with. */ |
| 772 | gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY); |
| 773 | |
| 774 | /* Iterate through all L0 entries */ |
| 775 | for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) { |
| 776 | ((uint64_t *)l0_mem_base)[i] = gpt_desc; |
| 777 | } |
| 778 | |
| 779 | /* Flush updated L0 tables to memory. */ |
| 780 | flush_dcache_range((uintptr_t)l0_mem_base, |
| 781 | (size_t)GPT_L0_TABLE_SIZE(gpt_config.t)); |
| 782 | |
| 783 | /* Stash the L0 base address once initial setup is complete. */ |
| 784 | gpt_config.plat_gpt_l0_base = l0_mem_base; |
| 785 | |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * Public API that carves out PAS regions from the L0 tables and builds any L1 |
| 791 | * tables that are needed. This function ideally is run after DDR discovery and |
| 792 | * initialization. The L0 tables must have already been initialized to GPI_ANY |
| 793 | * when this function is called. |
| 794 | * |
| 795 | * This function can be called multiple times with different L1 memory ranges |
| 796 | * and PAS regions if it is desirable to place L1 tables in different locations |
| 797 | * in memory. (ex: you have multiple DDR banks and want to place the L1 tables |
| 798 | * in the DDR bank that they control) |
| 799 | * |
| 800 | * Parameters |
| 801 | * pgs PGS value to use for table generation. |
| 802 | * l1_mem_base Base address of memory used for L1 tables. |
| 803 | * l1_mem_size Total size of memory available for L1 tables. |
| 804 | * *pas_regions Pointer to PAS regions structure array. |
| 805 | * pas_count Total number of PAS regions. |
| 806 | * |
| 807 | * Return |
| 808 | * Negative Linux error code in the event of a failure, 0 for success. |
| 809 | */ |
| 810 | int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base, |
| 811 | size_t l1_mem_size, pas_region_t *pas_regions, |
| 812 | unsigned int pas_count) |
| 813 | { |
| 814 | int ret; |
| 815 | int l1_gpt_cnt; |
| 816 | |
| 817 | /* Ensure that MMU and caches are enabled. */ |
| 818 | assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| 819 | |
| 820 | /* PGS is needed for gpt_validate_pas_mappings so check it now. */ |
| 821 | if (pgs > GPT_PGS_MAX) { |
| 822 | ERROR("[GPT] Invalid PGS: 0x%x\n", pgs); |
| 823 | return -EINVAL; |
| 824 | } |
| 825 | gpt_config.pgs = pgs; |
| 826 | gpt_config.p = gpt_p_lookup[pgs]; |
| 827 | |
| 828 | /* Make sure L0 tables have been initialized. */ |
| 829 | if (gpt_config.plat_gpt_l0_base == 0U) { |
| 830 | ERROR("[GPT] L0 tables must be initialized first!\n"); |
| 831 | return -EPERM; |
| 832 | } |
| 833 | |
| 834 | /* Check if L1 GPTs are required and how many. */ |
| 835 | l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count); |
| 836 | if (l1_gpt_cnt < 0) { |
| 837 | return l1_gpt_cnt; |
| 838 | } |
| 839 | |
| 840 | VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt); |
| 841 | |
| 842 | /* If L1 tables are needed then validate the L1 parameters. */ |
| 843 | if (l1_gpt_cnt > 0) { |
| 844 | ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size, |
| 845 | l1_gpt_cnt); |
| 846 | if (ret < 0) { |
| 847 | return ret; |
| 848 | } |
| 849 | |
| 850 | /* Set up parameters for L1 table generation. */ |
| 851 | gpt_l1_tbl = l1_mem_base; |
| 852 | gpt_next_l1_tbl_idx = 0U; |
| 853 | } |
| 854 | |
| 855 | INFO("[GPT] Boot Configuration\n"); |
| 856 | INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t); |
| 857 | INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p); |
| 858 | INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL); |
| 859 | INFO(" PAS count: 0x%x\n", pas_count); |
| 860 | INFO(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base); |
| 861 | |
| 862 | /* Generate the tables in memory. */ |
| 863 | for (unsigned int idx = 0U; idx < pas_count; idx++) { |
| 864 | INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n", |
| 865 | idx, pas_regions[idx].base_pa, pas_regions[idx].size, |
| 866 | GPT_PAS_ATTR_GPI(pas_regions[idx].attrs), |
| 867 | GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs)); |
| 868 | |
| 869 | /* Check if a block or table descriptor is required */ |
| 870 | if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) == |
| 871 | GPT_PAS_ATTR_MAP_TYPE_BLOCK) { |
| 872 | gpt_generate_l0_blk_desc(&pas_regions[idx]); |
| 873 | |
| 874 | } else { |
| 875 | gpt_generate_l0_tbl_desc(&pas_regions[idx]); |
| 876 | } |
| 877 | } |
| 878 | |
| 879 | /* Flush modified L0 tables. */ |
| 880 | flush_l0_for_pas_array(pas_regions, pas_count); |
| 881 | |
| 882 | /* Flush L1 tables if needed. */ |
| 883 | if (l1_gpt_cnt > 0) { |
| 884 | flush_dcache_range(l1_mem_base, |
| 885 | GPT_L1_TABLE_SIZE(gpt_config.p) * |
| 886 | l1_gpt_cnt); |
| 887 | } |
| 888 | |
| 889 | /* Make sure that all the entries are written to the memory. */ |
| 890 | dsbishst(); |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Public API to initialize the runtime gpt_config structure based on the values |
| 897 | * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization |
| 898 | * typically happens in a bootloader stage prior to setting up the EL3 runtime |
| 899 | * environment for the granule transition service so this function detects the |
| 900 | * initialization from a previous stage. Granule protection checks must be |
| 901 | * enabled already or this function will return an error. |
| 902 | * |
| 903 | * Return |
| 904 | * Negative Linux error code in the event of a failure, 0 for success. |
| 905 | */ |
| 906 | int gpt_runtime_init(void) |
| 907 | { |
| 908 | u_register_t reg; |
| 909 | |
| 910 | /* Ensure that MMU and caches are enabled. */ |
| 911 | assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U); |
| 912 | |
| 913 | /* Ensure GPC are already enabled. */ |
| 914 | if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) { |
| 915 | ERROR("[GPT] Granule protection checks are not enabled!\n"); |
| 916 | return -EPERM; |
| 917 | } |
| 918 | |
| 919 | /* |
| 920 | * Read the L0 table address from GPTBR, we don't need the L1 base |
| 921 | * address since those are included in the L0 tables as needed. |
| 922 | */ |
| 923 | reg = read_gptbr_el3(); |
| 924 | gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) & |
| 925 | GPTBR_BADDR_MASK) << |
| 926 | GPTBR_BADDR_VAL_SHIFT; |
| 927 | |
| 928 | /* Read GPCCR to get PGS and PPS values. */ |
| 929 | reg = read_gpccr_el3(); |
| 930 | gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK; |
| 931 | gpt_config.t = gpt_t_lookup[gpt_config.pps]; |
| 932 | gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK; |
| 933 | gpt_config.p = gpt_p_lookup[gpt_config.pgs]; |
| 934 | |
| 935 | VERBOSE("[GPT] Runtime Configuration\n"); |
| 936 | VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t); |
| 937 | VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p); |
| 938 | VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL); |
| 939 | VERBOSE(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base); |
| 940 | |
| 941 | return 0; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | * The L1 descriptors are protected by a spinlock to ensure that multiple |
| 946 | * CPUs do not attempt to change the descriptors at once. In the future it |
| 947 | * would be better to have separate spinlocks for each L1 descriptor. |
| 948 | */ |
| 949 | static spinlock_t gpt_lock; |
| 950 | |
| 951 | /* |
| 952 | * Check if caller is allowed to transition a PAS. |
| 953 | * |
| 954 | * - Secure world caller can only request S <-> NS transitions on a |
| 955 | * granule that is already in either S or NS PAS. |
| 956 | * |
| 957 | * - Realm world caller can only request R <-> NS transitions on a |
| 958 | * granule that is already in either R or NS PAS. |
| 959 | * |
| 960 | * Parameters |
| 961 | * src_sec_state Security state of the caller. |
| 962 | * current_gpi Current GPI of the granule. |
| 963 | * target_gpi Requested new GPI for the granule. |
| 964 | * |
| 965 | * Return |
| 966 | * Negative Linux error code in the event of a failure, 0 for success. |
| 967 | */ |
| 968 | static int gpt_check_transition_gpi(unsigned int src_sec_state, |
| 969 | unsigned int current_gpi, |
| 970 | unsigned int target_gpi) |
| 971 | { |
| 972 | unsigned int check_gpi; |
| 973 | |
| 974 | /* Cannot transition a granule to the state it is already in. */ |
| 975 | if (current_gpi == target_gpi) { |
| 976 | return -EINVAL; |
| 977 | } |
| 978 | |
| 979 | /* Check security state, only secure and realm can transition. */ |
| 980 | if (src_sec_state == SMC_FROM_REALM) { |
| 981 | check_gpi = GPT_GPI_REALM; |
| 982 | } else if (src_sec_state == SMC_FROM_SECURE) { |
| 983 | check_gpi = GPT_GPI_SECURE; |
| 984 | } else { |
| 985 | return -EINVAL; |
| 986 | } |
| 987 | |
| 988 | /* Make sure security state is allowed to make the transition. */ |
| 989 | if ((target_gpi != check_gpi) && (target_gpi != GPT_GPI_NS)) { |
| 990 | return -EINVAL; |
| 991 | } |
| 992 | if ((current_gpi != check_gpi) && (current_gpi != GPT_GPI_NS)) { |
| 993 | return -EINVAL; |
| 994 | } |
| 995 | |
| 996 | return 0; |
| 997 | } |
| 998 | |
| 999 | /* |
| 1000 | * This function is the core of the granule transition service. When a granule |
| 1001 | * transition request occurs it is routed to this function where the request is |
| 1002 | * validated then fulfilled if possible. |
| 1003 | * |
| 1004 | * TODO: implement support for transitioning multiple granules at once. |
| 1005 | * |
| 1006 | * Parameters |
| 1007 | * base Base address of the region to transition, must be |
| 1008 | * aligned to granule size. |
| 1009 | * size Size of region to transition, must be aligned to granule |
| 1010 | * size. |
| 1011 | * src_sec_state Security state of the caller. |
| 1012 | * target_pas Target PAS of the specified memory region. |
| 1013 | * |
| 1014 | * Return |
| 1015 | * Negative Linux error code in the event of a failure, 0 for success. |
| 1016 | */ |
| 1017 | int gpt_transition_pas(uint64_t base, size_t size, unsigned int src_sec_state, |
| 1018 | unsigned int target_pas) |
| 1019 | { |
| 1020 | int idx; |
| 1021 | unsigned int gpi_shift; |
| 1022 | unsigned int gpi; |
| 1023 | uint64_t gpt_l0_desc; |
| 1024 | uint64_t gpt_l1_desc; |
| 1025 | uint64_t *gpt_l1_addr; |
| 1026 | uint64_t *gpt_l0_base; |
| 1027 | |
| 1028 | /* Ensure that the tables have been set up before taking requests. */ |
| 1029 | assert(gpt_config.plat_gpt_l0_base != 0U); |
| 1030 | |
| 1031 | /* Check for address range overflow. */ |
| 1032 | if ((ULONG_MAX - base) < size) { |
| 1033 | VERBOSE("[GPT] Transition request address overflow!\n"); |
| 1034 | VERBOSE(" Base=0x%llx\n", base); |
| 1035 | VERBOSE(" Size=0x%lx\n", size); |
| 1036 | return -EINVAL; |
| 1037 | } |
| 1038 | |
| 1039 | /* Make sure base and size are valid. */ |
| 1040 | if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0U) || |
| 1041 | ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0U) || |
| 1042 | (size == 0U) || |
| 1043 | ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) { |
| 1044 | VERBOSE("[GPT] Invalid granule transition address range!\n"); |
| 1045 | VERBOSE(" Base=0x%llx\n", base); |
| 1046 | VERBOSE(" Size=0x%lx\n", size); |
| 1047 | return -EINVAL; |
| 1048 | } |
| 1049 | |
| 1050 | /* See if this is a single granule transition or a range of granules. */ |
| 1051 | if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) { |
| 1052 | /* |
| 1053 | * TODO: Add support for transitioning multiple granules with a |
| 1054 | * single call to this function. |
| 1055 | */ |
| 1056 | panic(); |
| 1057 | } |
| 1058 | |
| 1059 | /* Get the L0 descriptor and make sure it is for a table. */ |
| 1060 | gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base; |
| 1061 | gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)]; |
| 1062 | if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) { |
| 1063 | VERBOSE("[GPT] Granule is not covered by a table descriptor!\n"); |
| 1064 | VERBOSE(" Base=0x%llx\n", base); |
| 1065 | return -EINVAL; |
| 1066 | } |
| 1067 | |
| 1068 | /* Get the table index and GPI shift from PA. */ |
| 1069 | gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc); |
| 1070 | idx = GPT_L1_IDX(gpt_config.p, base); |
| 1071 | gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2; |
| 1072 | |
| 1073 | /* |
| 1074 | * Access to L1 tables is controlled by a global lock to ensure |
| 1075 | * that no more than one CPU is allowed to make changes at any |
| 1076 | * given time. |
| 1077 | */ |
| 1078 | spin_lock(&gpt_lock); |
| 1079 | gpt_l1_desc = gpt_l1_addr[idx]; |
| 1080 | gpi = (gpt_l1_desc >> gpi_shift) & GPT_L1_GRAN_DESC_GPI_MASK; |
| 1081 | |
| 1082 | /* Make sure caller state and source/target PAS are allowed. */ |
| 1083 | if (gpt_check_transition_gpi(src_sec_state, gpi, target_pas) < 0) { |
| 1084 | spin_unlock(&gpt_lock); |
| 1085 | VERBOSE("[GPT] Invalid caller state and PAS combo!\n"); |
| 1086 | VERBOSE(" Caller: %u, Current GPI: %u, Target GPI: %u\n", |
| 1087 | src_sec_state, gpi, target_pas); |
| 1088 | return -EPERM; |
| 1089 | } |
| 1090 | |
| 1091 | /* Clear existing GPI encoding and transition granule. */ |
| 1092 | gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift); |
| 1093 | gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift); |
| 1094 | gpt_l1_addr[idx] = gpt_l1_desc; |
| 1095 | |
| 1096 | /* Ensure that the write operation happens before the unlock. */ |
| 1097 | dmbishst(); |
| 1098 | |
| 1099 | /* Unlock access to the L1 tables. */ |
| 1100 | spin_unlock(&gpt_lock); |
| 1101 | |
| 1102 | /* Cache maintenance. */ |
| 1103 | clean_dcache_range((uintptr_t)&gpt_l1_addr[idx], |
| 1104 | sizeof(uint64_t)); |
| 1105 | gpt_tlbi_by_pa(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p)); |
| 1106 | dsbishst(); |
| 1107 | |
| 1108 | VERBOSE("[GPT] Granule 0x%llx, GPI 0x%x->0x%x\n", base, gpi, |
| 1109 | target_pas); |
| 1110 | |
| 1111 | return 0; |
| 1112 | } |