blob: 8183337cdcf5ab7b7217be65dc17fbc85fa6da8b [file] [log] [blame]
Achin Gupta4f6ad662013-10-25 09:08:21 +01001/*
Dan Handleyab2d31e2013-12-02 19:25:12 +00002 * Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
Achin Gupta4f6ad662013-10-25 09:08:21 +01003 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <stdio.h>
32#include <string.h>
33#include <errno.h>
34#include <assert.h>
35#include <arch_helpers.h>
36#include <console.h>
37#include <platform.h>
38#include <semihosting.h>
39#include <bl_common.h>
40#include <bl1.h>
41
42/***********************************************************
43 * Memory for sharing data while changing exception levels.
44 * Only used by the primary core.
45 **********************************************************/
46unsigned char bl2_el_change_mem_ptr[EL_CHANGE_MEM_SIZE];
47
48unsigned long *get_el_change_mem_ptr(void)
49{
50 return (unsigned long *) bl2_el_change_mem_ptr;
51}
52
53unsigned long page_align(unsigned long value, unsigned dir)
54{
55 unsigned long page_size = 1 << FOUR_KB_SHIFT;
56
57 /* Round up the limit to the next page boundary */
58 if (value & (page_size - 1)) {
59 value &= ~(page_size - 1);
60 if (dir == UP)
61 value += page_size;
62 }
63
64 return value;
65}
66
67static inline unsigned int is_page_aligned (unsigned long addr) {
68 const unsigned long page_size = 1 << FOUR_KB_SHIFT;
69
70 return (addr & (page_size - 1)) == 0;
71}
72
73void change_security_state(unsigned int target_security_state)
74{
75 unsigned long scr = read_scr();
76
77 if (target_security_state == SECURE)
78 scr &= ~SCR_NS_BIT;
79 else if (target_security_state == NON_SECURE)
80 scr |= SCR_NS_BIT;
81 else
82 assert(0);
83
84 write_scr(scr);
85}
86
87int drop_el(aapcs64_params *args,
88 unsigned long spsr,
89 unsigned long entrypoint)
90{
91 write_spsr(spsr);
92 write_elr(entrypoint);
93 eret(args->arg0,
94 args->arg1,
95 args->arg2,
96 args->arg3,
97 args->arg4,
98 args->arg5,
99 args->arg6,
100 args->arg7);
101 return -EINVAL;
102}
103
104long raise_el(aapcs64_params *args)
105{
106 return smc(args->arg0,
107 args->arg1,
108 args->arg2,
109 args->arg3,
110 args->arg4,
111 args->arg5,
112 args->arg6,
113 args->arg7);
114}
115
116/*
117 * TODO: If we are not EL3 then currently we only issue an SMC.
118 * Add support for dropping into EL0 etc. Consider adding support
119 * for switching from S-EL1 to S-EL0/1 etc.
120 */
121long change_el(el_change_info *info)
122{
123 unsigned long current_el = read_current_el();
124
125 if (GET_EL(current_el) == MODE_EL3) {
126 /*
127 * We can go anywhere from EL3. So find where.
128 * TODO: Lots to do if we are going non-secure.
129 * Flip the NS bit. Restore NS registers etc.
130 * Just doing the bare minimal for now.
131 */
132
133 if (info->security_state == NON_SECURE)
134 change_security_state(info->security_state);
135
136 return drop_el(&info->args, info->spsr, info->entrypoint);
137 } else
138 return raise_el(&info->args);
139}
140
141/* TODO: add a parameter for DAIF. not needed right now */
142unsigned long make_spsr(unsigned long target_el,
143 unsigned long target_sp,
144 unsigned long target_rw)
145{
146 unsigned long spsr;
147
148 /* Disable all exceptions & setup the EL */
149 spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
150 << PSR_DAIF_SHIFT;
151 spsr |= PSR_MODE(target_rw, target_el, target_sp);
152
153 return spsr;
154}
155
156/*******************************************************************************
157 * The next two functions are the weak definitions. Platform specific
158 * code can override them if it wishes to.
159 ******************************************************************************/
160
161/*******************************************************************************
162 * Function that takes a memory layout into which BL31 has been either top or
163 * bottom loaded. Using this information, it populates bl31_mem_layout to tell
164 * BL31 how much memory it has access to and how much is available for use. It
165 * does not need the address where BL31 has been loaded as BL31 will reclaim
166 * all the memory used by BL2.
167 * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
168 * routine.
169 ******************************************************************************/
170void init_bl31_mem_layout(const meminfo *bl2_mem_layout,
171 meminfo *bl31_mem_layout,
172 unsigned int load_type)
173{
174 if (load_type == BOT_LOAD) {
175 /*
176 * ------------ ^
177 * | BL2 | |
178 * |----------| ^ | BL2
179 * | | | BL2 free | total
180 * | | | size | size
181 * |----------| BL2 free base v |
182 * | BL31 | |
183 * ------------ BL2 total base v
184 */
185 unsigned long bl31_size;
186
187 bl31_mem_layout->free_base = bl2_mem_layout->free_base;
188
189 bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
190 bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
191 } else {
192 /*
193 * ------------ ^
194 * | BL31 | |
195 * |----------| ^ | BL2
196 * | | | BL2 free | total
197 * | | | size | size
198 * |----------| BL2 free base v |
199 * | BL2 | |
200 * ------------ BL2 total base v
201 */
202 unsigned long bl2_size;
203
204 bl31_mem_layout->free_base = bl2_mem_layout->total_base;
205
206 bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
207 bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
208 }
209
210 bl31_mem_layout->total_base = bl2_mem_layout->total_base;
211 bl31_mem_layout->total_size = bl2_mem_layout->total_size;
212 bl31_mem_layout->attr = load_type;
213
214 flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo));
215 return;
216}
217
218/*******************************************************************************
219 * Function that takes a memory layout into which BL2 has been either top or
220 * bottom loaded along with the address where BL2 has been loaded in it. Using
221 * this information, it populates bl2_mem_layout to tell BL2 how much memory
222 * it has access to and how much is available for use.
223 ******************************************************************************/
224void init_bl2_mem_layout(meminfo *bl1_mem_layout,
225 meminfo *bl2_mem_layout,
226 unsigned int load_type,
227 unsigned long bl2_base)
228{
229 unsigned tmp;
230
231 if (load_type == BOT_LOAD) {
232 bl2_mem_layout->total_base = bl2_base;
233 tmp = bl1_mem_layout->free_base - bl2_base;
234 bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
235
236 } else {
237 bl2_mem_layout->total_base = bl1_mem_layout->free_base;
238 tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
239 bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
240 }
241
242 bl2_mem_layout->free_base = bl1_mem_layout->free_base;
243 bl2_mem_layout->free_size = bl1_mem_layout->free_size;
244 bl2_mem_layout->attr = load_type;
245
246 flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo));
247 return;
248}
249
250static void dump_load_info(unsigned long image_load_addr,
251 unsigned long image_size,
252 const meminfo *mem_layout)
253{
254#if DEBUG
255 printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
256 image_load_addr, image_size);
257 printf("Current memory layout:\r\n");
258 printf(" total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
259 mem_layout->total_base + mem_layout->total_size);
260 printf(" free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
261 mem_layout->free_base + mem_layout->free_size);
262#endif
263}
264
265/*******************************************************************************
266 * Generic function to load an image into the trusted RAM using semihosting
267 * given a name, extents of free memory & whether the image should be loaded at
268 * the bottom or top of the free memory. It updates the memory layout if the
269 * load is successful.
270 ******************************************************************************/
271unsigned long load_image(meminfo *mem_layout,
272 const char *image_name,
273 unsigned int load_type,
274 unsigned long fixed_addr)
275{
276 unsigned long temp_image_base, image_base;
277 long offset;
278 int image_flen;
279
280 /* Find the size of the image */
281 image_flen = semihosting_get_flen(image_name);
282 if (image_flen < 0) {
283 printf("ERROR: Cannot access '%s' file (%i).\r\n",
284 image_name, image_flen);
285 return 0;
286 }
287
288 /* See if we have enough space */
289 if (image_flen > mem_layout->free_size) {
290 printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
291 image_name);
292 dump_load_info(0, image_flen, mem_layout);
293 return 0;
294 }
295
296 switch (load_type) {
297
298 case TOP_LOAD:
299
300 /* Load the image in the top of free memory */
301 temp_image_base = mem_layout->free_base + mem_layout->free_size;
302 temp_image_base -= image_flen;
303
304 /* Page align base address and check whether the image still fits */
305 image_base = page_align(temp_image_base, DOWN);
306 assert(image_base <= temp_image_base);
307
308 if (image_base < mem_layout->free_base) {
309 printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
310 image_name);
311 dump_load_info(image_base, image_flen, mem_layout);
312 return 0;
313 }
314
315 /* Calculate the amount of extra memory used due to alignment */
316 offset = temp_image_base - image_base;
317
318 break;
319
320 case BOT_LOAD:
321
322 /* Load the BL2 image in the bottom of free memory */
323 temp_image_base = mem_layout->free_base;
324 image_base = page_align(temp_image_base, UP);
325 assert(image_base >= temp_image_base);
326
327 /* Page align base address and check whether the image still fits */
328 if (image_base + image_flen >
329 mem_layout->free_base + mem_layout->free_size) {
330 printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
331 image_name);
332 dump_load_info(image_base, image_flen, mem_layout);
333 return 0;
334 }
335
336 /* Calculate the amount of extra memory used due to alignment */
337 offset = image_base - temp_image_base;
338
339 break;
340
341 default:
342 assert(0);
343
344 }
345
346 /*
347 * Some images must be loaded at a fixed address, not a dynamic one.
348 *
349 * This has been implemented as a hack on top of the existing dynamic
350 * loading mechanism, for the time being. If the 'fixed_addr' function
351 * argument is different from zero, then it will force the load address.
352 * So we still have this principle of top/bottom loading but the code
353 * determining the load address is bypassed and the load address is
354 * forced to the fixed one.
355 *
356 * This can result in quite a lot of wasted space because we still use
357 * 1 sole meminfo structure to represent the extents of free memory,
358 * where we should use some sort of linked list.
359 *
360 * E.g. we want to load BL2 at address 0x04020000, the resulting memory
361 * layout should look as follows:
362 * ------------ 0x04040000
363 * | | <- Free space (1)
364 * |----------|
365 * | BL2 |
366 * |----------| 0x04020000
367 * | | <- Free space (2)
368 * |----------|
369 * | BL1 |
370 * ------------ 0x04000000
371 *
372 * But in the current hacky implementation, we'll need to specify
373 * whether BL2 is loaded at the top or bottom of the free memory.
374 * E.g. if BL2 is considered as top-loaded, the meminfo structure
375 * will give the following view of the memory, hiding the chunk of
376 * free memory above BL2:
377 * ------------ 0x04040000
378 * | |
379 * | |
380 * | BL2 |
381 * |----------| 0x04020000
382 * | | <- Free space (2)
383 * |----------|
384 * | BL1 |
385 * ------------ 0x04000000
386 */
387 if (fixed_addr != 0) {
388 /* Load the image at the given address. */
389 image_base = fixed_addr;
390
391 /* Check whether the image fits. */
392 if ((image_base < mem_layout->free_base) ||
393 (image_base + image_flen >
394 mem_layout->free_base + mem_layout->free_size)) {
395 printf("ERROR: Cannot load '%s' file: Not enough space.\r\n",
396 image_name);
397 dump_load_info(image_base, image_flen, mem_layout);
398 return 0;
399 }
400
401 /* Check whether the fixed load address is page-aligned. */
402 if (!is_page_aligned(image_base)) {
403 printf("ERROR: Cannot load '%s' file at unaligned address 0x%lx.\r\n",
404 image_name, fixed_addr);
405 return 0;
406 }
407
408 /*
409 * Calculate the amount of extra memory used due to fixed
410 * loading.
411 */
412 if (load_type == TOP_LOAD) {
413 unsigned long max_addr, space_used;
414 /*
415 * ------------ max_addr
416 * | /wasted/ | | offset
417 * |..........|..............................
418 * | image | | image_flen
419 * |----------| fixed_addr
420 * | |
421 * | |
422 * ------------ total_base
423 */
424 max_addr = mem_layout->total_base + mem_layout->total_size;
425 /*
426 * Compute the amount of memory used by the image.
427 * Corresponds to all space above the image load
428 * address.
429 */
430 space_used = max_addr - fixed_addr;
431 /*
432 * Calculate the amount of wasted memory within the
433 * amount of memory used by the image.
434 */
435 offset = space_used - image_flen;
436 } else /* BOT_LOAD */
437 /*
438 * ------------
439 * | |
440 * | |
441 * |----------|
442 * | image |
443 * |..........| fixed_addr
444 * | /wasted/ | | offset
445 * ------------ total_base
446 */
447 offset = fixed_addr - mem_layout->total_base;
448 }
449
450 /* We have enough space so load the image now */
451 image_flen = semihosting_download_file(image_name,
452 image_flen,
453 (void *) image_base);
454 if (image_flen <= 0) {
455 printf("ERROR: Failed to load '%s' file from semihosting (%i).\r\n",
456 image_name, image_flen);
457 return 0;
458 }
459
460 /*
461 * File has been successfully loaded. Update the free memory
462 * data structure & flush the contents of the TZRAM so that
463 * the next EL can see it.
464 */
465 /* Update the memory contents */
466 flush_dcache_range(image_base, image_flen);
467
468 mem_layout->free_size -= image_flen + offset;
469
470 /* Update the base of free memory since its moved up */
471 if (load_type == BOT_LOAD)
472 mem_layout->free_base += offset + image_flen;
473
474 return image_base;
475}
476
477/*******************************************************************************
478 * Run a loaded image from the given entry point. This could result in either
479 * dropping into a lower exception level or jumping to a higher exception level.
480 * The only way of doing the latter is through an SMC. In either case, setup the
481 * parameters for the EL change request correctly.
482 ******************************************************************************/
483int run_image(unsigned long entrypoint,
484 unsigned long spsr,
485 unsigned long target_security_state,
486 meminfo *mem_layout,
487 void *data)
488{
489 el_change_info run_image_info;
490 unsigned long current_el = read_current_el();
491
492 /* Tell next EL what we want done */
493 run_image_info.args.arg0 = RUN_IMAGE;
494 run_image_info.entrypoint = entrypoint;
495 run_image_info.spsr = spsr;
496 run_image_info.security_state = target_security_state;
497 run_image_info.next = 0;
498
499 /*
500 * If we are EL3 then only an eret can take us to the desired
501 * exception level. Else for the time being assume that we have
502 * to jump to a higher EL and issue an SMC. Contents of argY
503 * will go into the general purpose register xY e.g. arg0->x0
504 */
505 if (GET_EL(current_el) == MODE_EL3) {
506 run_image_info.args.arg1 = (unsigned long) mem_layout;
507 run_image_info.args.arg2 = (unsigned long) data;
508 } else {
509 run_image_info.args.arg1 = entrypoint;
510 run_image_info.args.arg2 = spsr;
511 run_image_info.args.arg3 = (unsigned long) mem_layout;
512 run_image_info.args.arg4 = (unsigned long) data;
513 }
514
515 return change_el(&run_image_info);
516}