Achin Gupta | 4f6ad66 | 2013-10-25 09:08:21 +0100 | [diff] [blame] | 1 | /* |
Dan Handley | ab2d31e | 2013-12-02 19:25:12 +0000 | [diff] [blame^] | 2 | * Copyright (c) 2013, ARM Limited and Contributors. All rights reserved. |
Achin Gupta | 4f6ad66 | 2013-10-25 09:08:21 +0100 | [diff] [blame] | 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * Redistributions of source code must retain the above copyright notice, this |
| 8 | * list of conditions and the following disclaimer. |
| 9 | * |
| 10 | * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | * this list of conditions and the following disclaimer in the documentation |
| 12 | * and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * Neither the name of ARM nor the names of its contributors may be used |
| 15 | * to endorse or promote products derived from this software without specific |
| 16 | * prior written permission. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 19 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 20 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 21 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 22 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 23 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 24 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 25 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 26 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 27 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 28 | * POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | #include <stdio.h> |
| 32 | #include <string.h> |
| 33 | #include <errno.h> |
| 34 | #include <assert.h> |
| 35 | #include <arch_helpers.h> |
| 36 | #include <console.h> |
| 37 | #include <platform.h> |
| 38 | #include <semihosting.h> |
| 39 | #include <bl_common.h> |
| 40 | #include <bl1.h> |
| 41 | |
| 42 | /*********************************************************** |
| 43 | * Memory for sharing data while changing exception levels. |
| 44 | * Only used by the primary core. |
| 45 | **********************************************************/ |
| 46 | unsigned char bl2_el_change_mem_ptr[EL_CHANGE_MEM_SIZE]; |
| 47 | |
| 48 | unsigned long *get_el_change_mem_ptr(void) |
| 49 | { |
| 50 | return (unsigned long *) bl2_el_change_mem_ptr; |
| 51 | } |
| 52 | |
| 53 | unsigned long page_align(unsigned long value, unsigned dir) |
| 54 | { |
| 55 | unsigned long page_size = 1 << FOUR_KB_SHIFT; |
| 56 | |
| 57 | /* Round up the limit to the next page boundary */ |
| 58 | if (value & (page_size - 1)) { |
| 59 | value &= ~(page_size - 1); |
| 60 | if (dir == UP) |
| 61 | value += page_size; |
| 62 | } |
| 63 | |
| 64 | return value; |
| 65 | } |
| 66 | |
| 67 | static inline unsigned int is_page_aligned (unsigned long addr) { |
| 68 | const unsigned long page_size = 1 << FOUR_KB_SHIFT; |
| 69 | |
| 70 | return (addr & (page_size - 1)) == 0; |
| 71 | } |
| 72 | |
| 73 | void change_security_state(unsigned int target_security_state) |
| 74 | { |
| 75 | unsigned long scr = read_scr(); |
| 76 | |
| 77 | if (target_security_state == SECURE) |
| 78 | scr &= ~SCR_NS_BIT; |
| 79 | else if (target_security_state == NON_SECURE) |
| 80 | scr |= SCR_NS_BIT; |
| 81 | else |
| 82 | assert(0); |
| 83 | |
| 84 | write_scr(scr); |
| 85 | } |
| 86 | |
| 87 | int drop_el(aapcs64_params *args, |
| 88 | unsigned long spsr, |
| 89 | unsigned long entrypoint) |
| 90 | { |
| 91 | write_spsr(spsr); |
| 92 | write_elr(entrypoint); |
| 93 | eret(args->arg0, |
| 94 | args->arg1, |
| 95 | args->arg2, |
| 96 | args->arg3, |
| 97 | args->arg4, |
| 98 | args->arg5, |
| 99 | args->arg6, |
| 100 | args->arg7); |
| 101 | return -EINVAL; |
| 102 | } |
| 103 | |
| 104 | long raise_el(aapcs64_params *args) |
| 105 | { |
| 106 | return smc(args->arg0, |
| 107 | args->arg1, |
| 108 | args->arg2, |
| 109 | args->arg3, |
| 110 | args->arg4, |
| 111 | args->arg5, |
| 112 | args->arg6, |
| 113 | args->arg7); |
| 114 | } |
| 115 | |
| 116 | /* |
| 117 | * TODO: If we are not EL3 then currently we only issue an SMC. |
| 118 | * Add support for dropping into EL0 etc. Consider adding support |
| 119 | * for switching from S-EL1 to S-EL0/1 etc. |
| 120 | */ |
| 121 | long change_el(el_change_info *info) |
| 122 | { |
| 123 | unsigned long current_el = read_current_el(); |
| 124 | |
| 125 | if (GET_EL(current_el) == MODE_EL3) { |
| 126 | /* |
| 127 | * We can go anywhere from EL3. So find where. |
| 128 | * TODO: Lots to do if we are going non-secure. |
| 129 | * Flip the NS bit. Restore NS registers etc. |
| 130 | * Just doing the bare minimal for now. |
| 131 | */ |
| 132 | |
| 133 | if (info->security_state == NON_SECURE) |
| 134 | change_security_state(info->security_state); |
| 135 | |
| 136 | return drop_el(&info->args, info->spsr, info->entrypoint); |
| 137 | } else |
| 138 | return raise_el(&info->args); |
| 139 | } |
| 140 | |
| 141 | /* TODO: add a parameter for DAIF. not needed right now */ |
| 142 | unsigned long make_spsr(unsigned long target_el, |
| 143 | unsigned long target_sp, |
| 144 | unsigned long target_rw) |
| 145 | { |
| 146 | unsigned long spsr; |
| 147 | |
| 148 | /* Disable all exceptions & setup the EL */ |
| 149 | spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT) |
| 150 | << PSR_DAIF_SHIFT; |
| 151 | spsr |= PSR_MODE(target_rw, target_el, target_sp); |
| 152 | |
| 153 | return spsr; |
| 154 | } |
| 155 | |
| 156 | /******************************************************************************* |
| 157 | * The next two functions are the weak definitions. Platform specific |
| 158 | * code can override them if it wishes to. |
| 159 | ******************************************************************************/ |
| 160 | |
| 161 | /******************************************************************************* |
| 162 | * Function that takes a memory layout into which BL31 has been either top or |
| 163 | * bottom loaded. Using this information, it populates bl31_mem_layout to tell |
| 164 | * BL31 how much memory it has access to and how much is available for use. It |
| 165 | * does not need the address where BL31 has been loaded as BL31 will reclaim |
| 166 | * all the memory used by BL2. |
| 167 | * TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single |
| 168 | * routine. |
| 169 | ******************************************************************************/ |
| 170 | void init_bl31_mem_layout(const meminfo *bl2_mem_layout, |
| 171 | meminfo *bl31_mem_layout, |
| 172 | unsigned int load_type) |
| 173 | { |
| 174 | if (load_type == BOT_LOAD) { |
| 175 | /* |
| 176 | * ------------ ^ |
| 177 | * | BL2 | | |
| 178 | * |----------| ^ | BL2 |
| 179 | * | | | BL2 free | total |
| 180 | * | | | size | size |
| 181 | * |----------| BL2 free base v | |
| 182 | * | BL31 | | |
| 183 | * ------------ BL2 total base v |
| 184 | */ |
| 185 | unsigned long bl31_size; |
| 186 | |
| 187 | bl31_mem_layout->free_base = bl2_mem_layout->free_base; |
| 188 | |
| 189 | bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base; |
| 190 | bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size; |
| 191 | } else { |
| 192 | /* |
| 193 | * ------------ ^ |
| 194 | * | BL31 | | |
| 195 | * |----------| ^ | BL2 |
| 196 | * | | | BL2 free | total |
| 197 | * | | | size | size |
| 198 | * |----------| BL2 free base v | |
| 199 | * | BL2 | | |
| 200 | * ------------ BL2 total base v |
| 201 | */ |
| 202 | unsigned long bl2_size; |
| 203 | |
| 204 | bl31_mem_layout->free_base = bl2_mem_layout->total_base; |
| 205 | |
| 206 | bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base; |
| 207 | bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size; |
| 208 | } |
| 209 | |
| 210 | bl31_mem_layout->total_base = bl2_mem_layout->total_base; |
| 211 | bl31_mem_layout->total_size = bl2_mem_layout->total_size; |
| 212 | bl31_mem_layout->attr = load_type; |
| 213 | |
| 214 | flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo)); |
| 215 | return; |
| 216 | } |
| 217 | |
| 218 | /******************************************************************************* |
| 219 | * Function that takes a memory layout into which BL2 has been either top or |
| 220 | * bottom loaded along with the address where BL2 has been loaded in it. Using |
| 221 | * this information, it populates bl2_mem_layout to tell BL2 how much memory |
| 222 | * it has access to and how much is available for use. |
| 223 | ******************************************************************************/ |
| 224 | void init_bl2_mem_layout(meminfo *bl1_mem_layout, |
| 225 | meminfo *bl2_mem_layout, |
| 226 | unsigned int load_type, |
| 227 | unsigned long bl2_base) |
| 228 | { |
| 229 | unsigned tmp; |
| 230 | |
| 231 | if (load_type == BOT_LOAD) { |
| 232 | bl2_mem_layout->total_base = bl2_base; |
| 233 | tmp = bl1_mem_layout->free_base - bl2_base; |
| 234 | bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp; |
| 235 | |
| 236 | } else { |
| 237 | bl2_mem_layout->total_base = bl1_mem_layout->free_base; |
| 238 | tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size; |
| 239 | bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base; |
| 240 | } |
| 241 | |
| 242 | bl2_mem_layout->free_base = bl1_mem_layout->free_base; |
| 243 | bl2_mem_layout->free_size = bl1_mem_layout->free_size; |
| 244 | bl2_mem_layout->attr = load_type; |
| 245 | |
| 246 | flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo)); |
| 247 | return; |
| 248 | } |
| 249 | |
| 250 | static void dump_load_info(unsigned long image_load_addr, |
| 251 | unsigned long image_size, |
| 252 | const meminfo *mem_layout) |
| 253 | { |
| 254 | #if DEBUG |
| 255 | printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n", |
| 256 | image_load_addr, image_size); |
| 257 | printf("Current memory layout:\r\n"); |
| 258 | printf(" total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base, |
| 259 | mem_layout->total_base + mem_layout->total_size); |
| 260 | printf(" free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base, |
| 261 | mem_layout->free_base + mem_layout->free_size); |
| 262 | #endif |
| 263 | } |
| 264 | |
| 265 | /******************************************************************************* |
| 266 | * Generic function to load an image into the trusted RAM using semihosting |
| 267 | * given a name, extents of free memory & whether the image should be loaded at |
| 268 | * the bottom or top of the free memory. It updates the memory layout if the |
| 269 | * load is successful. |
| 270 | ******************************************************************************/ |
| 271 | unsigned long load_image(meminfo *mem_layout, |
| 272 | const char *image_name, |
| 273 | unsigned int load_type, |
| 274 | unsigned long fixed_addr) |
| 275 | { |
| 276 | unsigned long temp_image_base, image_base; |
| 277 | long offset; |
| 278 | int image_flen; |
| 279 | |
| 280 | /* Find the size of the image */ |
| 281 | image_flen = semihosting_get_flen(image_name); |
| 282 | if (image_flen < 0) { |
| 283 | printf("ERROR: Cannot access '%s' file (%i).\r\n", |
| 284 | image_name, image_flen); |
| 285 | return 0; |
| 286 | } |
| 287 | |
| 288 | /* See if we have enough space */ |
| 289 | if (image_flen > mem_layout->free_size) { |
| 290 | printf("ERROR: Cannot load '%s' file: Not enough space.\r\n", |
| 291 | image_name); |
| 292 | dump_load_info(0, image_flen, mem_layout); |
| 293 | return 0; |
| 294 | } |
| 295 | |
| 296 | switch (load_type) { |
| 297 | |
| 298 | case TOP_LOAD: |
| 299 | |
| 300 | /* Load the image in the top of free memory */ |
| 301 | temp_image_base = mem_layout->free_base + mem_layout->free_size; |
| 302 | temp_image_base -= image_flen; |
| 303 | |
| 304 | /* Page align base address and check whether the image still fits */ |
| 305 | image_base = page_align(temp_image_base, DOWN); |
| 306 | assert(image_base <= temp_image_base); |
| 307 | |
| 308 | if (image_base < mem_layout->free_base) { |
| 309 | printf("ERROR: Cannot load '%s' file: Not enough space.\r\n", |
| 310 | image_name); |
| 311 | dump_load_info(image_base, image_flen, mem_layout); |
| 312 | return 0; |
| 313 | } |
| 314 | |
| 315 | /* Calculate the amount of extra memory used due to alignment */ |
| 316 | offset = temp_image_base - image_base; |
| 317 | |
| 318 | break; |
| 319 | |
| 320 | case BOT_LOAD: |
| 321 | |
| 322 | /* Load the BL2 image in the bottom of free memory */ |
| 323 | temp_image_base = mem_layout->free_base; |
| 324 | image_base = page_align(temp_image_base, UP); |
| 325 | assert(image_base >= temp_image_base); |
| 326 | |
| 327 | /* Page align base address and check whether the image still fits */ |
| 328 | if (image_base + image_flen > |
| 329 | mem_layout->free_base + mem_layout->free_size) { |
| 330 | printf("ERROR: Cannot load '%s' file: Not enough space.\r\n", |
| 331 | image_name); |
| 332 | dump_load_info(image_base, image_flen, mem_layout); |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | /* Calculate the amount of extra memory used due to alignment */ |
| 337 | offset = image_base - temp_image_base; |
| 338 | |
| 339 | break; |
| 340 | |
| 341 | default: |
| 342 | assert(0); |
| 343 | |
| 344 | } |
| 345 | |
| 346 | /* |
| 347 | * Some images must be loaded at a fixed address, not a dynamic one. |
| 348 | * |
| 349 | * This has been implemented as a hack on top of the existing dynamic |
| 350 | * loading mechanism, for the time being. If the 'fixed_addr' function |
| 351 | * argument is different from zero, then it will force the load address. |
| 352 | * So we still have this principle of top/bottom loading but the code |
| 353 | * determining the load address is bypassed and the load address is |
| 354 | * forced to the fixed one. |
| 355 | * |
| 356 | * This can result in quite a lot of wasted space because we still use |
| 357 | * 1 sole meminfo structure to represent the extents of free memory, |
| 358 | * where we should use some sort of linked list. |
| 359 | * |
| 360 | * E.g. we want to load BL2 at address 0x04020000, the resulting memory |
| 361 | * layout should look as follows: |
| 362 | * ------------ 0x04040000 |
| 363 | * | | <- Free space (1) |
| 364 | * |----------| |
| 365 | * | BL2 | |
| 366 | * |----------| 0x04020000 |
| 367 | * | | <- Free space (2) |
| 368 | * |----------| |
| 369 | * | BL1 | |
| 370 | * ------------ 0x04000000 |
| 371 | * |
| 372 | * But in the current hacky implementation, we'll need to specify |
| 373 | * whether BL2 is loaded at the top or bottom of the free memory. |
| 374 | * E.g. if BL2 is considered as top-loaded, the meminfo structure |
| 375 | * will give the following view of the memory, hiding the chunk of |
| 376 | * free memory above BL2: |
| 377 | * ------------ 0x04040000 |
| 378 | * | | |
| 379 | * | | |
| 380 | * | BL2 | |
| 381 | * |----------| 0x04020000 |
| 382 | * | | <- Free space (2) |
| 383 | * |----------| |
| 384 | * | BL1 | |
| 385 | * ------------ 0x04000000 |
| 386 | */ |
| 387 | if (fixed_addr != 0) { |
| 388 | /* Load the image at the given address. */ |
| 389 | image_base = fixed_addr; |
| 390 | |
| 391 | /* Check whether the image fits. */ |
| 392 | if ((image_base < mem_layout->free_base) || |
| 393 | (image_base + image_flen > |
| 394 | mem_layout->free_base + mem_layout->free_size)) { |
| 395 | printf("ERROR: Cannot load '%s' file: Not enough space.\r\n", |
| 396 | image_name); |
| 397 | dump_load_info(image_base, image_flen, mem_layout); |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | /* Check whether the fixed load address is page-aligned. */ |
| 402 | if (!is_page_aligned(image_base)) { |
| 403 | printf("ERROR: Cannot load '%s' file at unaligned address 0x%lx.\r\n", |
| 404 | image_name, fixed_addr); |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * Calculate the amount of extra memory used due to fixed |
| 410 | * loading. |
| 411 | */ |
| 412 | if (load_type == TOP_LOAD) { |
| 413 | unsigned long max_addr, space_used; |
| 414 | /* |
| 415 | * ------------ max_addr |
| 416 | * | /wasted/ | | offset |
| 417 | * |..........|.............................. |
| 418 | * | image | | image_flen |
| 419 | * |----------| fixed_addr |
| 420 | * | | |
| 421 | * | | |
| 422 | * ------------ total_base |
| 423 | */ |
| 424 | max_addr = mem_layout->total_base + mem_layout->total_size; |
| 425 | /* |
| 426 | * Compute the amount of memory used by the image. |
| 427 | * Corresponds to all space above the image load |
| 428 | * address. |
| 429 | */ |
| 430 | space_used = max_addr - fixed_addr; |
| 431 | /* |
| 432 | * Calculate the amount of wasted memory within the |
| 433 | * amount of memory used by the image. |
| 434 | */ |
| 435 | offset = space_used - image_flen; |
| 436 | } else /* BOT_LOAD */ |
| 437 | /* |
| 438 | * ------------ |
| 439 | * | | |
| 440 | * | | |
| 441 | * |----------| |
| 442 | * | image | |
| 443 | * |..........| fixed_addr |
| 444 | * | /wasted/ | | offset |
| 445 | * ------------ total_base |
| 446 | */ |
| 447 | offset = fixed_addr - mem_layout->total_base; |
| 448 | } |
| 449 | |
| 450 | /* We have enough space so load the image now */ |
| 451 | image_flen = semihosting_download_file(image_name, |
| 452 | image_flen, |
| 453 | (void *) image_base); |
| 454 | if (image_flen <= 0) { |
| 455 | printf("ERROR: Failed to load '%s' file from semihosting (%i).\r\n", |
| 456 | image_name, image_flen); |
| 457 | return 0; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * File has been successfully loaded. Update the free memory |
| 462 | * data structure & flush the contents of the TZRAM so that |
| 463 | * the next EL can see it. |
| 464 | */ |
| 465 | /* Update the memory contents */ |
| 466 | flush_dcache_range(image_base, image_flen); |
| 467 | |
| 468 | mem_layout->free_size -= image_flen + offset; |
| 469 | |
| 470 | /* Update the base of free memory since its moved up */ |
| 471 | if (load_type == BOT_LOAD) |
| 472 | mem_layout->free_base += offset + image_flen; |
| 473 | |
| 474 | return image_base; |
| 475 | } |
| 476 | |
| 477 | /******************************************************************************* |
| 478 | * Run a loaded image from the given entry point. This could result in either |
| 479 | * dropping into a lower exception level or jumping to a higher exception level. |
| 480 | * The only way of doing the latter is through an SMC. In either case, setup the |
| 481 | * parameters for the EL change request correctly. |
| 482 | ******************************************************************************/ |
| 483 | int run_image(unsigned long entrypoint, |
| 484 | unsigned long spsr, |
| 485 | unsigned long target_security_state, |
| 486 | meminfo *mem_layout, |
| 487 | void *data) |
| 488 | { |
| 489 | el_change_info run_image_info; |
| 490 | unsigned long current_el = read_current_el(); |
| 491 | |
| 492 | /* Tell next EL what we want done */ |
| 493 | run_image_info.args.arg0 = RUN_IMAGE; |
| 494 | run_image_info.entrypoint = entrypoint; |
| 495 | run_image_info.spsr = spsr; |
| 496 | run_image_info.security_state = target_security_state; |
| 497 | run_image_info.next = 0; |
| 498 | |
| 499 | /* |
| 500 | * If we are EL3 then only an eret can take us to the desired |
| 501 | * exception level. Else for the time being assume that we have |
| 502 | * to jump to a higher EL and issue an SMC. Contents of argY |
| 503 | * will go into the general purpose register xY e.g. arg0->x0 |
| 504 | */ |
| 505 | if (GET_EL(current_el) == MODE_EL3) { |
| 506 | run_image_info.args.arg1 = (unsigned long) mem_layout; |
| 507 | run_image_info.args.arg2 = (unsigned long) data; |
| 508 | } else { |
| 509 | run_image_info.args.arg1 = entrypoint; |
| 510 | run_image_info.args.arg2 = spsr; |
| 511 | run_image_info.args.arg3 = (unsigned long) mem_layout; |
| 512 | run_image_info.args.arg4 = (unsigned long) data; |
| 513 | } |
| 514 | |
| 515 | return change_el(&run_image_info); |
| 516 | } |