Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved. |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
Antonio Nino Diaz | e0f9063 | 2018-12-14 00:18:21 +0000 | [diff] [blame] | 7 | #include <assert.h> |
| 8 | #include <string.h> |
| 9 | |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 10 | #include <arch.h> |
| 11 | #include <arch_helpers.h> |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 12 | #include <context.h> |
Antonio Nino Diaz | e0f9063 | 2018-12-14 00:18:21 +0000 | [diff] [blame] | 13 | #include <common/debug.h> |
| 14 | #include <lib/el3_runtime/context_mgmt.h> |
| 15 | #include <lib/xlat_tables/xlat_tables_v2.h> |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 16 | #include <platform_def.h> |
Antonio Nino Diaz | e0f9063 | 2018-12-14 00:18:21 +0000 | [diff] [blame] | 17 | #include <plat/common/common_def.h> |
| 18 | #include <plat/common/platform.h> |
| 19 | #include <services/secure_partition.h> |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 20 | |
| 21 | #include "spm_private.h" |
| 22 | #include "spm_shim_private.h" |
| 23 | |
| 24 | /* Setup context of the Secure Partition */ |
| 25 | void spm_sp_setup(sp_context_t *sp_ctx) |
| 26 | { |
| 27 | cpu_context_t *ctx = &(sp_ctx->cpu_ctx); |
| 28 | |
| 29 | /* |
| 30 | * Initialize CPU context |
| 31 | * ---------------------- |
| 32 | */ |
| 33 | |
| 34 | entry_point_info_t ep_info = {0}; |
| 35 | |
| 36 | SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE); |
| 37 | |
| 38 | /* Setup entrypoint and SPSR */ |
| 39 | ep_info.pc = BL32_BASE; |
| 40 | ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS); |
| 41 | |
| 42 | /* |
| 43 | * X0: Virtual address of a buffer shared between EL3 and Secure EL0. |
| 44 | * The buffer will be mapped in the Secure EL1 translation regime |
| 45 | * with Normal IS WBWA attributes and RO data and Execute Never |
| 46 | * instruction access permissions. |
| 47 | * |
| 48 | * X1: Size of the buffer in bytes |
| 49 | * |
| 50 | * X2: cookie value (Implementation Defined) |
| 51 | * |
| 52 | * X3: cookie value (Implementation Defined) |
| 53 | * |
| 54 | * X4 to X7 = 0 |
| 55 | */ |
| 56 | ep_info.args.arg0 = PLAT_SPM_BUF_BASE; |
| 57 | ep_info.args.arg1 = PLAT_SPM_BUF_SIZE; |
| 58 | ep_info.args.arg2 = PLAT_SPM_COOKIE_0; |
| 59 | ep_info.args.arg3 = PLAT_SPM_COOKIE_1; |
| 60 | |
| 61 | cm_setup_context(ctx, &ep_info); |
| 62 | |
| 63 | /* |
| 64 | * SP_EL0: A non-zero value will indicate to the SP that the SPM has |
| 65 | * initialized the stack pointer for the current CPU through |
| 66 | * implementation defined means. The value will be 0 otherwise. |
| 67 | */ |
| 68 | write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0, |
| 69 | PLAT_SP_IMAGE_STACK_BASE + PLAT_SP_IMAGE_STACK_PCPU_SIZE); |
| 70 | |
| 71 | /* |
| 72 | * Setup translation tables |
| 73 | * ------------------------ |
| 74 | */ |
| 75 | |
| 76 | #if ENABLE_ASSERTIONS |
| 77 | |
| 78 | /* Get max granularity supported by the platform. */ |
| 79 | unsigned int max_granule = xlat_arch_get_max_supported_granule_size(); |
| 80 | |
| 81 | VERBOSE("Max translation granule size supported: %u KiB\n", |
| 82 | max_granule / 1024U); |
| 83 | |
| 84 | unsigned int max_granule_mask = max_granule - 1U; |
| 85 | |
| 86 | /* Base must be aligned to the max granularity */ |
Ard Biesheuvel | 8b034fc | 2018-12-29 19:43:21 +0100 | [diff] [blame] | 87 | assert((PLAT_SP_IMAGE_NS_BUF_BASE & max_granule_mask) == 0); |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 88 | |
| 89 | /* Size must be a multiple of the max granularity */ |
Ard Biesheuvel | 8b034fc | 2018-12-29 19:43:21 +0100 | [diff] [blame] | 90 | assert((PLAT_SP_IMAGE_NS_BUF_SIZE & max_granule_mask) == 0); |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 91 | |
| 92 | #endif /* ENABLE_ASSERTIONS */ |
| 93 | |
| 94 | /* This region contains the exception vectors used at S-EL1. */ |
| 95 | const mmap_region_t sel1_exception_vectors = |
| 96 | MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START, |
| 97 | SPM_SHIM_EXCEPTIONS_SIZE, |
| 98 | MT_CODE | MT_SECURE | MT_PRIVILEGED); |
| 99 | mmap_add_region_ctx(sp_ctx->xlat_ctx_handle, |
| 100 | &sel1_exception_vectors); |
| 101 | |
| 102 | mmap_add_ctx(sp_ctx->xlat_ctx_handle, |
| 103 | plat_get_secure_partition_mmap(NULL)); |
| 104 | |
| 105 | init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle); |
| 106 | |
| 107 | /* |
| 108 | * MMU-related registers |
| 109 | * --------------------- |
| 110 | */ |
| 111 | xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle; |
| 112 | |
| 113 | uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX]; |
| 114 | |
| 115 | setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table, |
| 116 | xlat_ctx->pa_max_address, xlat_ctx->va_max_address, |
| 117 | EL1_EL0_REGIME); |
| 118 | |
| 119 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_MAIR_EL1, |
| 120 | mmu_cfg_params[MMU_CFG_MAIR]); |
| 121 | |
| 122 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_TCR_EL1, |
| 123 | mmu_cfg_params[MMU_CFG_TCR]); |
| 124 | |
| 125 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1, |
| 126 | mmu_cfg_params[MMU_CFG_TTBR0]); |
| 127 | |
| 128 | /* Setup SCTLR_EL1 */ |
| 129 | u_register_t sctlr_el1 = read_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1); |
| 130 | |
| 131 | sctlr_el1 |= |
| 132 | /*SCTLR_EL1_RES1 |*/ |
| 133 | /* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */ |
| 134 | SCTLR_UCI_BIT | |
| 135 | /* RW regions at xlat regime EL1&0 are forced to be XN. */ |
| 136 | SCTLR_WXN_BIT | |
| 137 | /* Don't trap to EL1 execution of WFI or WFE at EL0. */ |
| 138 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT | |
| 139 | /* Don't trap to EL1 accesses to CTR_EL0 from EL0. */ |
| 140 | SCTLR_UCT_BIT | |
| 141 | /* Don't trap to EL1 execution of DZ ZVA at EL0. */ |
| 142 | SCTLR_DZE_BIT | |
| 143 | /* Enable SP Alignment check for EL0 */ |
| 144 | SCTLR_SA0_BIT | |
| 145 | /* Allow cacheable data and instr. accesses to normal memory. */ |
| 146 | SCTLR_C_BIT | SCTLR_I_BIT | |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 147 | /* Enable MMU. */ |
| 148 | SCTLR_M_BIT |
| 149 | ; |
| 150 | |
| 151 | sctlr_el1 &= ~( |
| 152 | /* Explicit data accesses at EL0 are little-endian. */ |
| 153 | SCTLR_E0E_BIT | |
Ard Biesheuvel | f9234da | 2019-01-03 12:03:49 +0100 | [diff] [blame] | 154 | /* |
| 155 | * Alignment fault checking disabled when at EL1 and EL0 as |
| 156 | * the UEFI spec permits unaligned accesses. |
| 157 | */ |
| 158 | SCTLR_A_BIT | |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 159 | /* Accesses to DAIF from EL0 are trapped to EL1. */ |
| 160 | SCTLR_UMA_BIT |
| 161 | ); |
| 162 | |
| 163 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1); |
| 164 | |
| 165 | /* |
| 166 | * Setup other system registers |
| 167 | * ---------------------------- |
| 168 | */ |
| 169 | |
| 170 | /* Shim Exception Vector Base Address */ |
| 171 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_VBAR_EL1, |
| 172 | SPM_SHIM_EXCEPTIONS_PTR); |
| 173 | |
Ard Biesheuvel | 923cd77 | 2019-01-01 11:01:41 +0100 | [diff] [blame] | 174 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_CNTKCTL_EL1, |
| 175 | EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT); |
| 176 | |
Antonio Nino Diaz | 8cd7ea3 | 2018-10-30 11:08:08 +0000 | [diff] [blame] | 177 | /* |
| 178 | * FPEN: Allow the Secure Partition to access FP/SIMD registers. |
| 179 | * Note that SPM will not do any saving/restoring of these registers on |
| 180 | * behalf of the SP. This falls under the SP's responsibility. |
| 181 | * TTA: Enable access to trace registers. |
| 182 | * ZEN (v8.2): Trap SVE instructions and access to SVE registers. |
| 183 | */ |
| 184 | write_ctx_reg(get_sysregs_ctx(ctx), CTX_CPACR_EL1, |
| 185 | CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE)); |
| 186 | |
| 187 | /* |
| 188 | * Prepare information in buffer shared between EL3 and S-EL0 |
| 189 | * ---------------------------------------------------------- |
| 190 | */ |
| 191 | |
| 192 | void *shared_buf_ptr = (void *) PLAT_SPM_BUF_BASE; |
| 193 | |
| 194 | /* Copy the boot information into the shared buffer with the SP. */ |
| 195 | assert((uintptr_t)shared_buf_ptr + sizeof(secure_partition_boot_info_t) |
| 196 | <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE)); |
| 197 | |
| 198 | assert(PLAT_SPM_BUF_BASE <= (UINTPTR_MAX - PLAT_SPM_BUF_SIZE + 1)); |
| 199 | |
| 200 | const secure_partition_boot_info_t *sp_boot_info = |
| 201 | plat_get_secure_partition_boot_info(NULL); |
| 202 | |
| 203 | assert(sp_boot_info != NULL); |
| 204 | |
| 205 | memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info, |
| 206 | sizeof(secure_partition_boot_info_t)); |
| 207 | |
| 208 | /* Pointer to the MP information from the platform port. */ |
| 209 | secure_partition_mp_info_t *sp_mp_info = |
| 210 | ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; |
| 211 | |
| 212 | assert(sp_mp_info != NULL); |
| 213 | |
| 214 | /* |
| 215 | * Point the shared buffer MP information pointer to where the info will |
| 216 | * be populated, just after the boot info. |
| 217 | */ |
| 218 | ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info = |
| 219 | (secure_partition_mp_info_t *) ((uintptr_t)shared_buf_ptr |
| 220 | + sizeof(secure_partition_boot_info_t)); |
| 221 | |
| 222 | /* |
| 223 | * Update the shared buffer pointer to where the MP information for the |
| 224 | * payload will be populated |
| 225 | */ |
| 226 | shared_buf_ptr = ((secure_partition_boot_info_t *) shared_buf_ptr)->mp_info; |
| 227 | |
| 228 | /* |
| 229 | * Copy the cpu information into the shared buffer area after the boot |
| 230 | * information. |
| 231 | */ |
| 232 | assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT); |
| 233 | |
| 234 | assert((uintptr_t)shared_buf_ptr |
| 235 | <= (PLAT_SPM_BUF_BASE + PLAT_SPM_BUF_SIZE - |
| 236 | (sp_boot_info->num_cpus * sizeof(*sp_mp_info)))); |
| 237 | |
| 238 | memcpy(shared_buf_ptr, (const void *) sp_mp_info, |
| 239 | sp_boot_info->num_cpus * sizeof(*sp_mp_info)); |
| 240 | |
| 241 | /* |
| 242 | * Calculate the linear indices of cores in boot information for the |
| 243 | * secure partition and flag the primary CPU |
| 244 | */ |
| 245 | sp_mp_info = (secure_partition_mp_info_t *) shared_buf_ptr; |
| 246 | |
| 247 | for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) { |
| 248 | u_register_t mpidr = sp_mp_info[index].mpidr; |
| 249 | |
| 250 | sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr); |
| 251 | if (plat_my_core_pos() == sp_mp_info[index].linear_id) |
| 252 | sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU; |
| 253 | } |
| 254 | } |