blob: e0a2fe93687a2b314db5427de8ea6d395eeac586 [file] [log] [blame]
Pankaj Guptaf24e1a32020-12-09 14:02:41 +05301/*
2 * Copyright 2018-2021 NXP
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 */
7
8#include <assert.h>
9
10#include <arch.h>
11#include <bl31/interrupt_mgmt.h>
12#include <caam.h>
13#include <cassert.h>
14#include <ccn.h>
15#include <common/debug.h>
16#include <dcfg.h>
17#ifdef I2C_INIT
18#include <i2c.h>
19#endif
20#include <lib/mmio.h>
21#include <lib/xlat_tables/xlat_tables_v2.h>
22#include <ls_interconnect.h>
23#ifdef POLICY_FUSE_PROVISION
24#include <nxp_gpio.h>
25#endif
26#if TRUSTED_BOARD_BOOT
27#include <nxp_smmu.h>
28#endif
29#include <nxp_timer.h>
30#include <plat_console.h>
31#include <plat_gic.h>
32#include <plat_tzc400.h>
33#include <pmu.h>
34#if defined(NXP_SFP_ENABLED)
35#include <sfp.h>
36#endif
37
38#include <errata.h>
39#include <ls_interrupt_mgmt.h>
40#include "plat_common.h"
41#ifdef NXP_NV_SW_MAINT_LAST_EXEC_DATA
42#include <plat_nv_storage.h>
43#endif
44#ifdef NXP_WARM_BOOT
45#include <plat_warm_rst.h>
46#endif
47#include "platform_def.h"
48#include "soc.h"
49
50static struct soc_type soc_list[] = {
51 SOC_ENTRY(LX2160A, LX2160A, 8, 2),
52 SOC_ENTRY(LX2080A, LX2080A, 8, 1),
53 SOC_ENTRY(LX2120A, LX2120A, 6, 2),
54};
55
56static dcfg_init_info_t dcfg_init_data = {
57 .g_nxp_dcfg_addr = NXP_DCFG_ADDR,
58 .nxp_sysclk_freq = NXP_SYSCLK_FREQ,
59 .nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
60 .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
61 };
62static const unsigned char master_to_6rn_id_map[] = {
63 PLAT_6CLUSTER_TO_CCN_ID_MAP
64};
65
66static const unsigned char master_to_rn_id_map[] = {
67 PLAT_CLUSTER_TO_CCN_ID_MAP
68};
69
70CASSERT(ARRAY_SIZE(master_to_rn_id_map) == NUMBER_OF_CLUSTERS,
71 assert_invalid_cluster_count_for_ccn_variant);
72
73static const ccn_desc_t plat_six_cluster_ccn_desc = {
74 .periphbase = NXP_CCN_ADDR,
75 .num_masters = ARRAY_SIZE(master_to_6rn_id_map),
76 .master_to_rn_id_map = master_to_6rn_id_map
77};
78
79static const ccn_desc_t plat_ccn_desc = {
80 .periphbase = NXP_CCN_ADDR,
81 .num_masters = ARRAY_SIZE(master_to_rn_id_map),
82 .master_to_rn_id_map = master_to_rn_id_map
83};
84
85/*******************************************************************************
86 * This function returns the number of clusters in the SoC
87 ******************************************************************************/
88static unsigned int get_num_cluster(void)
89{
90 const soc_info_t *soc_info = get_soc_info();
91 uint32_t num_clusters = NUMBER_OF_CLUSTERS;
92 unsigned int i;
93
94 for (i = 0U; i < ARRAY_SIZE(soc_list); i++) {
95 if (soc_list[i].personality == soc_info->personality) {
96 num_clusters = soc_list[i].num_clusters;
97 break;
98 }
99 }
100
101 VERBOSE("NUM of cluster = 0x%x\n", num_clusters);
102
103 return num_clusters;
104}
105
106
107/******************************************************************************
108 * Function returns the base counter frequency
109 * after reading the first entry at CNTFID0 (0x20 offset).
110 *
111 * Function is used by:
112 * 1. ARM common code for PSCI management.
113 * 2. ARM Generic Timer init.
114 *
115 *****************************************************************************/
116unsigned int plat_get_syscnt_freq2(void)
117{
118 unsigned int counter_base_frequency;
119 /*
120 * Below register specifies the base frequency of the system counter.
121 * As per NXP Board Manuals:
122 * The system counter always works with SYS_REF_CLK/4 frequency clock.
123 *
124 *
125 */
126 counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
127
128 return counter_base_frequency;
129}
130
131#ifdef IMAGE_BL2
132
133#ifdef POLICY_FUSE_PROVISION
134static gpio_init_info_t gpio_init_data = {
135 .gpio1_base_addr = NXP_GPIO1_ADDR,
136 .gpio2_base_addr = NXP_GPIO2_ADDR,
137 .gpio3_base_addr = NXP_GPIO3_ADDR,
138 .gpio4_base_addr = NXP_GPIO4_ADDR,
139};
140#endif
141
142static void soc_interconnect_config(void)
143{
144 unsigned long long val = 0x0U;
145
146 uint32_t num_clusters = get_num_cluster();
147
148 if (num_clusters == 6U) {
149 ccn_init(&plat_six_cluster_ccn_desc);
150 } else {
151 ccn_init(&plat_ccn_desc);
152 }
153
154 /*
155 * Enable Interconnect coherency for the primary CPU's cluster.
156 */
157 plat_ls_interconnect_enter_coherency(num_clusters);
158
159 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET);
160 val |= (1 << 17);
161 ccn_write_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET, val);
162
163 /* PCIe is Connected to RN-I 17 which is connected to HN-I 13. */
164 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET);
165 val |= (1 << 17);
166 ccn_write_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET, val);
167
168 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
169 val |= SERIALIZE_DEV_nGnRnE_WRITES;
170 ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
171
172 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
173 val &= ~(ENABLE_RESERVE_BIT53);
174 val |= SERIALIZE_DEV_nGnRnE_WRITES;
175 ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
176
177 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET);
178 val &= ~(HNI_POS_EN);
179 ccn_write_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET, val);
180
181 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET);
182 val &= ~(HNI_POS_EN);
183 ccn_write_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET, val);
184
185 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
186 val &= ~(POS_EARLY_WR_COMP_EN);
187 ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
188
189 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
190 val &= ~(POS_EARLY_WR_COMP_EN);
191 ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
192
193#if POLICY_PERF_WRIOP
194 uint16_t wriop_rni = 0U;
195
196 if (POLICY_PERF_WRIOP == 1) {
197 wriop_rni = 7U;
198 } else if (POLICY_PERF_WRIOP == 2) {
199 wriop_rni = 23U;
200 } else {
201 ERROR("Incorrect WRIOP selected.\n");
202 panic();
203 }
204
205 val = ccn_read_node_reg(NODE_TYPE_RNI, wriop_rni,
206 SA_AUX_CTRL_REG_OFFSET);
207 val |= ENABLE_WUO;
208 ccn_write_node_reg(NODE_TYPE_HNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET,
209 val);
210#else
211 val = ccn_read_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET);
212 val |= ENABLE_WUO;
213 ccn_write_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET, val);
214#endif
215}
216
217
218void soc_preload_setup(void)
219{
220 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
221#if defined(NXP_WARM_BOOT)
222 bool warm_reset = is_warm_boot();
223#endif
224 info_dram_regions->total_dram_size =
225#if defined(NXP_WARM_BOOT)
226 init_ddr(warm_reset);
227#else
228 init_ddr();
229#endif
230}
231
232/*******************************************************************************
233 * This function implements soc specific erratas
234 * This is called before DDR is initialized or MMU is enabled
235 ******************************************************************************/
236void soc_early_init(void)
237{
238 dcfg_init(&dcfg_init_data);
239#ifdef POLICY_FUSE_PROVISION
240 gpio_init(&gpio_init_data);
241 sec_init(NXP_CAAM_ADDR);
242#endif
243#if LOG_LEVEL > 0
244 /* Initialize the console to provide early debug support */
245 plat_console_init(NXP_CONSOLE_ADDR,
246 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
247#endif
248
249 enable_timer_base_to_cluster(NXP_PMU_ADDR);
250 soc_interconnect_config();
251
252 enum boot_device dev = get_boot_dev();
253 /* Mark the buffer for SD in OCRAM as non secure.
254 * The buffer is assumed to be at end of OCRAM for
255 * the logic below to calculate TZPC programming
256 */
257 if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
258 /* Calculate the region in OCRAM which is secure
259 * The buffer for SD needs to be marked non-secure
260 * to allow SD to do DMA operations on it
261 */
262 uint32_t secure_region = (NXP_OCRAM_SIZE
263 - NXP_SD_BLOCK_BUF_SIZE);
264 uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
265
266 mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
267
268 /* Add the entry for buffer in MMU Table */
269 mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
270 NXP_SD_BLOCK_BUF_SIZE,
271 MT_DEVICE | MT_RW | MT_NS);
272 }
273
274#ifdef ERRATA_SOC_A050426
275 erratum_a050426();
276#endif
277
278#if (TRUSTED_BOARD_BOOT) || defined(POLICY_FUSE_PROVISION)
279 sfp_init(NXP_SFP_ADDR);
280#endif
281
282#if TRUSTED_BOARD_BOOT
283 uint32_t mode;
284
285 /* For secure boot disable SMMU.
286 * Later when platform security policy comes in picture,
287 * this might get modified based on the policy
288 */
289 if (check_boot_mode_secure(&mode) == true) {
290 bypass_smmu(NXP_SMMU_ADDR);
291 }
292
293 /* For Mbedtls currently crypto is not supported via CAAM
294 * enable it when that support is there. In tbbr.mk
295 * the CAAM_INTEG is set as 0.
296 */
297
298#ifndef MBEDTLS_X509
299 /* Initialize the crypto accelerator if enabled */
300 if (is_sec_enabled() == false)
301 INFO("SEC is disabled.\n");
302 else
303 sec_init(NXP_CAAM_ADDR);
304#endif
305#endif
306
307 /*
308 * Initialize system level generic timer for Layerscape Socs.
309 */
310 delay_timer_init(NXP_TIMER_ADDR);
311 i2c_init(NXP_I2C_ADDR);
312}
313
314void soc_bl2_prepare_exit(void)
315{
316#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
317 set_sfp_wr_disable();
318#endif
319}
320
321/*****************************************************************************
322 * This function returns the boot device based on RCW_SRC
323 ****************************************************************************/
324enum boot_device get_boot_dev(void)
325{
326 enum boot_device src = BOOT_DEVICE_NONE;
327 uint32_t porsr1;
328 uint32_t rcw_src;
329
330 porsr1 = read_reg_porsr1();
331
332 rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
333
334 switch (rcw_src) {
335 case FLEXSPI_NOR:
336 src = BOOT_DEVICE_FLEXSPI_NOR;
337 INFO("RCW BOOT SRC is FLEXSPI NOR\n");
338 break;
339 case FLEXSPI_NAND2K_VAL:
340 case FLEXSPI_NAND4K_VAL:
341 INFO("RCW BOOT SRC is FLEXSPI NAND\n");
342 src = BOOT_DEVICE_FLEXSPI_NAND;
343 break;
344 case SDHC1_VAL:
345 src = BOOT_DEVICE_EMMC;
346 INFO("RCW BOOT SRC is SD\n");
347 break;
348 case SDHC2_VAL:
349 src = BOOT_DEVICE_SDHC2_EMMC;
350 INFO("RCW BOOT SRC is EMMC\n");
351 break;
352 default:
353 break;
354 }
355
356 return src;
357}
358
359
360void soc_mem_access(void)
361{
362 const devdisr5_info_t *devdisr5_info = get_devdisr5_info();
363 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
364 struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
365 int dram_idx, index = 0U;
366
367 for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
368 dram_idx++) {
369 if (info_dram_regions->region[dram_idx].size == 0) {
370 ERROR("DDR init failure, or");
371 ERROR("DRAM regions not populated correctly.\n");
372 break;
373 }
374
375 index = populate_tzc400_reg_list(tzc400_reg_list,
376 dram_idx, index,
377 info_dram_regions->region[dram_idx].addr,
378 info_dram_regions->region[dram_idx].size,
379 NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
380 }
381
382 if (devdisr5_info->ddrc1_present != 0) {
383 INFO("DDR Controller 1.\n");
384 mem_access_setup(NXP_TZC_ADDR, index,
385 tzc400_reg_list);
386 mem_access_setup(NXP_TZC3_ADDR, index,
387 tzc400_reg_list);
388 }
389 if (devdisr5_info->ddrc2_present != 0) {
390 INFO("DDR Controller 2.\n");
391 mem_access_setup(NXP_TZC2_ADDR, index,
392 tzc400_reg_list);
393 mem_access_setup(NXP_TZC4_ADDR, index,
394 tzc400_reg_list);
395 }
396}
397
398#else
399const unsigned char _power_domain_tree_desc[] = {1, 8, 2, 2, 2, 2, 2, 2, 2, 2};
400
401CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
402 assert_invalid_lx2160a_cluster_count);
403
404/******************************************************************************
405 * This function returns the SoC topology
406 ****************************************************************************/
407
408const unsigned char *plat_get_power_domain_tree_desc(void)
409{
410
411 return _power_domain_tree_desc;
412}
413
414/*******************************************************************************
415 * This function returns the core count within the cluster corresponding to
416 * `mpidr`.
417 ******************************************************************************/
418unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
419{
420 return CORES_PER_CLUSTER;
421}
422
423
424void soc_early_platform_setup2(void)
425{
426 dcfg_init(&dcfg_init_data);
427 /*
428 * Initialize system level generic timer for Socs
429 */
430 delay_timer_init(NXP_TIMER_ADDR);
431
432#if LOG_LEVEL > 0
433 /* Initialize the console to provide early debug support */
434 plat_console_init(NXP_CONSOLE_ADDR,
435 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
436#endif
437}
438
439void soc_platform_setup(void)
440{
441 /* Initialize the GIC driver, cpu and distributor interfaces */
442 static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
443 static interrupt_prop_t ls_interrupt_props[] = {
444 PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
445 PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
446 };
447
448 plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
449 PLATFORM_CORE_COUNT,
450 ls_interrupt_props,
451 ARRAY_SIZE(ls_interrupt_props),
452 target_mask_array,
453 plat_core_pos);
454
455 plat_ls_gic_init();
456 enable_init_timer();
457#ifdef LS_SYS_TIMCTL_BASE
458 ls_configure_sys_timer(LS_SYS_TIMCTL_BASE,
459 LS_CONFIG_CNTACR,
460 PLAT_LS_NSTIMER_FRAME_ID);
461#endif
462}
463
464/*******************************************************************************
465 * This function initializes the soc from the BL31 module
466 ******************************************************************************/
467void soc_init(void)
468{
469 /* low-level init of the soc */
470 soc_init_start();
471 soc_init_percpu();
472 _init_global_data();
473 _initialize_psci();
474
475 if (ccn_get_part0_id(NXP_CCN_ADDR) != CCN_508_PART0_ID) {
476 ERROR("Unrecognized CCN variant detected.");
477 ERROR("Only CCN-508 is supported\n");
478 panic();
479 }
480
481 uint32_t num_clusters = get_num_cluster();
482
483 if (num_clusters == 6U) {
484 ccn_init(&plat_six_cluster_ccn_desc);
485 } else {
486 ccn_init(&plat_ccn_desc);
487 }
488
489 plat_ls_interconnect_enter_coherency(num_clusters);
490
491 /* Set platform security policies */
492 _set_platform_security();
493
494 /* make sure any parallel init tasks are finished */
495 soc_init_finish();
496
497 /* Initialize the crypto accelerator if enabled */
498 if (is_sec_enabled() == false) {
499 INFO("SEC is disabled.\n");
500 } else {
501 sec_init(NXP_CAAM_ADDR);
502 }
503
504}
505
506#ifdef NXP_WDOG_RESTART
507static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
508 void *handle, void *cookie)
509{
510 uint8_t data = WDOG_RESET_FLAG;
511
512 wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
513 (uint8_t *)&data, sizeof(data));
514
515 mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
516
517 return 0;
518}
519#endif
520
521void soc_runtime_setup(void)
522{
523
524#ifdef NXP_WDOG_RESTART
525 request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
526#endif
527}
528#endif