blob: 6e8251d5306c88ce79ebe0e933213873b36361ba [file] [log] [blame]
Achin Gupta92712a52015-09-03 14:18:02 +01001/*
2 * Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <arch.h>
32#include <arch_helpers.h>
33#include <assert.h>
34#include <debug.h>
35#include <gic_common.h>
36#include "gicv3_private.h"
37
38/*
39 * Accessor to read the GIC Distributor IGRPMODR corresponding to the
40 * interrupt `id`, 32 interrupt IDs at a time.
41 */
42unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
43{
44 unsigned n = id >> IGRPMODR_SHIFT;
45 return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
46}
47
48/*
49 * Accessor to write the GIC Distributor IGRPMODR corresponding to the
50 * interrupt `id`, 32 interrupt IDs at a time.
51 */
52void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
53{
54 unsigned n = id >> IGRPMODR_SHIFT;
55 mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
56}
57
58/*
59 * Accessor to get the bit corresponding to interrupt ID
60 * in GIC Distributor IGRPMODR.
61 */
62unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
63{
64 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
65 unsigned int reg_val = gicd_read_igrpmodr(base, id);
66
67 return (reg_val >> bit_num) & 0x1;
68}
69
70/*
71 * Accessor to set the bit corresponding to interrupt ID
72 * in GIC Distributor IGRPMODR.
73 */
74void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
75{
76 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
77 unsigned int reg_val = gicd_read_igrpmodr(base, id);
78
79 gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
80}
81
82/*
83 * Accessor to clear the bit corresponding to interrupt ID
84 * in GIC Distributor IGRPMODR.
85 */
86void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
87{
88 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
89 unsigned int reg_val = gicd_read_igrpmodr(base, id);
90
91 gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
92}
93
94/*
95 * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
96 * interrupt `id`, 4 interrupts IDs at a time.
97 */
98unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
99{
100 unsigned n = id >> IPRIORITYR_SHIFT;
101 return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
102}
103
104/*
105 * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
106 * interrupt `id`, 4 interrupts IDs at a time.
107 */
108void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
109{
110 unsigned n = id >> IPRIORITYR_SHIFT;
111 mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
112}
113
114/*
115 * Accessor to get the bit corresponding to interrupt ID
116 * from GIC Re-distributor IGROUPR0.
117 */
118unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
119{
120 unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
121 unsigned int reg_val = gicr_read_igroupr0(base);
122
123 return (reg_val >> bit_num) & 0x1;
124}
125
126/*
127 * Accessor to set the bit corresponding to interrupt ID
128 * in GIC Re-distributor IGROUPR0.
129 */
130void gicr_set_igroupr0(uintptr_t base, unsigned int id)
131{
132 unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
133 unsigned int reg_val = gicr_read_igroupr0(base);
134
135 gicr_write_igroupr0(base, reg_val | (1 << bit_num));
136}
137
138/*
139 * Accessor to clear the bit corresponding to interrupt ID
140 * in GIC Re-distributor IGROUPR0.
141 */
142void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
143{
144 unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
145 unsigned int reg_val = gicr_read_igroupr0(base);
146
147 gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
148}
149
150/*
151 * Accessor to get the bit corresponding to interrupt ID
152 * from GIC Re-distributor IGRPMODR0.
153 */
154unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
155{
156 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
157 unsigned int reg_val = gicr_read_igrpmodr0(base);
158
159 return (reg_val >> bit_num) & 0x1;
160}
161
162/*
163 * Accessor to set the bit corresponding to interrupt ID
164 * in GIC Re-distributor IGRPMODR0.
165 */
166void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
167{
168 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
169 unsigned int reg_val = gicr_read_igrpmodr0(base);
170
171 gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
172}
173
174/*
175 * Accessor to clear the bit corresponding to interrupt ID
176 * in GIC Re-distributor IGRPMODR0.
177 */
178void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
179{
180 unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
181 unsigned int reg_val = gicr_read_igrpmodr0(base);
182
183 gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
184}
185
186/*
187 * Accessor to set the bit corresponding to interrupt ID
188 * in GIC Re-distributor ISENABLER0.
189 */
190void gicr_set_isenabler0(uintptr_t base, unsigned int id)
191{
192 unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
193
194 gicr_write_isenabler0(base, (1 << bit_num));
195}
196
197/******************************************************************************
198 * This function marks the core as awake in the re-distributor and
199 * ensures that the interface is active.
200 *****************************************************************************/
201void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
202{
203 /*
204 * The WAKER_PS_BIT should be changed to 0
205 * only when WAKER_CA_BIT is 1.
206 */
207 assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
208
209 /* Mark the connected core as awake */
210 gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
211
212 /* Wait till the WAKER_CA_BIT changes to 0 */
213 while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
214 ;
215}
216
217
218/******************************************************************************
219 * This function marks the core as asleep in the re-distributor and ensures
220 * that the interface is quiescent.
221 *****************************************************************************/
222void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
223{
224 /* Mark the connected core as asleep */
225 gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
226
227 /* Wait till the WAKER_CA_BIT changes to 1 */
228 while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
229 ;
230}
231
232
233/*******************************************************************************
234 * This function probes the Redistributor frames when the driver is initialised
235 * and saves their base addresses. These base addresses are used later to
236 * initialise each Redistributor interface.
237 ******************************************************************************/
238void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
239 unsigned int rdistif_num,
240 uintptr_t gicr_base,
241 mpidr_hash_fn mpidr_to_core_pos)
242{
243 unsigned long mpidr;
244 unsigned int proc_num;
245 unsigned long long typer_val;
246 uintptr_t rdistif_base = gicr_base;
247
248 assert(rdistif_base_addrs);
249
250 /*
251 * Iterate over the Redistributor frames. Store the base address of each
252 * frame in the platform provided array. Use the "Processor Number"
253 * field to index into the array if the platform has not provided a hash
254 * function to convert an MPIDR (obtained from the "Affinity Value"
255 * field into a linear index.
256 */
257 do {
258 typer_val = gicr_read_typer(rdistif_base);
259 if (mpidr_to_core_pos) {
260 mpidr = mpidr_from_gicr_typer(typer_val);
261 proc_num = mpidr_to_core_pos(mpidr);
262 } else {
263 proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
264 TYPER_PROC_NUM_MASK;
265 }
266 assert(proc_num < rdistif_num);
267 rdistif_base_addrs[proc_num] = rdistif_base;
268 rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
269 } while (!(typer_val & TYPER_LAST_BIT));
270}
271
272/*******************************************************************************
273 * Helper function to configure the default attributes of SPIs.
274 ******************************************************************************/
275void gicv3_spis_configure_defaults(uintptr_t gicd_base)
276{
277 unsigned int index, num_ints;
278
279 num_ints = gicd_read_typer(gicd_base);
280 num_ints &= TYPER_IT_LINES_NO_MASK;
281 num_ints = (num_ints + 1) << 5;
282
283 /*
284 * Treat all SPIs as G1NS by default. The number of interrupts is
285 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
286 */
287 for (index = MIN_SPI_ID; index < num_ints; index += 32)
288 gicd_write_igroupr(gicd_base, index, ~0U);
289
290 /* Setup the default SPI priorities doing four at a time */
291 for (index = MIN_SPI_ID; index < num_ints; index += 4)
292 gicd_write_ipriorityr(gicd_base,
293 index,
294 GICD_IPRIORITYR_DEF_VAL);
295
296 /*
297 * Treat all SPIs as level triggered by default, write 16 at
298 * a time
299 */
300 for (index = MIN_SPI_ID; index < num_ints; index += 16)
301 gicd_write_icfgr(gicd_base, index, 0);
302}
303
304/*******************************************************************************
305 * Helper function to configure secure G0 and G1S SPIs.
306 ******************************************************************************/
307void gicv3_secure_spis_configure(uintptr_t gicd_base,
308 unsigned int num_ints,
309 const unsigned int *sec_intr_list,
310 unsigned int int_grp)
311{
312 unsigned int index, irq_num;
313 uint64_t gic_affinity_val;
314
315 assert((int_grp == INT_TYPE_G1S) || (int_grp == INT_TYPE_G0));
316 /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
317 assert(num_ints ? (uintptr_t)sec_intr_list : 1);
318
319 for (index = 0; index < num_ints; index++) {
320 irq_num = sec_intr_list[index];
321 if (irq_num >= MIN_SPI_ID) {
322
323 /* Configure this interrupt as a secure interrupt */
324 gicd_clr_igroupr(gicd_base, irq_num);
325
326 /* Configure this interrupt as G0 or a G1S interrupt */
327 if (int_grp == INT_TYPE_G1S)
328 gicd_set_igrpmodr(gicd_base, irq_num);
329 else
330 gicd_clr_igrpmodr(gicd_base, irq_num);
331
332 /* Set the priority of this interrupt */
333 gicd_write_ipriorityr(gicd_base,
334 irq_num,
335 GIC_HIGHEST_SEC_PRIORITY);
336
337 /* Target SPIs to the primary CPU */
338 gic_affinity_val =
339 gicd_irouter_val_from_mpidr(read_mpidr(), 0);
340 gicd_write_irouter(gicd_base,
341 irq_num,
342 gic_affinity_val);
343
344 /* Enable this interrupt */
345 gicd_set_isenabler(gicd_base, irq_num);
346 }
347 }
348
349}
350
351/*******************************************************************************
352 * Helper function to configure the default attributes of SPIs.
353 ******************************************************************************/
354void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
355{
356 unsigned int index;
357
358 /*
359 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
360 * more scalable approach as it avoids clearing the enable bits in the
361 * GICD_CTLR
362 */
363 gicr_write_icenabler0(gicr_base, ~0);
364 gicr_wait_for_pending_write(gicr_base);
365
366 /* Treat all SGIs/PPIs as G1NS by default. */
367 gicr_write_igroupr0(gicr_base, ~0U);
368
369 /* Setup the default PPI/SGI priorities doing four at a time */
370 for (index = 0; index < MIN_SPI_ID; index += 4)
371 gicr_write_ipriorityr(gicr_base,
372 index,
373 GICD_IPRIORITYR_DEF_VAL);
374
375 /* Configure all PPIs as level triggered by default */
376 gicr_write_icfgr1(gicr_base, 0);
377}
378
379/*******************************************************************************
380 * Helper function to configure secure G0 and G1S SPIs.
381 ******************************************************************************/
382void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
383 unsigned int num_ints,
384 const unsigned int *sec_intr_list,
385 unsigned int int_grp)
386{
387 unsigned int index, irq_num;
388
389 assert((int_grp == INT_TYPE_G1S) || (int_grp == INT_TYPE_G0));
390 /* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
391 assert(num_ints ? (uintptr_t)sec_intr_list : 1);
392
393 for (index = 0; index < num_ints; index++) {
394 irq_num = sec_intr_list[index];
395 if (irq_num < MIN_SPI_ID) {
396
397 /* Configure this interrupt as a secure interrupt */
398 gicr_clr_igroupr0(gicr_base, irq_num);
399
400 /* Configure this interrupt as G0 or a G1S interrupt */
401 if (int_grp == INT_TYPE_G1S)
402 gicr_set_igrpmodr0(gicr_base, irq_num);
403 else
404 gicr_clr_igrpmodr0(gicr_base, irq_num);
405
406 /* Set the priority of this interrupt */
407 gicr_write_ipriorityr(gicr_base,
408 irq_num,
409 GIC_HIGHEST_SEC_PRIORITY);
410
411 /* Enable this interrupt */
412 gicr_set_isenabler0(gicr_base, irq_num);
413 }
414 }
415}