Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 1 | /* |
Manish Pandey | 067087f | 2023-12-08 20:13:29 +0000 | [diff] [blame] | 2 | * Copyright (c) 2022-2024, Arm Limited. All rights reserved. |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 3 | * Copyright (c) 2023, NVIDIA Corporation. All rights reserved. |
Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 4 | * |
| 5 | * SPDX-License-Identifier: BSD-3-Clause |
| 6 | * |
| 7 | * Dispatch synchronous system register traps from lower ELs. |
| 8 | */ |
| 9 | |
Manish Pandey | 067087f | 2023-12-08 20:13:29 +0000 | [diff] [blame] | 10 | #include <arch_features.h> |
| 11 | #include <arch_helpers.h> |
Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 12 | #include <bl31/sync_handle.h> |
| 13 | #include <context.h> |
Manish Pandey | 067087f | 2023-12-08 20:13:29 +0000 | [diff] [blame] | 14 | #include <lib/el3_runtime/context_mgmt.h> |
Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 15 | |
| 16 | int handle_sysreg_trap(uint64_t esr_el3, cpu_context_t *ctx) |
| 17 | { |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 18 | uint64_t __unused opcode = esr_el3 & ISS_SYSREG_OPCODE_MASK; |
| 19 | |
Andre Przywara | bdc76f1 | 2022-11-21 17:07:25 +0000 | [diff] [blame] | 20 | #if ENABLE_FEAT_RNG_TRAP |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 21 | if ((opcode == ISS_SYSREG_OPCODE_RNDR) || (opcode == ISS_SYSREG_OPCODE_RNDRRS)) { |
Andre Przywara | bdc76f1 | 2022-11-21 17:07:25 +0000 | [diff] [blame] | 22 | return plat_handle_rng_trap(esr_el3, ctx); |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 23 | } |
Andre Przywara | bdc76f1 | 2022-11-21 17:07:25 +0000 | [diff] [blame] | 24 | #endif |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 25 | |
| 26 | #if IMPDEF_SYSREG_TRAP |
| 27 | if ((opcode & ISS_SYSREG_OPCODE_IMPDEF) == ISS_SYSREG_OPCODE_IMPDEF) { |
| 28 | return plat_handle_impdef_trap(esr_el3, ctx); |
Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 29 | } |
Varun Wadekar | 0a46eb1 | 2023-04-13 21:06:18 +0100 | [diff] [blame] | 30 | #endif |
| 31 | |
| 32 | return TRAP_RET_UNHANDLED; |
Andre Przywara | fa914d8 | 2022-11-21 17:04:10 +0000 | [diff] [blame] | 33 | } |
Manish Pandey | 067087f | 2023-12-08 20:13:29 +0000 | [diff] [blame] | 34 | |
| 35 | static bool is_tge_enabled(void) |
| 36 | { |
| 37 | u_register_t hcr_el2 = read_hcr_el2(); |
| 38 | |
| 39 | return ((read_feat_vhe_id_field() != 0U) && ((hcr_el2 & HCR_TGE_BIT) != 0U)); |
| 40 | } |
| 41 | |
| 42 | /* |
| 43 | * This function is to ensure that undef injection does not happen into |
| 44 | * non-existent S-EL2. This could happen when trap happens from S-EL{1,0} |
| 45 | * and non-secure world is running with TGE bit set, considering EL3 does |
| 46 | * not save/restore EL2 registers if only one world has EL2 enabled. |
| 47 | * So reading hcr_el2.TGE would give NS world value. |
| 48 | */ |
| 49 | static bool is_secure_trap_without_sel2(u_register_t scr) |
| 50 | { |
| 51 | return ((scr & (SCR_NS_BIT | SCR_EEL2_BIT)) == 0); |
| 52 | } |
| 53 | |
| 54 | static unsigned int target_el(unsigned int from_el, u_register_t scr) |
| 55 | { |
| 56 | if (from_el > MODE_EL1) { |
| 57 | return from_el; |
| 58 | } else if (is_tge_enabled() && !is_secure_trap_without_sel2(scr)) { |
| 59 | return MODE_EL2; |
| 60 | } else { |
| 61 | return MODE_EL1; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | static u_register_t get_elr_el3(u_register_t spsr_el3, u_register_t vbar, unsigned int target_el) |
| 66 | { |
| 67 | unsigned int outgoing_el = GET_EL(spsr_el3); |
| 68 | u_register_t elr_el3 = 0; |
| 69 | |
| 70 | if (outgoing_el == target_el) { |
| 71 | /* |
| 72 | * Target EL is either EL1 or EL2, lsb can tell us the SPsel |
| 73 | * Thread mode : 0 |
| 74 | * Handler mode : 1 |
| 75 | */ |
| 76 | if ((spsr_el3 & (MODE_SP_MASK << MODE_SP_SHIFT)) == MODE_SP_ELX) { |
| 77 | elr_el3 = vbar + CURRENT_EL_SPX; |
| 78 | } else { |
| 79 | elr_el3 = vbar + CURRENT_EL_SP0; |
| 80 | } |
| 81 | } else { |
| 82 | /* Vector address for Lower EL using Aarch64 */ |
| 83 | elr_el3 = vbar + LOWER_EL_AARCH64; |
| 84 | } |
| 85 | |
| 86 | return elr_el3; |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | * Explicitly create all bits of SPSR to get PSTATE at exception return. |
| 91 | * |
| 92 | * The code is based on "Aarch64.exceptions.takeexception" described in |
| 93 | * DDI0602 revision 2023-06. |
| 94 | * "https://developer.arm.com/documentation/ddi0602/2023-06/Shared-Pseudocode/ |
| 95 | * aarch64-exceptions-takeexception" |
| 96 | * |
| 97 | * NOTE: This piece of code must be reviewed every release to ensure that |
| 98 | * we keep up with new ARCH features which introduces a new SPSR bit. |
| 99 | */ |
| 100 | static u_register_t create_spsr(u_register_t old_spsr, unsigned int target_el) |
| 101 | { |
| 102 | u_register_t new_spsr = 0; |
| 103 | u_register_t sctlr; |
| 104 | |
| 105 | /* Set M bits for target EL in AArch64 mode, also get sctlr */ |
| 106 | if (target_el == MODE_EL2) { |
| 107 | sctlr = read_sctlr_el2(); |
| 108 | new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL2H; |
| 109 | } else { |
| 110 | sctlr = read_sctlr_el1(); |
| 111 | new_spsr |= (SPSR_M_AARCH64 << SPSR_M_SHIFT) | SPSR_M_EL1H; |
| 112 | } |
| 113 | |
| 114 | /* Mask all exceptions, update DAIF bits */ |
| 115 | new_spsr |= SPSR_DAIF_MASK << SPSR_DAIF_SHIFT; |
| 116 | |
| 117 | /* If FEAT_BTI is present, clear BTYPE bits */ |
| 118 | new_spsr |= old_spsr & (SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64); |
| 119 | if (is_armv8_5_bti_present()) { |
| 120 | new_spsr &= ~(SPSR_BTYPE_MASK_AARCH64 << SPSR_BTYPE_SHIFT_AARCH64); |
| 121 | } |
| 122 | |
| 123 | /* If SSBS is implemented, take the value from SCTLR.DSSBS */ |
| 124 | new_spsr |= old_spsr & SPSR_SSBS_BIT_AARCH64; |
| 125 | if (is_feat_ssbs_present()) { |
| 126 | if ((sctlr & SCTLR_DSSBS_BIT) != 0U) { |
| 127 | new_spsr |= SPSR_SSBS_BIT_AARCH64; |
| 128 | } else { |
| 129 | new_spsr &= ~SPSR_SSBS_BIT_AARCH64; |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | /* If FEAT_NMI is implemented, ALLINT = !(SCTLR.SPINTMASK) */ |
| 134 | new_spsr |= old_spsr & SPSR_ALLINT_BIT_AARCH64; |
| 135 | if (is_feat_nmi_present()) { |
| 136 | if ((sctlr & SCTLR_SPINTMASK_BIT) != 0U) { |
| 137 | new_spsr &= ~SPSR_ALLINT_BIT_AARCH64; |
| 138 | } else { |
| 139 | new_spsr |= SPSR_ALLINT_BIT_AARCH64; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /* Clear PSTATE.IL bit explicitly */ |
| 144 | new_spsr &= ~SPSR_IL_BIT; |
| 145 | |
| 146 | /* Clear PSTATE.SS bit explicitly */ |
| 147 | new_spsr &= ~SPSR_SS_BIT; |
| 148 | |
| 149 | /* Update PSTATE.PAN bit */ |
| 150 | new_spsr |= old_spsr & SPSR_PAN_BIT; |
| 151 | if (is_feat_pan_present() && |
| 152 | ((target_el == MODE_EL1) || ((target_el == MODE_EL2) && is_tge_enabled())) && |
| 153 | ((sctlr & SCTLR_SPAN_BIT) == 0U)) { |
| 154 | new_spsr |= SPSR_PAN_BIT; |
| 155 | } |
| 156 | |
| 157 | /* Clear UAO bit if FEAT_UAO is present */ |
| 158 | new_spsr |= old_spsr & SPSR_UAO_BIT_AARCH64; |
| 159 | if (is_feat_uao_present()) { |
| 160 | new_spsr &= ~SPSR_UAO_BIT_AARCH64; |
| 161 | } |
| 162 | |
| 163 | /* DIT bits are unchanged */ |
| 164 | new_spsr |= old_spsr & SPSR_DIT_BIT; |
| 165 | |
| 166 | /* If FEAT_MTE2 is implemented mask tag faults by setting TCO bit */ |
| 167 | new_spsr |= old_spsr & SPSR_TCO_BIT_AARCH64; |
| 168 | if (read_feat_mte_id_field() >= MTE_IMPLEMENTED_ELX) { |
| 169 | new_spsr |= SPSR_TCO_BIT_AARCH64; |
| 170 | } |
| 171 | |
| 172 | /* NZCV bits are unchanged */ |
| 173 | new_spsr |= old_spsr & SPSR_NZCV; |
| 174 | |
| 175 | /* If FEAT_EBEP is present set PM bit */ |
| 176 | new_spsr |= old_spsr & SPSR_PM_BIT_AARCH64; |
| 177 | if (is_feat_ebep_present()) { |
| 178 | new_spsr |= SPSR_PM_BIT_AARCH64; |
| 179 | } |
| 180 | |
| 181 | /* If FEAT_SEBEP is present clear PPEND bit */ |
| 182 | new_spsr |= old_spsr & SPSR_PPEND_BIT; |
| 183 | if (is_feat_sebep_present()) { |
| 184 | new_spsr &= ~SPSR_PPEND_BIT; |
| 185 | } |
| 186 | |
| 187 | /* If FEAT_GCS is present, update EXLOCK bit */ |
| 188 | new_spsr |= old_spsr & SPSR_EXLOCK_BIT_AARCH64; |
| 189 | if (is_feat_gcs_present()) { |
| 190 | u_register_t gcscr; |
| 191 | if (target_el == MODE_EL2) { |
| 192 | gcscr = read_gcscr_el2(); |
| 193 | } else { |
| 194 | gcscr = read_gcscr_el1(); |
| 195 | } |
| 196 | new_spsr |= (gcscr & GCSCR_EXLOCK_EN_BIT) ? SPSR_EXLOCK_BIT_AARCH64 : 0; |
| 197 | } |
| 198 | |
| 199 | return new_spsr; |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Handler for injecting Undefined exception to lower EL which is caused by |
| 204 | * lower EL accessing system registers of which (old)EL3 firmware is unaware. |
| 205 | * |
| 206 | * This is a safety net to avoid EL3 panics caused by system register access |
| 207 | * that triggers an exception syndrome EC=0x18. |
| 208 | */ |
| 209 | void inject_undef64(cpu_context_t *ctx) |
| 210 | { |
| 211 | u_register_t esr = (EC_UNKNOWN << ESR_EC_SHIFT) | ESR_IL_BIT; |
| 212 | el3_state_t *state = get_el3state_ctx(ctx); |
| 213 | u_register_t elr_el3 = read_ctx_reg(state, CTX_ELR_EL3); |
| 214 | u_register_t old_spsr = read_ctx_reg(state, CTX_SPSR_EL3); |
| 215 | u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); |
| 216 | u_register_t new_spsr = 0; |
| 217 | unsigned int to_el = target_el(GET_EL(old_spsr), scr_el3); |
| 218 | |
| 219 | if (to_el == MODE_EL2) { |
| 220 | write_elr_el2(elr_el3); |
| 221 | elr_el3 = get_elr_el3(old_spsr, read_vbar_el2(), to_el); |
| 222 | write_esr_el2(esr); |
| 223 | write_spsr_el2(old_spsr); |
| 224 | } else { |
| 225 | write_elr_el1(elr_el3); |
| 226 | elr_el3 = get_elr_el3(old_spsr, read_vbar_el1(), to_el); |
| 227 | write_esr_el1(esr); |
| 228 | write_spsr_el1(old_spsr); |
| 229 | } |
| 230 | |
| 231 | new_spsr = create_spsr(old_spsr, to_el); |
| 232 | |
| 233 | write_ctx_reg(state, CTX_SPSR_EL3, new_spsr); |
| 234 | write_ctx_reg(state, CTX_ELR_EL3, elr_el3); |
| 235 | } |