Jacky Bai | d746daa1 | 2019-11-25 13:19:37 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2018-2022 NXP |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <drivers/delay_timer.h> |
| 8 | #include <lib/mmio.h> |
| 9 | |
| 10 | #include <dram.h> |
| 11 | |
| 12 | void ddr4_mr_write(uint32_t mr, uint32_t data, uint32_t mr_type, uint32_t rank) |
| 13 | { |
| 14 | uint32_t val, mr_mirror, data_mirror; |
| 15 | |
| 16 | /* |
| 17 | * 1. Poll MRSTAT.mr_wr_busy until it is 0 to make sure |
| 18 | * that there is no outstanding MR transAction. |
| 19 | */ |
| 20 | while (mmio_read_32(DDRC_MRSTAT(0)) & 0x1) { |
| 21 | ; |
| 22 | } |
| 23 | |
| 24 | /* |
| 25 | * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank |
| 26 | * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. |
| 27 | */ |
| 28 | val = mmio_read_32(DDRC_DIMMCTL(0)); |
| 29 | if ((val & 0x2) && (rank == 0x2)) { |
| 30 | mr_mirror = (mr & 0x4) | ((mr & 0x1) << 1) | ((mr & 0x2) >> 1); /* BA0, BA1 swap */ |
| 31 | data_mirror = (data & 0x1607) | ((data & 0x8) << 1) | ((data & 0x10) >> 1) | |
| 32 | ((data & 0x20) << 1) | ((data & 0x40) >> 1) | ((data & 0x80) << 1) | |
| 33 | ((data & 0x100) >> 1) | ((data & 0x800) << 2) | ((data & 0x2000) >> 2) ; |
| 34 | } else { |
| 35 | mr_mirror = mr; |
| 36 | data_mirror = data; |
| 37 | } |
| 38 | |
| 39 | mmio_write_32(DDRC_MRCTRL0(0), mr_type | (mr_mirror << 12) | (rank << 4)); |
| 40 | mmio_write_32(DDRC_MRCTRL1(0), data_mirror); |
| 41 | |
| 42 | /* |
| 43 | * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. |
| 44 | * This bit is self-clearing, and triggers the MR transaction. |
| 45 | * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs |
| 46 | * the MR transaction to SDRAM, and no further accesses can be |
| 47 | * initiated until it is deasserted. |
| 48 | */ |
| 49 | mmio_setbits_32(DDRC_MRCTRL0(0), BIT(31)); |
| 50 | |
| 51 | while (mmio_read_32(DDRC_MRSTAT(0))) { |
| 52 | ; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | void dram_cfg_all_mr(struct dram_info *info, uint32_t pstate) |
| 57 | { |
| 58 | uint32_t num_rank = info->num_rank; |
| 59 | /* |
| 60 | * 15. Perform MRS commands as required to re-program |
| 61 | * timing registers in the SDRAM for the new frequency |
| 62 | * (in particular, CL, CWL and WR may need to be changed). |
| 63 | */ |
| 64 | |
| 65 | for (int i = 1; i <= num_rank; i++) { |
| 66 | for (int j = 0; j < 6; j++) { |
| 67 | ddr4_mr_write(j, info->mr_table[pstate][j], 0, i); |
| 68 | } |
| 69 | ddr4_mr_write(6, info->mr_table[pstate][7], 0, i); |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | void sw_pstate(uint32_t pstate, uint32_t drate) |
| 74 | { |
| 75 | uint32_t val; |
| 76 | |
| 77 | mmio_write_32(DDRC_SWCTL(0), 0x0); |
| 78 | |
| 79 | /* |
| 80 | * Update any registers which may be required to |
| 81 | * change for the new frequency. |
| 82 | */ |
| 83 | mmio_write_32(DDRC_MSTR2(0), pstate); |
| 84 | mmio_setbits_32(DDRC_MSTR(0), (0x1 << 29)); |
| 85 | |
| 86 | /* |
| 87 | * Toggle RFSHCTL3.refresh_update_level to allow the |
| 88 | * new refresh-related register values to propagate |
| 89 | * to the refresh logic. |
| 90 | */ |
| 91 | val = mmio_read_32(DDRC_RFSHCTL3(0)); |
| 92 | if (val & 0x2) { |
| 93 | mmio_write_32(DDRC_RFSHCTL3(0), val & 0xFFFFFFFD); |
| 94 | } else { |
| 95 | mmio_write_32(DDRC_RFSHCTL3(0), val | 0x2); |
| 96 | } |
| 97 | |
| 98 | /* |
| 99 | * 19. If required, trigger the initialization in the PHY. |
| 100 | * If using the gen2 multiPHY, PLL initialization should |
| 101 | * be triggered at this point. See the PHY databook for |
| 102 | * details about the frequency change procedure. |
| 103 | */ |
| 104 | mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8)); |
| 105 | mmio_write_32(DDRC_DFIMISC(0), 0x00000020 | (pstate << 8)); |
| 106 | |
| 107 | /* wait DFISTAT.dfi_init_complete to 0 */ |
| 108 | while (mmio_read_32(DDRC_DFISTAT(0)) & 0x1) { |
| 109 | ; |
| 110 | } |
| 111 | |
| 112 | /* change the clock to the target frequency */ |
| 113 | dram_clock_switch(drate, false); |
| 114 | |
| 115 | mmio_write_32(DDRC_DFIMISC(0), 0x00000000 | (pstate << 8)); |
| 116 | |
| 117 | /* wait DFISTAT.dfi_init_complete to 1 */ |
| 118 | while (!(mmio_read_32(DDRC_DFISTAT(0)) & 0x1)) { |
| 119 | ; |
| 120 | } |
| 121 | |
| 122 | /* |
| 123 | * When changing frequencies the controller may violate the JEDEC |
| 124 | * requirement that no more than 16 refreshes should be issued within |
| 125 | * 2*tREFI. These extra refreshes are not expected to cause a problem |
| 126 | * in the SDRAM. This issue can be avoided by waiting for at least 2*tREFI |
| 127 | * before exiting self-refresh in step 19. |
| 128 | */ |
| 129 | udelay(14); |
| 130 | |
| 131 | /* 14. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ |
| 132 | mmio_clrbits_32(DDRC_PWRCTL(0), (1 << 5)); |
| 133 | |
| 134 | while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) == 0x23) { |
| 135 | ; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void ddr4_swffc(struct dram_info *info, unsigned int pstate) |
| 140 | { |
| 141 | uint32_t drate = info->timing_info->fsp_table[pstate]; |
| 142 | |
| 143 | /* |
| 144 | * 1. set SWCTL.sw_done to disable quasi-dynamic register |
| 145 | * programming outside reset. |
| 146 | */ |
| 147 | mmio_write_32(DDRC_SWCTL(0), 0x0); |
| 148 | |
| 149 | /* |
| 150 | * 2. Write 0 to PCTRL_n.port_en. This blocks AXI port(s) |
| 151 | * from taking any transaction (blocks traffic on AXI ports). |
| 152 | */ |
| 153 | mmio_write_32(DDRC_PCTRL_0(0), 0x0); |
| 154 | |
| 155 | /* |
| 156 | * 3. Poll PSTAT.rd_port_busy_n=0 and PSTAT.wr_port_busy_n=0. |
| 157 | * Wait until all AXI ports are idle (the uMCTL2 core has to |
| 158 | * be idle). |
| 159 | */ |
| 160 | while (mmio_read_32(DDRC_PSTAT(0)) & 0x10001) { |
| 161 | ; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * 4. Write 0 to SBRCTL.scrub_en. Disable SBR, required only if |
| 166 | * SBR instantiated. |
| 167 | * 5. Poll SBRSTAT.scrub_busy=0. |
| 168 | * 6. Set DERATEEN.derate_enable = 0, if DERATEEN.derate_eanble = 1 |
| 169 | * and the read latency (RL) value needs to change after the frequency |
| 170 | * change (LPDDR2/3/4 only). |
| 171 | * 7. Set DBG1.dis_hif=1 so that no new commands will be accepted by the uMCTL2. |
| 172 | */ |
| 173 | mmio_setbits_32(DDRC_DBG1(0), (0x1 << 1)); |
| 174 | |
| 175 | /* |
| 176 | * 8. Poll DBGCAM.dbg_wr_q_empty and DBGCAM.dbg_rd_q_empty to ensure |
| 177 | * that write and read data buffers are empty. |
| 178 | */ |
| 179 | while ((mmio_read_32(DDRC_DBGCAM(0)) & 0x06000000) != 0x06000000) { |
| 180 | ; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * 9. For DDR4, update MR6 with the new tDLLK value via the Mode |
| 185 | * Register Write signals |
| 186 | * 10. Set DFILPCFG0.dfi_lp_en_sr = 0, if DFILPCFG0.dfi_lp_en_sr = 1, |
| 187 | * and wait until DFISTAT.dfi_lp_ack |
| 188 | * 11. If DFI PHY Master interface is active in uMCTL2, then disable it |
| 189 | * 12. Wait until STAT.operating_mode[1:0]!=11 indicating that the |
| 190 | * controller is not in self-refresh mode. |
| 191 | */ |
| 192 | while ((mmio_read_32(DDRC_STAT(0)) & 0x3) == 0x3) { |
| 193 | ; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * 13. Assert PWRCTL.selfref_sw for the DWC_ddr_umctl2 core to enter |
| 198 | * the self-refresh mode. |
| 199 | */ |
| 200 | mmio_setbits_32(DDRC_PWRCTL(0), (1 << 5)); |
| 201 | |
| 202 | /* |
| 203 | * 14. Wait until STAT.operating_mode[1:0]==11 indicating that the |
| 204 | * controller core is in self-refresh mode. |
| 205 | */ |
| 206 | while ((mmio_read_32(DDRC_STAT(0)) & 0x3f) != 0x23) { |
| 207 | ; |
| 208 | } |
| 209 | |
| 210 | sw_pstate(pstate, drate); |
| 211 | dram_cfg_all_mr(info, pstate); |
| 212 | |
| 213 | /* 23. Enable HIF commands by setting DBG1.dis_hif=0. */ |
| 214 | mmio_clrbits_32(DDRC_DBG1(0), (0x1 << 1)); |
| 215 | |
| 216 | /* |
| 217 | * 24. Reset DERATEEN.derate_enable = 1 if DERATEEN.derate_enable |
| 218 | * has been set to 0 in step 6. |
| 219 | * 25. If DFI PHY Master interface was active before step 11 then |
| 220 | * enable it back by programming DFIPHYMSTR.phymstr_en = 1'b1. |
| 221 | * 26. Write 1 to PCTRL_n.port_en. AXI port(s) are no longer blocked |
| 222 | * from taking transactions (Re-enable traffic on AXI ports) |
| 223 | */ |
| 224 | mmio_write_32(DDRC_PCTRL_0(0), 0x1); |
| 225 | |
| 226 | /* |
| 227 | * 27. Write 1 to SBRCTL.scrub_en. Enable SBR if desired, only |
| 228 | * required if SBR instantiated. |
| 229 | */ |
| 230 | |
| 231 | /* |
| 232 | * set SWCTL.sw_done to enable quasi-dynamic register programming |
| 233 | * outside reset. |
| 234 | */ |
| 235 | mmio_write_32(DDRC_SWCTL(0), 0x1); |
| 236 | |
| 237 | /* wait SWSTAT.sw_done_ack to 1 */ |
| 238 | while (!(mmio_read_32(DDRC_SWSTAT(0)) & 0x1)) { |
| 239 | ; |
| 240 | } |
| 241 | } |