blob: 8d3928fd0614b91985c0b58f01ded5875f86f1a7 [file] [log] [blame]
Jit Loon Lim4c249f12023-05-17 12:26:11 +08001/*
Harrison Mutai53aa28c2024-03-20 11:38:07 +00002 * Copyright (c) 2019-2024, ARM Limited and Contributors. All rights reserved.
Jit Loon Lim4c249f12023-05-17 12:26:11 +08003 * Copyright (c) 2019-2023, Intel Corporation. All rights reserved.
4 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8#include <assert.h>
9#include <arch.h>
10#include <arch_helpers.h>
11#include <common/bl_common.h>
12#include <drivers/arm/gic_common.h>
13#include <drivers/arm/gicv3.h>
14#include <drivers/ti/uart/uart_16550.h>
15#include <lib/mmio.h>
16#include <lib/xlat_tables/xlat_mmu_helpers.h>
17#include <lib/xlat_tables/xlat_tables_v2.h>
18#include <plat/common/platform.h>
19
20#include "agilex5_power_manager.h"
21#include "ccu/ncore_ccu.h"
22#include "socfpga_mailbox.h"
23#include "socfpga_private.h"
24#include "socfpga_reset_manager.h"
25
26/* Get non-secure SPSR for BL33. Zephyr and Linux */
27uint32_t arm_get_spsr_for_bl33_entry(void);
28
29static entry_point_info_t bl32_image_ep_info;
30static entry_point_info_t bl33_image_ep_info;
31
32/* The GICv3 driver only needs to be initialized in EL3 */
33static uintptr_t rdistif_base_addrs[PLATFORM_CORE_COUNT];
34
35#define SMMU_SDMMC
36
37entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
38{
39 entry_point_info_t *next_image_info;
40
41 next_image_info = (type == NON_SECURE) ?
42 &bl33_image_ep_info : &bl32_image_ep_info;
43
44 /* None of the images on this platform can have 0x0 as the entrypoint */
45 if (next_image_info->pc)
46 return next_image_info;
47 else
48 return NULL;
49}
50
51void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
52 u_register_t arg2, u_register_t arg3)
53{
54 static console_t console;
55
56 mmio_write_64(PLAT_SEC_ENTRY, PLAT_SEC_WARM_ENTRY);
57
58 console_16550_register(PLAT_INTEL_UART_BASE, PLAT_UART_CLOCK,
59 PLAT_BAUDRATE, &console);
60
61 init_ncore_ccu();
62 setup_smmu_stream_id();
63
64 /*
65 * Check params passed from BL31 should not be NULL,
66 */
67 void *from_bl2 = (void *) arg0;
68
69#if RESET_TO_BL31
70 /* There are no parameters from BL2 if BL31 is a reset vector */
71 assert(from_bl2 == NULL);
72 void *plat_params_from_bl2 = (void *) arg3;
73
74 assert(plat_params_from_bl2 == NULL);
75
76 /* Populate entry point information for BL33 */
77 SET_PARAM_HEAD(&bl33_image_ep_info,
78 PARAM_EP,
79 VERSION_1,
80 0);
81
82# if ARM_LINUX_KERNEL_AS_BL33
83 /*
84 * According to the file ``Documentation/arm64/booting.txt`` of the
85 * Linux kernel tree, Linux expects the physical address of the device
86 * tree blob (DTB) in x0, while x1-x3 are reserved for future use and
87 * must be 0.
88 */
89 bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
90 bl33_image_ep_info.args.arg1 = 0U;
91 bl33_image_ep_info.args.arg2 = 0U;
92 bl33_image_ep_info.args.arg3 = 0U;
93# endif
94
95#else /* RESET_TO_BL31 */
96 bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
97
98 assert(params_from_bl2 != NULL);
99
100 /*
101 * Copy BL32 (if populated by BL31) and BL33 entry point information.
102 * They are stored in Secure RAM, in BL31's address space.
103 */
104
105 if (params_from_bl2->h.type == PARAM_BL_PARAMS &&
106 params_from_bl2->h.version >= VERSION_2) {
107
108 bl_params_node_t *bl_params = params_from_bl2->head;
109
110 while (bl_params) {
111 if (bl_params->image_id == BL33_IMAGE_ID) {
112 bl33_image_ep_info = *bl_params->ep_info;
113 }
114 bl_params = bl_params->next_params_info;
115 }
116 } else {
117 struct socfpga_bl31_params *arg_from_bl2 =
118 (struct socfpga_bl31_params *) from_bl2;
119
120 assert(arg_from_bl2->h.type == PARAM_BL31);
121 assert(arg_from_bl2->h.version >= VERSION_1);
122
123 bl32_image_ep_info = *arg_from_bl2->bl32_ep_info;
124 bl33_image_ep_info = *arg_from_bl2->bl33_ep_info;
125 }
126
127 bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
128 bl33_image_ep_info.args.arg1 = 0U;
129 bl33_image_ep_info.args.arg2 = 0U;
130 bl33_image_ep_info.args.arg3 = 0U;
131#endif
132
133 /*
134 * Tell BL31 where the non-trusted software image
135 * is located and the entry state information
136 */
137 bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
138 bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
139
140 SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
141}
142
143static const interrupt_prop_t agx5_interrupt_props[] = {
144 PLAT_INTEL_SOCFPGA_G1S_IRQ_PROPS(INTR_GROUP1S),
145 PLAT_INTEL_SOCFPGA_G0_IRQ_PROPS(INTR_GROUP0)
146};
147
148static const gicv3_driver_data_t plat_gicv3_gic_data = {
149 .gicd_base = PLAT_INTEL_SOCFPGA_GICD_BASE,
150 .gicr_base = PLAT_INTEL_SOCFPGA_GICR_BASE,
151 .interrupt_props = agx5_interrupt_props,
152 .interrupt_props_num = ARRAY_SIZE(agx5_interrupt_props),
153 .rdistif_num = PLATFORM_CORE_COUNT,
154 .rdistif_base_addrs = rdistif_base_addrs,
155};
156
157/*******************************************************************************
158 * Perform any BL3-1 platform setup code
159 ******************************************************************************/
160void bl31_platform_setup(void)
161{
162 socfpga_delay_timer_init();
163
164 /* Initialize the gic cpu and distributor interfaces */
165 gicv3_driver_init(&plat_gicv3_gic_data);
166 gicv3_distif_init();
167 gicv3_rdistif_init(plat_my_core_pos());
168 gicv3_cpuif_enable(plat_my_core_pos());
169 mailbox_hps_stage_notify(HPS_EXECUTION_STATE_SSBL);
Jit Loon Lim4c249f12023-05-17 12:26:11 +0800170}
171
172const mmap_region_t plat_agilex_mmap[] = {
173 MAP_REGION_FLAT(DRAM_BASE, DRAM_SIZE, MT_MEMORY | MT_RW | MT_NS),
174 MAP_REGION_FLAT(PSS_BASE, PSS_SIZE, MT_DEVICE | MT_RW | MT_NS),
175 MAP_REGION_FLAT(MPFE_BASE, MPFE_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
176 MAP_REGION_FLAT(OCRAM_BASE, OCRAM_SIZE, MT_NON_CACHEABLE | MT_RW | MT_SECURE),
177 MAP_REGION_FLAT(CCU_BASE, CCU_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
178 MAP_REGION_FLAT(MEM64_BASE, MEM64_SIZE, MT_DEVICE | MT_RW | MT_NS),
179 MAP_REGION_FLAT(GIC_BASE, GIC_SIZE, MT_DEVICE | MT_RW | MT_SECURE),
180 {0}
181};
182
183/*******************************************************************************
184 * Perform the very early platform specific architectural setup here. At the
Harrison Mutai53aa28c2024-03-20 11:38:07 +0000185 * moment this is only initializes the mmu in a quick and dirty way.
Jit Loon Lim4c249f12023-05-17 12:26:11 +0800186 ******************************************************************************/
187void bl31_plat_arch_setup(void)
188{
189 uint32_t boot_core = 0x00;
190 uint32_t cpuid = 0x00;
191
192 cpuid = read_mpidr();
193 boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
194 NOTICE("BL31: Boot Core = %x\n", boot_core);
195 NOTICE("BL31: CPU ID = %x\n", cpuid);
196
197}
198
199/* Get non-secure image entrypoint for BL33. Zephyr and Linux */
200uintptr_t plat_get_ns_image_entrypoint(void)
201{
202#ifdef PRELOADED_BL33_BASE
203 return PRELOADED_BL33_BASE;
204#else
205 return PLAT_NS_IMAGE_OFFSET;
206#endif
207}
208
209/* Get non-secure SPSR for BL33. Zephyr and Linux */
210uint32_t arm_get_spsr_for_bl33_entry(void)
211{
212 unsigned int mode;
213 uint32_t spsr;
214
215 /* Figure out what mode we enter the non-secure world in */
216 mode = (el_implemented(2) != EL_IMPL_NONE) ? MODE_EL2 : MODE_EL1;
217
218 /*
219 * TODO: Consider the possibility of specifying the SPSR in
220 * the FIP ToC and allowing the platform to have a say as
221 * well.
222 */
223 spsr = SPSR_64((uint64_t)mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
224 return spsr;
225}
226
227/* SMP: Secondary cores BL31 setup reset vector */
228void bl31_plat_set_secondary_cpu_entrypoint(unsigned int cpu_id)
229{
230 unsigned int pch_cpu = 0x00;
231 unsigned int pchctlr_old = 0x00;
232 unsigned int pchctlr_new = 0x00;
233 uint32_t boot_core = 0x00;
234
235 boot_core = (mmio_read_32(AGX5_PWRMGR(MPU_BOOTCONFIG)) & 0xC00);
236 /* Update the p-channel based on cpu id */
237 pch_cpu = 1 << cpu_id;
238
239 if (boot_core == 0x00) {
240 /* Update reset vector to 0x00 */
241 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU2,
242(uint64_t) plat_secondary_cpus_bl31_entry >> 2);
243 } else {
244 /* Update reset vector to 0x00 */
245 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU0,
246(uint64_t) plat_secondary_cpus_bl31_entry >> 2);
247 }
248
249 /* Update reset vector to 0x00 */
250 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU1, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
251 mmio_write_64(RSTMGR_CPUxRESETBASELOW_CPU3, (uint64_t) plat_secondary_cpus_bl31_entry >> 2);
252
253 /* On all cores - temporary */
254 pchctlr_old = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
255 pchctlr_new = pchctlr_old | (pch_cpu<<1);
256 mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pchctlr_new);
257
258 /* We will only release the target secondary CPUs */
259 /* Bit mask for each CPU BIT0-3 */
260 mmio_write_32(RSTMGR_CPUSTRELEASE_CPUx, pch_cpu);
261}
262
263void bl31_plat_set_secondary_cpu_off(void)
264{
265 unsigned int pch_cpu = 0x00;
266 unsigned int pch_cpu_off = 0x00;
267 unsigned int cpu_id = plat_my_core_pos();
268
269 pch_cpu_off = 1 << cpu_id;
270
271 pch_cpu = mmio_read_32(AGX5_PWRMGR(MPU_PCHCTLR));
272 pch_cpu = pch_cpu & ~(pch_cpu_off << 1);
273
274 mmio_write_32(AGX5_PWRMGR(MPU_PCHCTLR), pch_cpu);
275}
276
277void bl31_plat_enable_mmu(uint32_t flags)
278{
279 /* TODO: Enable mmu when needed */
280}