blob: 9770fb9977fb31c4d15717fa1104aa2bc1cacbb5 [file] [log] [blame]
Jens Wiklanderc2888862014-08-04 15:39:58 +02001/*
Soby Mathewda43b662015-07-08 21:45:46 +01002 * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
Jens Wiklanderc2888862014-08-04 15:39:58 +02003 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31
32/*******************************************************************************
33 * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
34 * plug-in component to the Secure Monitor, registered as a runtime service. The
35 * SPD is expected to be a functional extension of the Secure Payload (SP) that
36 * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
37 * the Trusted OS/Applications range to the dispatcher. The SPD will either
38 * handle the request locally or delegate it to the Secure Payload. It is also
39 * responsible for initialising and maintaining communication with the SP.
40 ******************************************************************************/
41#include <arch_helpers.h>
42#include <assert.h>
43#include <bl_common.h>
44#include <bl31.h>
45#include <context_mgmt.h>
46#include <debug.h>
47#include <errno.h>
48#include <platform.h>
49#include <runtime_svc.h>
50#include <stddef.h>
51#include <uuid.h>
52#include "opteed_private.h"
53#include "teesmc_opteed_macros.h"
54#include "teesmc_opteed.h"
55
56/*******************************************************************************
57 * Address of the entrypoint vector table in OPTEE. It is
58 * initialised once on the primary core after a cold boot.
59 ******************************************************************************/
60optee_vectors_t *optee_vectors;
61
62/*******************************************************************************
63 * Array to keep track of per-cpu OPTEE state
64 ******************************************************************************/
65optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
66uint32_t opteed_rw;
67
68
69
70static int32_t opteed_init(void);
71
72/*******************************************************************************
73 * This function is the handler registered for S-EL1 interrupts by the
74 * OPTEED. It validates the interrupt and upon success arranges entry into
75 * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
76 ******************************************************************************/
77static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
78 uint32_t flags,
79 void *handle,
80 void *cookie)
81{
82 uint32_t linear_id;
Jens Wiklanderc2888862014-08-04 15:39:58 +020083 optee_context_t *optee_ctx;
84
85 /* Check the security state when the exception was generated */
86 assert(get_interrupt_src_ss(flags) == NON_SECURE);
87
Jens Wiklanderc2888862014-08-04 15:39:58 +020088 /* Sanity check the pointer to this cpu's context */
Jens Wiklanderc2888862014-08-04 15:39:58 +020089 assert(handle == cm_get_context(NON_SECURE));
90
91 /* Save the non-secure context before entering the OPTEE */
92 cm_el1_sysregs_context_save(NON_SECURE);
93
94 /* Get a reference to this cpu's OPTEE context */
Soby Mathewda43b662015-07-08 21:45:46 +010095 linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +020096 optee_ctx = &opteed_sp_context[linear_id];
97 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
98
99 cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry);
100 cm_el1_sysregs_context_restore(SECURE);
101 cm_set_next_eret_context(SECURE);
102
103 /*
104 * Tell the OPTEE that it has to handle an FIQ (synchronously).
105 * Also the instruction in normal world where the interrupt was
106 * generated is passed for debugging purposes. It is safe to
107 * retrieve this address from ELR_EL3 as the secure context will
108 * not take effect until el3_exit().
109 */
110 SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
111}
112
113/*******************************************************************************
114 * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
115 * (aarch32/aarch64) if not already known and initialises the context for entry
116 * into OPTEE for its initialization.
117 ******************************************************************************/
118int32_t opteed_setup(void)
119{
120 entry_point_info_t *optee_ep_info;
Jens Wiklanderc2888862014-08-04 15:39:58 +0200121 uint32_t linear_id;
122
Soby Mathewda43b662015-07-08 21:45:46 +0100123 linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200124
125 /*
126 * Get information about the Secure Payload (BL32) image. Its
127 * absence is a critical failure. TODO: Add support to
128 * conditionally include the SPD service
129 */
130 optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
131 if (!optee_ep_info) {
132 WARN("No OPTEE provided by BL2 boot loader, Booting device"
133 " without OPTEE initialization. SMC`s destined for OPTEE"
134 " will return SMC_UNK\n");
135 return 1;
136 }
137
138 /*
139 * If there's no valid entry point for SP, we return a non-zero value
140 * signalling failure initializing the service. We bail out without
141 * registering any handlers
142 */
143 if (!optee_ep_info->pc)
144 return 1;
145
146 /*
147 * We could inspect the SP image and determine it's execution
148 * state i.e whether AArch32 or AArch64. Assuming it's AArch32
149 * for the time being.
150 */
Ashutosh Singh82a720e2016-05-27 15:51:17 +0100151 opteed_rw = OPTEE_AARCH64;
Jens Wiklanderc2888862014-08-04 15:39:58 +0200152 opteed_init_optee_ep_state(optee_ep_info,
153 opteed_rw,
154 optee_ep_info->pc,
155 &opteed_sp_context[linear_id]);
156
157 /*
158 * All OPTEED initialization done. Now register our init function with
159 * BL31 for deferred invocation
160 */
161 bl31_register_bl32_init(&opteed_init);
162
163 return 0;
164}
165
166/*******************************************************************************
167 * This function passes control to the OPTEE image (BL32) for the first time
168 * on the primary cpu after a cold boot. It assumes that a valid secure
169 * context has already been created by opteed_setup() which can be directly
170 * used. It also assumes that a valid non-secure context has been
171 * initialised by PSCI so it does not need to save and restore any
172 * non-secure state. This function performs a synchronous entry into
173 * OPTEE. OPTEE passes control back to this routine through a SMC.
174 ******************************************************************************/
175static int32_t opteed_init(void)
176{
Soby Mathewda43b662015-07-08 21:45:46 +0100177 uint32_t linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200178 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
179 entry_point_info_t *optee_entry_point;
180 uint64_t rc;
181
182 /*
183 * Get information about the OPTEE (BL32) image. Its
184 * absence is a critical failure.
185 */
186 optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
187 assert(optee_entry_point);
188
Soby Mathewda43b662015-07-08 21:45:46 +0100189 cm_init_my_context(optee_entry_point);
Jens Wiklanderc2888862014-08-04 15:39:58 +0200190
191 /*
192 * Arrange for an entry into OPTEE. It will be returned via
193 * OPTEE_ENTRY_DONE case
194 */
195 rc = opteed_synchronous_sp_entry(optee_ctx);
196 assert(rc != 0);
197
198 return rc;
199}
200
201
202/*******************************************************************************
203 * This function is responsible for handling all SMCs in the Trusted OS/App
204 * range from the non-secure state as defined in the SMC Calling Convention
205 * Document. It is also responsible for communicating with the Secure
206 * payload to delegate work and return results back to the non-secure
207 * state. Lastly it will also return any information that OPTEE needs to do
208 * the work assigned to it.
209 ******************************************************************************/
210uint64_t opteed_smc_handler(uint32_t smc_fid,
211 uint64_t x1,
212 uint64_t x2,
213 uint64_t x3,
214 uint64_t x4,
215 void *cookie,
216 void *handle,
217 uint64_t flags)
218{
219 cpu_context_t *ns_cpu_context;
Soby Mathewda43b662015-07-08 21:45:46 +0100220 uint32_t linear_id = plat_my_core_pos();
Jens Wiklanderc2888862014-08-04 15:39:58 +0200221 optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
222 uint64_t rc;
223
224 /*
225 * Determine which security state this SMC originated from
226 */
227
228 if (is_caller_non_secure(flags)) {
229 /*
230 * This is a fresh request from the non-secure client.
231 * The parameters are in x1 and x2. Figure out which
232 * registers need to be preserved, save the non-secure
233 * state and send the request to the secure payload.
234 */
235 assert(handle == cm_get_context(NON_SECURE));
236
237 cm_el1_sysregs_context_save(NON_SECURE);
238
239 /*
240 * We are done stashing the non-secure context. Ask the
241 * OPTEE to do the work now.
242 */
243
244 /*
245 * Verify if there is a valid context to use, copy the
246 * operation type and parameters to the secure context
247 * and jump to the fast smc entry point in the secure
248 * payload. Entry into S-EL1 will take place upon exit
249 * from this function.
250 */
251 assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
252
253 /* Set appropriate entry for SMC.
254 * We expect OPTEE to manage the PSTATE.I and PSTATE.F
255 * flags as appropriate.
256 */
257 if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
258 cm_set_elr_el3(SECURE, (uint64_t)
259 &optee_vectors->fast_smc_entry);
260 } else {
261 cm_set_elr_el3(SECURE, (uint64_t)
262 &optee_vectors->std_smc_entry);
263 }
264
265 cm_el1_sysregs_context_restore(SECURE);
266 cm_set_next_eret_context(SECURE);
267
Ashutosh Singh3270b842016-03-31 17:18:34 +0100268 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
269 CTX_GPREG_X4,
270 read_ctx_reg(get_gpregs_ctx(handle),
271 CTX_GPREG_X4));
272 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
273 CTX_GPREG_X5,
274 read_ctx_reg(get_gpregs_ctx(handle),
275 CTX_GPREG_X5));
276 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
277 CTX_GPREG_X6,
278 read_ctx_reg(get_gpregs_ctx(handle),
279 CTX_GPREG_X6));
Jens Wiklanderc2888862014-08-04 15:39:58 +0200280 /* Propagate hypervisor client ID */
281 write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
282 CTX_GPREG_X7,
283 read_ctx_reg(get_gpregs_ctx(handle),
284 CTX_GPREG_X7));
285
286 SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
287 }
288
289 /*
290 * Returning from OPTEE
291 */
292
293 switch (smc_fid) {
294 /*
295 * OPTEE has finished initialising itself after a cold boot
296 */
297 case TEESMC_OPTEED_RETURN_ENTRY_DONE:
298 /*
299 * Stash the OPTEE entry points information. This is done
300 * only once on the primary cpu
301 */
302 assert(optee_vectors == NULL);
303 optee_vectors = (optee_vectors_t *) x1;
304
305 if (optee_vectors) {
306 set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
307
308 /*
309 * OPTEE has been successfully initialized.
310 * Register power management hooks with PSCI
311 */
312 psci_register_spd_pm_hook(&opteed_pm);
313
314 /*
315 * Register an interrupt handler for S-EL1 interrupts
316 * when generated during code executing in the
317 * non-secure state.
318 */
319 flags = 0;
320 set_interrupt_rm_flag(flags, NON_SECURE);
321 rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
322 opteed_sel1_interrupt_handler,
323 flags);
324 if (rc)
325 panic();
326 }
327
328 /*
329 * OPTEE reports completion. The OPTEED must have initiated
330 * the original request through a synchronous entry into
331 * OPTEE. Jump back to the original C runtime context.
332 */
333 opteed_synchronous_sp_exit(optee_ctx, x1);
334
335
336 /*
337 * These function IDs is used only by OP-TEE to indicate it has
338 * finished:
339 * 1. turning itself on in response to an earlier psci
340 * cpu_on request
341 * 2. resuming itself after an earlier psci cpu_suspend
342 * request.
343 */
344 case TEESMC_OPTEED_RETURN_ON_DONE:
345 case TEESMC_OPTEED_RETURN_RESUME_DONE:
346
347
348 /*
349 * These function IDs is used only by the SP to indicate it has
350 * finished:
351 * 1. suspending itself after an earlier psci cpu_suspend
352 * request.
353 * 2. turning itself off in response to an earlier psci
354 * cpu_off request.
355 */
356 case TEESMC_OPTEED_RETURN_OFF_DONE:
357 case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
358 case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
359 case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
360
361 /*
362 * OPTEE reports completion. The OPTEED must have initiated the
363 * original request through a synchronous entry into OPTEE.
364 * Jump back to the original C runtime context, and pass x1 as
365 * return value to the caller
366 */
367 opteed_synchronous_sp_exit(optee_ctx, x1);
368
369 /*
370 * OPTEE is returning from a call or being preempted from a call, in
371 * either case execution should resume in the normal world.
372 */
373 case TEESMC_OPTEED_RETURN_CALL_DONE:
374 /*
375 * This is the result from the secure client of an
376 * earlier request. The results are in x0-x3. Copy it
377 * into the non-secure context, save the secure state
378 * and return to the non-secure state.
379 */
380 assert(handle == cm_get_context(SECURE));
381 cm_el1_sysregs_context_save(SECURE);
382
383 /* Get a reference to the non-secure context */
384 ns_cpu_context = cm_get_context(NON_SECURE);
385 assert(ns_cpu_context);
386
387 /* Restore non-secure state */
388 cm_el1_sysregs_context_restore(NON_SECURE);
389 cm_set_next_eret_context(NON_SECURE);
390
391 SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
392
393 /*
394 * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
395 * should resume in the normal world.
396 */
397 case TEESMC_OPTEED_RETURN_FIQ_DONE:
398 /* Get a reference to the non-secure context */
399 ns_cpu_context = cm_get_context(NON_SECURE);
400 assert(ns_cpu_context);
401
402 /*
403 * Restore non-secure state. There is no need to save the
404 * secure system register context since OPTEE was supposed
405 * to preserve it during S-EL1 interrupt handling.
406 */
407 cm_el1_sysregs_context_restore(NON_SECURE);
408 cm_set_next_eret_context(NON_SECURE);
409
410 SMC_RET0((uint64_t) ns_cpu_context);
411
412 default:
413 panic();
414 }
415}
416
417/* Define an OPTEED runtime service descriptor for fast SMC calls */
418DECLARE_RT_SVC(
419 opteed_fast,
420
421 OEN_TOS_START,
422 OEN_TOS_END,
423 SMC_TYPE_FAST,
424 opteed_setup,
425 opteed_smc_handler
426);
427
428/* Define an OPTEED runtime service descriptor for standard SMC calls */
429DECLARE_RT_SVC(
430 opteed_std,
431
432 OEN_TOS_START,
433 OEN_TOS_END,
434 SMC_TYPE_STD,
435 NULL,
436 opteed_smc_handler
437);