blob: ccdc94d130b6f45bb8f908e8c6bc9005c1006d97 [file] [log] [blame]
Olivier Deprez5ac897f2020-01-09 10:45:52 +01001/*
2 * Copyright (c) 2020, ARM Limited and Contributors. All rights reserved.
steven kaoe5796062018-01-02 19:09:04 -08003 * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
Steven Kao530b2172017-06-23 16:18:58 +08004 *
5 * SPDX-License-Identifier: BSD-3-Clause
6 */
7
8#include <assert.h>
9#include <errno.h>
10#include <stdbool.h>
11
12#include <arch_helpers.h>
steven kaoe5796062018-01-02 19:09:04 -080013#include <bpmp_ipc.h>
Steven Kao530b2172017-06-23 16:18:58 +080014#include <common/debug.h>
15#include <drivers/delay_timer.h>
16#include <lib/mmio.h>
17#include <lib/psci/psci.h>
Varun Wadekar35cc90a2018-05-25 15:22:58 -070018#include <se.h>
Steven Kao530b2172017-06-23 16:18:58 +080019#include <tegra_platform.h>
20
21#include "se_private.h"
22
23/*******************************************************************************
24 * Constants and Macros
25 ******************************************************************************/
26#define ERR_STATUS_SW_CLEAR U(0xFFFFFFFF)
27#define INT_STATUS_SW_CLEAR U(0xFFFFFFFF)
28#define MAX_TIMEOUT_MS U(100) /* Timeout in 100ms */
29#define NUM_SE_REGS_TO_SAVE U(4)
30
Jeetesh Burmandbcc95c2018-07-06 20:03:38 +053031#define SE0_MAX_BUSY_TIMEOUT_MS U(100) /* 100ms Timeout Expired */
32#define BYTES_IN_WORD U(4)
33#define SHA256_MAX_HASH_RESULT U(7)
34#define SHA256_DST_SIZE U(32)
35#define SHA_FIRST_OP U(1)
36#define MAX_SHA_ENGINE_CHUNK_SIZE U(0xFFFFFF)
37#define SHA256_MSG_LENGTH_ONETIME U(0xFFFF)
38
Steven Kao530b2172017-06-23 16:18:58 +080039/*******************************************************************************
40 * Data structure and global variables
41 ******************************************************************************/
42static uint32_t se_regs[NUM_SE_REGS_TO_SAVE];
43
44/*
45 * Check that SE operation has completed after kickoff.
46 *
47 * This function is invoked after an SE operation has been started,
48 * and it checks the following conditions:
49 *
50 * 1. SE_STATUS = IDLE
51 * 2. AHB bus data transfer is complete.
52 * 3. SE_ERR_STATUS is clean.
53 */
54static bool tegra_se_is_operation_complete(void)
55{
56 uint32_t val = 0, timeout = 0, sha_status, aes_status;
57 int32_t ret = 0;
58 bool se_is_busy, txn_has_errors, txn_successful;
59
60 /*
61 * Poll the status register to check if the operation
62 * completed.
63 */
64 do {
65 val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
Varun Wadekar35cc90a2018-05-25 15:22:58 -070066 se_is_busy = ((val & CTX_SAVE_AUTO_SE_BUSY) != 0U);
Steven Kao530b2172017-06-23 16:18:58 +080067
68 /* sleep until SE finishes */
69 if (se_is_busy) {
70 mdelay(1);
71 timeout++;
72 }
73
74 } while (se_is_busy && (timeout < MAX_TIMEOUT_MS));
75
76 /* any transaction errors? */
77 txn_has_errors = (tegra_se_read_32(SHA_ERR_STATUS) != 0U) ||
78 (tegra_se_read_32(AES0_ERR_STATUS) != 0U);
79
80 /* transaction successful? */
81 sha_status = tegra_se_read_32(SHA_INT_STATUS) & SHA_SE_OP_DONE;
82 aes_status = tegra_se_read_32(AES0_INT_STATUS) & AES0_SE_OP_DONE;
83 txn_successful = (sha_status == SHA_SE_OP_DONE) &&
84 (aes_status == AES0_SE_OP_DONE);
85
86 if ((timeout == MAX_TIMEOUT_MS) || txn_has_errors || !txn_successful) {
87 ERROR("%s: Atomic context save operation failed!\n",
88 __func__);
89 ret = -ECANCELED;
90 }
91
92 return (ret == 0);
93}
94
95/*
96 * Wait for SE engine to be idle and clear any pending interrupts, before
97 * starting the next SE operation.
98 */
99static bool tegra_se_is_ready(void)
100{
101 int32_t ret = 0;
102 uint32_t val = 0, timeout = 0;
103 bool se_is_ready;
104
105 /* Wait for previous operation to finish */
106 do {
107 val = tegra_se_read_32(CTX_SAVE_AUTO_STATUS);
108 se_is_ready = (val == CTX_SAVE_AUTO_SE_READY);
109
110 /* sleep until SE is ready */
111 if (!se_is_ready) {
112 mdelay(1);
113 timeout++;
114 }
115
116 } while (!se_is_ready && (timeout < MAX_TIMEOUT_MS));
117
118 if (timeout == MAX_TIMEOUT_MS) {
119 ERROR("%s: SE is not ready!\n", __func__);
120 ret = -ETIMEDOUT;
121 }
122
123 /* Clear any pending interrupts from previous operation */
124 tegra_se_write_32(AES0_INT_STATUS, INT_STATUS_SW_CLEAR);
125 tegra_se_write_32(AES1_INT_STATUS, INT_STATUS_SW_CLEAR);
126 tegra_se_write_32(RSA_INT_STATUS, INT_STATUS_SW_CLEAR);
127 tegra_se_write_32(SHA_INT_STATUS, INT_STATUS_SW_CLEAR);
128
129 /* Clear error status for each engine seen from current port */
130 tegra_se_write_32(AES0_ERR_STATUS, ERR_STATUS_SW_CLEAR);
131 tegra_se_write_32(AES1_ERR_STATUS, ERR_STATUS_SW_CLEAR);
132 tegra_se_write_32(RSA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
133 tegra_se_write_32(SHA_ERR_STATUS, ERR_STATUS_SW_CLEAR);
134
135 return (ret == 0);
136}
137
138/*
139 * During System Suspend, this handler triggers the hardware context
140 * save operation.
141 */
142static int32_t tegra_se_save_context(void)
143{
144 int32_t ret = -ECANCELED;
145
146 /*
147 * 1. Ensure all SE Driver including RNG1/PKA1 are shut down.
148 * TSEC/R5s are powergated/idle. All tasks on SE1~SE4, RNG1,
149 * PKA1 are wrapped up. SE0 is ready for use.
150 * 2. Clear interrupt/error in SE0 status register.
151 * 3. Scrub SE0 register to avoid false failure for illegal
152 * configuration. Probably not needed, dependent on HW
153 * implementation.
154 * 4. Check SE is ready for HW CTX_SAVE by polling
155 * SE_CTX_SAVE_AUTO_STATUS.SE_READY.
156 *
157 * Steps 1-4 are executed by tegra_se_is_ready().
158 *
159 * 5. Issue context save command.
160 * 6. Check SE is busy with CTX_SAVE, the command in step5 was not
161 * dropped for ongoing traffic in any of SE port/engine.
162 * 7. Poll SE register or wait for SE APB interrupt for task completion
163 * a. Polling: Read SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE
164 * b. Interrupt: After receiving interrupt from SE APB, read
165 * SE_CTX_SAVE_AUTO_STATUS.BUSY till it reports IDLE.
166 * 8. Check AES0 and SHA ERR_STATUS to ensure no error case.
167 * 9. Check AES0 and SHA INT_STATUS to ensure operation has successfully
168 * completed.
169 *
170 * Steps 6-9 are executed by tegra_se_is_operation_complete().
171 */
172 if (tegra_se_is_ready()) {
173
174 /* Issue context save command */
175 tegra_se_write_32(AES0_OPERATION, SE_OP_CTX_SAVE);
176
177 /* Wait for operation to finish */
178 if (tegra_se_is_operation_complete()) {
179 ret = 0;
180 }
181 }
182
Jeetesh Burmandbcc95c2018-07-06 20:03:38 +0530183 return ret;
184}
185
186/*
187 * Check that SE operation has completed after kickoff
188 * This function is invoked after an SE operation has been started,
189 * and it checks the following conditions:
190 * 1. SE0_INT_STATUS = SE0_OP_DONE
191 * 2. SE0_STATUS = IDLE
192 * 3. SE0_ERR_STATUS is clean.
193 */
194static int32_t tegra_se_sha256_hash_operation_complete(void)
195{
196 uint32_t val = 0U;
197
198 /* Poll the SE interrupt register to ensure H/W operation complete */
199 val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
200 while (SE0_INT_OP_DONE(val) == SE0_INT_OP_DONE_CLEAR) {
201 val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
202 if (SE0_INT_OP_DONE(val) != SE0_INT_OP_DONE_CLEAR) {
203 break;
204 }
205 }
206
207 /* Poll the SE status idle to ensure H/W operation complete */
208 val = tegra_se_read_32(SE0_SHA_STATUS_0);
209 while (val != SE0_SHA_STATUS_IDLE) {
210 val = tegra_se_read_32(SE0_SHA_STATUS_0);
211 if (val == SE0_SHA_STATUS_IDLE) {
212 break;
213 }
214 }
215
216 /* Ensure that no errors are thrown during operation */
217 val = tegra_se_read_32(SE0_ERR_STATUS_REG_OFFSET);
218 if (val != 0U) {
219 ERROR("%s: error during SE operation! 0x%x", __func__,
220 val);
221 return -ENOTSUP;
222 }
223
224 return 0;
225}
226
227/*
228 * Security engine primitive normal operations
229 */
230static int32_t tegra_se_start_normal_operation(uint64_t src_addr,
231 uint32_t nbytes, uint32_t last_buf, uint32_t src_len_inbytes)
232{
233 uint32_t val = 0U;
234 uint32_t src_in_lo;
235 uint32_t src_in_msb;
236 uint32_t src_in_hi;
237 int32_t ret = 0;
238
239 if ((src_addr == 0ULL) || (nbytes == 0U))
240 return -EINVAL;
241
242 src_in_lo = (uint32_t)src_addr;
243 src_in_msb = (uint32_t)((src_addr >> 32U) & 0xFFU);
244 src_in_hi = ((src_in_msb << SE0_IN_HI_ADDR_HI_0_MSB_SHIFT) |
245 (nbytes & MAX_SHA_ENGINE_CHUNK_SIZE));
246
247 /* set SRC_IN_ADDR_LO and SRC_IN_ADDR_HI*/
248 tegra_se_write_32(SE0_IN_ADDR, src_in_lo);
249 tegra_se_write_32(SE0_IN_HI_ADDR_HI, src_in_hi);
250
251 val = tegra_se_read_32(SE0_INT_STATUS_REG_OFFSET);
252 if (val > 0U) {
253 tegra_se_write_32(SE0_INT_STATUS_REG_OFFSET, 0x0U);
254 }
255
256 /* Enable SHA interrupt for SE0 Operation */
257 tegra_se_write_32(SE0_SHA_INT_ENABLE, 0x1aU);
258
259 /* flush to DRAM for SE to use the updated contents */
260 flush_dcache_range(src_addr, src_len_inbytes);
261
262 /* Start SHA256 operation */
263 if (last_buf == 1U) {
264 tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START |
265 SE0_UNIT_OPERATION_PKT_LASTBUF_FIELD);
266 } else {
267 tegra_se_write_32(SE0_OPERATION_REG_OFFSET, SE0_OP_START);
268 }
269
Steven Kao530b2172017-06-23 16:18:58 +0800270 return ret;
271}
272
Jeetesh Burmandbcc95c2018-07-06 20:03:38 +0530273static int32_t tegra_se_calculate_sha256_hash(uint64_t src_addr,
274 uint32_t src_len_inbyte)
275{
276 uint32_t val, last_buf, i;
277 int32_t ret = 0;
278 uint32_t operations;
279 uint64_t src_len_inbits;
280 uint32_t len_bits_msb;
281 uint32_t len_bits_lsb;
282 uint32_t number_of_operations, max_bytes, bytes_left, remaining_bytes;
283
284 if (src_len_inbyte > MAX_SHA_ENGINE_CHUNK_SIZE) {
285 ERROR("SHA input chunk size too big: 0x%x\n", src_len_inbyte);
286 return -EINVAL;
287 }
288
289 if (src_addr == 0ULL) {
290 return -EINVAL;
291 }
292
293 /* number of bytes per operation */
294 max_bytes = (SHA256_HASH_SIZE_BYTES * SHA256_MSG_LENGTH_ONETIME);
295
296 src_len_inbits = (uint32_t)(src_len_inbyte * 8U);
297 len_bits_msb = (uint32_t)(src_len_inbits >> 32U);
298 len_bits_lsb = (uint32_t)src_len_inbits;
299
300 /* program SE0_CONFIG for SHA256 operation */
301 val = (uint32_t)(SE0_CONFIG_ENC_ALG_SHA | SE0_CONFIG_ENC_MODE_SHA256 |
302 SE0_CONFIG_DEC_ALG_NOP | SE0_CONFIG_DST_HASHREG);
303 tegra_se_write_32(SE0_SHA_CONFIG, val);
304
305 /* set SE0_SHA_MSG_LENGTH registers */
306 tegra_se_write_32(SE0_SHA_MSG_LENGTH_0, len_bits_lsb);
307 tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
308 tegra_se_write_32(SE0_SHA_MSG_LENGTH_1, len_bits_msb);
309
310 /* zero out unused SE0_SHA_MSG_LENGTH and SE0_SHA_MSG_LEFT */
311 tegra_se_write_32(SE0_SHA_MSG_LENGTH_2, 0U);
312 tegra_se_write_32(SE0_SHA_MSG_LENGTH_3, 0U);
313 tegra_se_write_32(SE0_SHA_MSG_LEFT_1, 0U);
314 tegra_se_write_32(SE0_SHA_MSG_LEFT_2, 0U);
315 tegra_se_write_32(SE0_SHA_MSG_LEFT_3, 0U);
316
317 number_of_operations = (src_len_inbyte / max_bytes);
318 remaining_bytes = (src_len_inbyte % max_bytes);
319 if (remaining_bytes > 0U) {
320 number_of_operations += 1U;
321 }
322
323 /*
324 * 1. Operations == 1: program SE0_SHA_TASK register to initiate SHA256
325 * hash generation by setting
326 * 1(SE0_SHA_CONFIG_HW_INIT_HASH) to SE0_SHA_TASK
327 * and start SHA256-normal operation.
328 * 2. 1 < Operations < number_of_operations: program SE0_SHA_TASK to
329 * 0(SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE) to load
330 * intermediate SHA256 digest result from
331 * HASH_RESULT register to continue SHA256
332 * generation and start SHA256-normal operation.
333 * 3. Operations == number_of_operations: continue with step 2 and set
334 * max_bytes to bytes_left to process final
335 * hash-result generation and start SHA256-normal
336 * operation.
337 */
338 bytes_left = src_len_inbyte;
339 for (operations = 1U; operations <= number_of_operations;
340 operations++) {
341 if (operations == SHA_FIRST_OP) {
342 val = SE0_SHA_CONFIG_HW_INIT_HASH;
343 } else {
344 /* Load intermediate SHA digest result to
345 * SHA:HASH_RESULT(0..7) to continue the SHA
346 * calculation and tell the SHA engine to use it.
347 */
348 for (i = 0U; (i / BYTES_IN_WORD) <=
349 SHA256_MAX_HASH_RESULT; i += BYTES_IN_WORD) {
350 val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 +
351 i);
352 tegra_se_write_32(SE0_SHA_HASH_RESULT_0 + i,
353 val);
354 }
355 val = SE0_SHA_CONFIG_HW_INIT_HASH_DISABLE;
356 if (len_bits_lsb <= (max_bytes * 8U)) {
357 len_bits_lsb = (remaining_bytes * 8U);
358 } else {
359 len_bits_lsb -= (max_bytes * 8U);
360 }
361 tegra_se_write_32(SE0_SHA_MSG_LEFT_0, len_bits_lsb);
362 }
363 tegra_se_write_32(SE0_SHA_TASK_CONFIG, val);
364
365 max_bytes = (SHA256_HASH_SIZE_BYTES *
366 SHA256_MSG_LENGTH_ONETIME);
367 if (bytes_left < max_bytes) {
368 max_bytes = bytes_left;
369 last_buf = 1U;
370 } else {
371 bytes_left = bytes_left - max_bytes;
372 last_buf = 0U;
373 }
374 /* start operation */
375 ret = tegra_se_start_normal_operation(src_addr, max_bytes,
376 last_buf, src_len_inbyte);
377 if (ret != 0) {
378 ERROR("Error during SE operation! 0x%x", ret);
379 return -EINVAL;
380 }
381 }
382
383 return ret;
384}
385
386static int32_t tegra_se_save_sha256_pmc_scratch(void)
387{
388 uint32_t val = 0U, hash_offset = 0U, scratch_offset = 0U;
389 int32_t ret;
390
391 /* Check SE0 operation status */
392 ret = tegra_se_sha256_hash_operation_complete();
393 if (ret != 0) {
394 ERROR("SE operation complete Failed! 0x%x", ret);
395 return ret;
396 }
397
398 for (scratch_offset = SECURE_SCRATCH_TZDRAM_SHA256_HASH_START;
399 scratch_offset <= SECURE_SCRATCH_TZDRAM_SHA256_HASH_END;
400 scratch_offset += BYTES_IN_WORD) {
401 val = tegra_se_read_32(SE0_SHA_HASH_RESULT_0 + hash_offset);
402 mmio_write_32((uint32_t)(TEGRA_SCRATCH_BASE + scratch_offset),
403 val);
404 hash_offset += BYTES_IN_WORD;
405 }
406 return 0;
407}
408
409/*
410 * Handler to generate SHA256 and save HASH-result to pmc-scratch register
411 */
412int32_t tegra_se_calculate_save_sha256(uint64_t src_addr,
413 uint32_t src_len_inbyte)
414{
415 uint32_t security;
416 int32_t val = 0;
417
418 /* Set SE_SOFT_SETTINGS=SE_SECURE to prevent NS process to change SE
419 * registers.
420 */
421 security = tegra_se_read_32(SE0_SECURITY);
422 tegra_se_write_32(SE0_SECURITY, security | SE0_SECURITY_SE_SOFT_SETTING);
423
424 /* Bootrom enable IN_ID bit in SE0_SHA_GSCID_0 register during SC7-exit, causing
425 * SE0 ignores SE0 operation, and therefore failure of 2nd iteration of SC7 cycle.
426 */
427 tegra_se_write_32(SE0_SHA_GSCID_0, 0x0U);
428
429 /* Calculate SHA256 of BL31 */
430 val = tegra_se_calculate_sha256_hash(src_addr, src_len_inbyte);
431 if (val != 0) {
432 ERROR("%s: SHA256 generation failed\n", __func__);
433 return val;
434 }
435
436 /*
437 * Reset SE_SECURE to previous value.
438 */
439 tegra_se_write_32(SE0_SECURITY, security);
440
441 /* copy sha256_dst to PMC Scratch register */
442 val = tegra_se_save_sha256_pmc_scratch();
443 if (val != 0) {
444 ERROR("%s: SE0 status Error.\n", __func__);
445 }
446
447 return val;
448}
449
Steven Kao530b2172017-06-23 16:18:58 +0800450/*
451 * Handler to power down the SE hardware blocks - SE, RNG1 and PKA1. This
452 * needs to be called only during System Suspend.
453 */
454int32_t tegra_se_suspend(void)
455{
456 int32_t ret = 0;
457
steven kaoe5796062018-01-02 19:09:04 -0800458 /* initialise communication channel with BPMP */
459 assert(tegra_bpmp_ipc_init() == 0);
460
461 /* Enable SE clock before SE context save */
Varun Wadekare55c27b2018-09-13 08:47:43 -0700462 ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
Varun Wadekar35cc90a2018-05-25 15:22:58 -0700463 assert(ret == 0);
steven kaoe5796062018-01-02 19:09:04 -0800464
Steven Kao530b2172017-06-23 16:18:58 +0800465 /* save SE registers */
466 se_regs[0] = mmio_read_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT);
467 se_regs[1] = mmio_read_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL);
468 se_regs[2] = mmio_read_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT);
469 se_regs[3] = mmio_read_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT);
470
471 /* Save SE context. The BootROM restores it during System Resume */
472 ret = tegra_se_save_context();
473 if (ret != 0) {
474 ERROR("%s: context save failed (%d)\n", __func__, ret);
475 }
476
steven kaoe5796062018-01-02 19:09:04 -0800477 /* Disable SE clock after SE context save */
Varun Wadekare55c27b2018-09-13 08:47:43 -0700478 ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
Varun Wadekar35cc90a2018-05-25 15:22:58 -0700479 assert(ret == 0);
steven kaoe5796062018-01-02 19:09:04 -0800480
Steven Kao530b2172017-06-23 16:18:58 +0800481 return ret;
482}
483
484/*
485 * Handler to power up the SE hardware block(s) during System Resume.
486 */
487void tegra_se_resume(void)
488{
Varun Wadekar35cc90a2018-05-25 15:22:58 -0700489 int32_t ret = 0;
490
steven kaoe5796062018-01-02 19:09:04 -0800491 /* initialise communication channel with BPMP */
492 assert(tegra_bpmp_ipc_init() == 0);
493
494 /* Enable SE clock before SE context restore */
Varun Wadekare55c27b2018-09-13 08:47:43 -0700495 ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
Varun Wadekar35cc90a2018-05-25 15:22:58 -0700496 assert(ret == 0);
steven kaoe5796062018-01-02 19:09:04 -0800497
Steven Kao530b2172017-06-23 16:18:58 +0800498 /*
499 * When TZ takes over after System Resume, TZ should first reconfigure
500 * SE_MUTEX_WATCHDOG_NS_LIMIT, PKA1_MUTEX_WATCHDOG_NS_LIMIT,
501 * RNG1_MUTEX_WATCHDOG_NS_LIMIT and SE_ENTROPY_SRC_AGE_CTRL before
502 * other operations.
503 */
504 mmio_write_32(TEGRA_SE0_BASE + SE0_MUTEX_WATCHDOG_NS_LIMIT, se_regs[0]);
505 mmio_write_32(TEGRA_SE0_BASE + SE0_AES0_ENTROPY_SRC_AGE_CTRL, se_regs[1]);
506 mmio_write_32(TEGRA_RNG1_BASE + RNG1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[2]);
507 mmio_write_32(TEGRA_PKA1_BASE + PKA1_MUTEX_WATCHDOG_NS_LIMIT, se_regs[3]);
steven kaoe5796062018-01-02 19:09:04 -0800508
509 /* Disable SE clock after SE context restore */
Varun Wadekare55c27b2018-09-13 08:47:43 -0700510 ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
Varun Wadekar35cc90a2018-05-25 15:22:58 -0700511 assert(ret == 0);
Steven Kao530b2172017-06-23 16:18:58 +0800512}