blob: fcc4b8b78a634fa1861c4cbc1a06c1fee9f5d122 [file] [log] [blame]
Soby Mathewe063d3c2015-10-07 09:45:27 +01001/*
Soby Mathew72645132017-02-14 10:11:52 +00002 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
Soby Mathewe063d3c2015-10-07 09:45:27 +01003 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <arch.h>
32#include <arch_helpers.h>
33#include <assert.h>
34#include <debug.h>
35#include <gic_common.h>
36#include <gicv2.h>
Soby Mathew50f6fe42016-02-01 17:59:22 +000037#include "../common/gic_common_private.h"
Soby Mathewe063d3c2015-10-07 09:45:27 +010038#include "gicv2_private.h"
39
40static const gicv2_driver_data_t *driver_data;
41
42/*******************************************************************************
43 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
44 * and set the priority mask register to allow all interrupts to trickle in.
45 ******************************************************************************/
46void gicv2_cpuif_enable(void)
47{
48 unsigned int val;
49
50 assert(driver_data);
51 assert(driver_data->gicc_base);
52
53 /*
54 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
55 * bypass.
56 */
57 val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
58 val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
59
60 /* Program the idle priority in the PMR */
61 gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
62 gicc_write_ctlr(driver_data->gicc_base, val);
63}
64
65/*******************************************************************************
66 * Place the cpu interface in a state where it can never make a cpu exit wfi as
67 * as result of an asserted interrupt. This is critical for powering down a cpu
68 ******************************************************************************/
69void gicv2_cpuif_disable(void)
70{
71 unsigned int val;
72
73 assert(driver_data);
74 assert(driver_data->gicc_base);
75
76 /* Disable secure, non-secure interrupts and disable their bypass */
77 val = gicc_read_ctlr(driver_data->gicc_base);
78 val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
79 val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
80 val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
81 gicc_write_ctlr(driver_data->gicc_base, val);
82}
83
84/*******************************************************************************
85 * Per cpu gic distributor setup which will be done by all cpus after a cold
86 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
87 ******************************************************************************/
88void gicv2_pcpu_distif_init(void)
89{
90 assert(driver_data);
91 assert(driver_data->gicd_base);
92 assert(driver_data->g0_interrupt_array);
93
94 gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
95 driver_data->g0_interrupt_num,
96 driver_data->g0_interrupt_array);
97}
98
99/*******************************************************************************
100 * Global gic distributor init which will be done by the primary cpu after a
101 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
102 * then enables the secure GIC distributor interface.
103 ******************************************************************************/
104void gicv2_distif_init(void)
105{
106 unsigned int ctlr;
107
108 assert(driver_data);
109 assert(driver_data->gicd_base);
110 assert(driver_data->g0_interrupt_array);
111
112 /* Disable the distributor before going further */
113 ctlr = gicd_read_ctlr(driver_data->gicd_base);
114 gicd_write_ctlr(driver_data->gicd_base,
115 ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
116
117 /* Set the default attribute of all SPIs */
118 gicv2_spis_configure_defaults(driver_data->gicd_base);
119
120 /* Configure the G0 SPIs */
121 gicv2_secure_spis_configure(driver_data->gicd_base,
122 driver_data->g0_interrupt_num,
123 driver_data->g0_interrupt_array);
124
125 /* Re-enable the secure SPIs now that they have been configured */
126 gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
127}
128
129/*******************************************************************************
130 * Initialize the ARM GICv2 driver with the provided platform inputs
131 ******************************************************************************/
132void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
133{
134 unsigned int gic_version;
135 assert(plat_driver_data);
136 assert(plat_driver_data->gicd_base);
137 assert(plat_driver_data->gicc_base);
138
139 /*
140 * The platform should provide a list of atleast one type of
141 * interrupts
142 */
143 assert(plat_driver_data->g0_interrupt_array);
144
145 /*
146 * If there are no interrupts of a particular type, then the number of
147 * interrupts of that type should be 0 and vice-versa.
148 */
149 assert(plat_driver_data->g0_interrupt_array ?
150 plat_driver_data->g0_interrupt_num :
151 plat_driver_data->g0_interrupt_num == 0);
152
153 /* Ensure that this is a GICv2 system */
154 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
155 gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
156 & PIDR2_ARCH_REV_MASK;
157 assert(gic_version == ARCH_REV_GICV2);
158
159 driver_data = plat_driver_data;
160
Soby Mathew72645132017-02-14 10:11:52 +0000161 /*
162 * The GIC driver data is initialized by the primary CPU with caches
163 * enabled. When the secondary CPU boots up, it initializes the
164 * GICC/GICR interface with the caches disabled. Hence flush the
165 * driver_data to ensure coherency. This is not required if the
166 * platform has HW_ASSISTED_COHERENCY enabled.
167 */
168#if !HW_ASSISTED_COHERENCY
169 flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
170 flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
171#endif
Soby Mathewe063d3c2015-10-07 09:45:27 +0100172 INFO("ARM GICv2 driver initialized\n");
173}
174
175/******************************************************************************
176 * This function returns whether FIQ is enabled in the GIC CPU interface.
177 *****************************************************************************/
178unsigned int gicv2_is_fiq_enabled(void)
179{
180 unsigned int gicc_ctlr;
181
182 assert(driver_data);
183 assert(driver_data->gicc_base);
184
185 gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
186 return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
187}
188
189/*******************************************************************************
190 * This function returns the type of the highest priority pending interrupt at
191 * the GIC cpu interface. The return values can be one of the following :
192 * PENDING_G1_INTID : The interrupt type is non secure Group 1.
193 * 0 - 1019 : The interrupt type is secure Group 0.
194 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
195 * sufficient priority to be signaled
196 ******************************************************************************/
197unsigned int gicv2_get_pending_interrupt_type(void)
198{
199 assert(driver_data);
200 assert(driver_data->gicc_base);
201
202 return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
203}
204
205/*******************************************************************************
206 * This function returns the id of the highest priority pending interrupt at
207 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
208 * interrupt pending.
209 ******************************************************************************/
210unsigned int gicv2_get_pending_interrupt_id(void)
211{
212 unsigned int id;
213
214 assert(driver_data);
215 assert(driver_data->gicc_base);
216
217 id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
218
219 /*
220 * Find out which non-secure interrupt it is under the assumption that
221 * the GICC_CTLR.AckCtl bit is 0.
222 */
223 if (id == PENDING_G1_INTID)
224 id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
225
226 return id;
227}
228
229/*******************************************************************************
230 * This functions reads the GIC cpu interface Interrupt Acknowledge register
231 * to start handling the pending secure 0 interrupt. It returns the
232 * contents of the IAR.
233 ******************************************************************************/
234unsigned int gicv2_acknowledge_interrupt(void)
235{
236 assert(driver_data);
237 assert(driver_data->gicc_base);
238
239 return gicc_read_IAR(driver_data->gicc_base);
240}
241
242/*******************************************************************************
243 * This functions writes the GIC cpu interface End Of Interrupt register with
244 * the passed value to finish handling the active secure group 0 interrupt.
245 ******************************************************************************/
246void gicv2_end_of_interrupt(unsigned int id)
247{
248 assert(driver_data);
249 assert(driver_data->gicc_base);
250
251 gicc_write_EOIR(driver_data->gicc_base, id);
252}
253
254/*******************************************************************************
255 * This function returns the type of the interrupt id depending upon the group
256 * this interrupt has been configured under by the interrupt controller i.e.
257 * group0 secure or group1 non secure. It returns zero for Group 0 secure and
258 * one for Group 1 non secure interrupt.
259 ******************************************************************************/
260unsigned int gicv2_get_interrupt_group(unsigned int id)
261{
262 assert(driver_data);
263 assert(driver_data->gicd_base);
264
265 return gicd_get_igroupr(driver_data->gicd_base, id);
266}