blob: 4f671548438fea96fddb099df20a088256c7c150 [file] [log] [blame]
Jiafei Pan2f71dbf2021-09-10 14:57:49 +08001/*
2 * Copyright 2018-2021 NXP
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <endian.h>
8
9#include <arch.h>
10#include <caam.h>
11#include <cassert.h>
12#include <cci.h>
13#include <common/debug.h>
14#include <dcfg.h>
15#include <i2c.h>
16#include <lib/xlat_tables/xlat_tables_v2.h>
17#include <ls_interconnect.h>
18#include <mmio.h>
19#if TRUSTED_BOARD_BOOT
20#include <nxp_smmu.h>
21#endif
22#include <nxp_timer.h>
23#ifdef CONFIG_OCRAM_ECC_EN
24#include <ocram.h>
25#endif
26#include <plat_console.h>
27#include <plat_gic.h>
28#include <plat_tzc400.h>
29#include <pmu.h>
30#include <scfg.h>
31#if defined(NXP_SFP_ENABLED)
32#include <sfp.h>
33#endif
34
35#include <errata.h>
36#include "plat_common.h"
37#include "platform_def.h"
38#include "soc.h"
39
40static dcfg_init_info_t dcfg_init_data = {
41 .g_nxp_dcfg_addr = NXP_DCFG_ADDR,
42 .nxp_sysclk_freq = NXP_SYSCLK_FREQ,
43 .nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
44 .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
45};
46
47static struct soc_type soc_list[] = {
48 SOC_ENTRY(LS1017AN, LS1017AN, 1, 1),
49 SOC_ENTRY(LS1017AE, LS1017AE, 1, 1),
50 SOC_ENTRY(LS1018AN, LS1018AN, 1, 1),
51 SOC_ENTRY(LS1018AE, LS1018AE, 1, 1),
52 SOC_ENTRY(LS1027AN, LS1027AN, 1, 2),
53 SOC_ENTRY(LS1027AE, LS1027AE, 1, 2),
54 SOC_ENTRY(LS1028AN, LS1028AN, 1, 2),
55 SOC_ENTRY(LS1028AE, LS1028AE, 1, 2),
56};
57
58CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
59 assert_invalid_ls1028a_cluster_count);
60
61/*
62 * Function returns the base counter frequency
63 * after reading the first entry at CNTFID0 (0x20 offset).
64 *
65 * Function is used by:
66 * 1. ARM common code for PSCI management.
67 * 2. ARM Generic Timer init.
68 *
69 */
70unsigned int plat_get_syscnt_freq2(void)
71{
72 unsigned int counter_base_frequency;
73 /*
74 * Below register specifies the base frequency of the system counter.
75 * As per NXP Board Manuals:
76 * The system counter always works with SYS_REF_CLK/4 frequency clock.
77 */
78 counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
79
80 return counter_base_frequency;
81}
82
83#ifdef IMAGE_BL2
84void soc_preload_setup(void)
85{
86}
87
88void soc_early_init(void)
89{
90 uint8_t num_clusters, cores_per_cluster;
91
92#ifdef CONFIG_OCRAM_ECC_EN
93 ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
94#endif
95 dcfg_init(&dcfg_init_data);
96 enable_timer_base_to_cluster(NXP_PMU_ADDR);
97 enable_core_tb(NXP_PMU_ADDR);
98 dram_regions_info_t *dram_regions_info = get_dram_regions_info();
99
100#ifdef POLICY_FUSE_PROVISION
101 gpio_init(&gpio_init_data);
102 sec_init(NXP_CAAM_ADDR);
103#endif
104
105#if LOG_LEVEL > 0
106 /* Initialize the console to provide early debug support */
107 plat_console_init(NXP_CONSOLE_ADDR,
108 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
109#endif
110 enum boot_device dev = get_boot_dev();
111 /*
112 * Mark the buffer for SD in OCRAM as non secure.
113 * The buffer is assumed to be at end of OCRAM for
114 * the logic below to calculate TZPC programming
115 */
116 if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
117 /*
118 * Calculate the region in OCRAM which is secure
119 * The buffer for SD needs to be marked non-secure
120 * to allow SD to do DMA operations on it
121 */
122 uint32_t secure_region = (NXP_OCRAM_SIZE - NXP_SD_BLOCK_BUF_SIZE);
123 uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
124
125 mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
126
127 /* Add the entry for buffer in MMU Table */
128 mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
129 NXP_SD_BLOCK_BUF_SIZE, MT_DEVICE | MT_RW | MT_NS);
130 }
131
132#if TRUSTED_BOARD_BOOT
133 uint32_t mode;
134
135 sfp_init(NXP_SFP_ADDR);
136
137 /*
138 * For secure boot disable SMMU.
139 * Later when platform security policy comes in picture,
140 * this might get modified based on the policy
141 */
142 if (check_boot_mode_secure(&mode) == true) {
143 bypass_smmu(NXP_SMMU_ADDR);
144 }
145
146 /*
147 * For Mbedtls currently crypto is not supported via CAAM
148 * enable it when that support is there. In tbbr.mk
149 * the CAAM_INTEG is set as 0.
150 */
151#ifndef MBEDTLS_X509
152 /* Initialize the crypto accelerator if enabled */
153 if (is_sec_enabled()) {
154 sec_init(NXP_CAAM_ADDR);
155 } else {
156 INFO("SEC is disabled.\n");
157 }
158#endif
159#endif
160
161 /* Set eDDRTQ for DDR performance */
162 scfg_setbits32((void *)(NXP_SCFG_ADDR + 0x210), 0x1f1f1f1f);
163
164 soc_errata();
165
166 /*
167 * Initialize Interconnect for this cluster during cold boot.
168 * No need for locks as no other CPU is active.
169 */
170 cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
171
172 /*
173 * Enable Interconnect coherency for the primary CPU's cluster.
174 */
175 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
176 plat_ls_interconnect_enter_coherency(num_clusters);
177
178 delay_timer_init(NXP_TIMER_ADDR);
179 i2c_init(NXP_I2C_ADDR);
180 dram_regions_info->total_dram_size = init_ddr();
181}
182
183void soc_bl2_prepare_exit(void)
184{
185#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
186 set_sfp_wr_disable();
187#endif
188}
189
190/*
191 * This function returns the boot device based on RCW_SRC
192 */
193enum boot_device get_boot_dev(void)
194{
195 enum boot_device src = BOOT_DEVICE_NONE;
196 uint32_t porsr1;
197 uint32_t rcw_src;
198
199 porsr1 = read_reg_porsr1();
200
201 rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
202 switch (rcw_src) {
203 case FLEXSPI_NOR:
204 src = BOOT_DEVICE_FLEXSPI_NOR;
205 INFO("RCW BOOT SRC is FLEXSPI NOR\n");
206 break;
207 case FLEXSPI_NAND2K_VAL:
208 case FLEXSPI_NAND4K_VAL:
209 INFO("RCW BOOT SRC is FLEXSPI NAND\n");
210 src = BOOT_DEVICE_FLEXSPI_NAND;
211 break;
212 case SDHC1_VAL:
213 src = BOOT_DEVICE_EMMC;
214 INFO("RCW BOOT SRC is SD\n");
215 break;
216 case SDHC2_VAL:
217 src = BOOT_DEVICE_SDHC2_EMMC;
218 INFO("RCW BOOT SRC is EMMC\n");
219 break;
220 default:
221 break;
222 }
223
224 return src;
225}
226
227/*
228 * This function sets up access permissions on memory regions
229 ****************************************************************************/
230void soc_mem_access(void)
231{
232 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
233 struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
234 int dram_idx = 0;
235 /* index 0 is reserved for region-0 */
236 int index = 1;
237
238 for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions;
239 dram_idx++) {
240 if (info_dram_regions->region[dram_idx].size == 0) {
241 ERROR("DDR init failure, or");
242 ERROR("DRAM regions not populated correctly.\n");
243 break;
244 }
245
246 index = populate_tzc400_reg_list(tzc400_reg_list,
247 dram_idx, index,
248 info_dram_regions->region[dram_idx].addr,
249 info_dram_regions->region[dram_idx].size,
250 NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
251 }
252
253 mem_access_setup(NXP_TZC_ADDR, index, tzc400_reg_list);
254}
255
256#else
257
258static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2];
259/*
260 * This function dynamically constructs the topology according to
261 * SoC Flavor and returns it.
262 */
263const unsigned char *plat_get_power_domain_tree_desc(void)
264{
265 uint8_t num_clusters, cores_per_cluster;
266 unsigned int i;
267
268 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
269 /*
270 * The highest level is the system level. The next level is constituted
271 * by clusters and then cores in clusters.
272 */
273 _power_domain_tree_desc[0] = 1;
274 _power_domain_tree_desc[1] = num_clusters;
275
276 for (i = 0; i < _power_domain_tree_desc[1]; i++)
277 _power_domain_tree_desc[i + 2] = cores_per_cluster;
278
279 return _power_domain_tree_desc;
280}
281
282/*
283 * This function returns the core count within the cluster corresponding to
284 * `mpidr`.
285 */
286unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
287{
288 uint8_t num_clusters, cores_per_cluster;
289
290 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
291 return num_clusters;
292}
293
294void soc_early_platform_setup2(void)
295{
296 dcfg_init(&dcfg_init_data);
297 /* Initialize system level generic timer for Socs */
298 delay_timer_init(NXP_TIMER_ADDR);
299
300#if LOG_LEVEL > 0
301 /* Initialize the console to provide early debug support */
302 plat_console_init(NXP_CONSOLE_ADDR,
303 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
304#endif
305}
306
307void soc_platform_setup(void)
308{
309 /* Initialize the GIC driver, cpu and distributor interfaces */
310 static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
311 static interrupt_prop_t ls_interrupt_props[] = {
312 PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
313 PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
314 };
315
316 plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
317 PLATFORM_CORE_COUNT,
318 ls_interrupt_props,
319 ARRAY_SIZE(ls_interrupt_props),
320 target_mask_array,
321 plat_core_pos);
322
323 plat_ls_gic_init();
324 enable_init_timer();
325}
326
327/* This function initializes the soc from the BL31 module */
328void soc_init(void)
329{
330 uint8_t num_clusters, cores_per_cluster;
331
332 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
333
334 /* Low-level init of the soc */
335 soc_init_lowlevel();
336 _init_global_data();
337 soc_init_percpu();
338 _initialize_psci();
339
340 /*
341 * Initialize Interconnect for this cluster during cold boot.
342 * No need for locks as no other CPU is active.
343 */
344 cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map));
345
346 /* Enable Interconnect coherency for the primary CPU's cluster. */
347 plat_ls_interconnect_enter_coherency(num_clusters);
348
349 /* Set platform security policies */
350 _set_platform_security();
351
352 /* Init SEC Engine which will be used by SiP */
353 if (is_sec_enabled()) {
354 sec_init(NXP_CAAM_ADDR);
355 } else {
356 INFO("SEC is disabled.\n");
357 }
358}
359
360#ifdef NXP_WDOG_RESTART
361static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
362 void *handle, void *cookie)
363{
364 uint8_t data = WDOG_RESET_FLAG;
365
366 wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
367 (uint8_t *)&data, sizeof(data));
368
369 mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
370
371 return 0;
372}
373#endif
374
375void soc_runtime_setup(void)
376{
377#ifdef NXP_WDOG_RESTART
378 request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
379#endif
380}
381
382/* This function returns the total number of cores in the SoC. */
383unsigned int get_tot_num_cores(void)
384{
385 uint8_t num_clusters, cores_per_cluster;
386
387 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
388 return (num_clusters * cores_per_cluster);
389}
390
391/* This function returns the PMU IDLE Cluster mask. */
392unsigned int get_pmu_idle_cluster_mask(void)
393{
394 uint8_t num_clusters, cores_per_cluster;
395
396 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
397 return ((1 << num_clusters) - 2);
398}
399
400/* This function returns the PMU Flush Cluster mask. */
401unsigned int get_pmu_flush_cluster_mask(void)
402{
403 uint8_t num_clusters, cores_per_cluster;
404
405 get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster);
406 return ((1 << num_clusters) - 2);
407}
408
409/* This function returns the PMU idle core mask. */
410unsigned int get_pmu_idle_core_mask(void)
411{
412 return ((1 << get_tot_num_cores()) - 2);
413}
414
415/* Function to return the SoC SYS CLK */
416unsigned int get_sys_clk(void)
417{
418 return NXP_SYSCLK_FREQ;
419}
420#endif