Sheetal Tigadoli | b015670 | 2020-01-05 14:59:04 +0530 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2016 - 2020, Broadcom |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <stdlib.h> |
| 8 | #include <string.h> |
| 9 | #include <stddef.h> |
| 10 | |
| 11 | #include <arch_helpers.h> |
| 12 | #include <lib/mmio.h> |
| 13 | |
| 14 | #include "bcm_emmc.h" |
| 15 | #include "emmc_chal_types.h" |
| 16 | #include "emmc_csl_sdprot.h" |
| 17 | #include "emmc_chal_sd.h" |
| 18 | #include "emmc_csl_sdcmd.h" |
| 19 | #include "emmc_csl_sd.h" |
| 20 | #include "emmc_pboot_hal_memory_drv.h" |
| 21 | |
| 22 | #define SD_CARD_BUSY 0x80000000 |
| 23 | #define SD_CARD_RETRY_LIMIT 1000 |
| 24 | #define SD_CARD_HIGH_SPEED_PS 13 |
| 25 | #define SD_CHK_HIGH_SPEED_MODE 0x00FFFFF1 |
| 26 | #define SD_SET_HIGH_SPEED_MODE 0x80FFFFF1 |
| 27 | #define SD_MMC_ENABLE_HIGH_SPEED 0x03b90100 //0x03b90103 |
| 28 | #define SD_MMC_8BIT_MODE 0x03b70200 |
| 29 | #define SD_MMC_4BIT_MODE 0x03b70100 |
| 30 | #define SD_MMC_1BIT_MODE 0x03b70000 |
| 31 | |
| 32 | #define SD_MMC_BOOT_8BIT_MODE 0x03b10200 |
| 33 | #define SD_MMC_BOOT_4BIT_MODE 0x03b10100 |
| 34 | #define SD_MMC_BOOT_1BIT_MODE 0x03b10000 |
| 35 | #define SDIO_HW_EMMC_EXT_CSD_BOOT_CNF 0X03B30000 |
| 36 | |
| 37 | #ifdef USE_EMMC_FIP_TOC_CACHE |
| 38 | /* |
| 39 | * Cache size mirrors the size of the global eMMC temp buffer |
| 40 | * which is used for non-image body reads such as headers, ToC etc. |
| 41 | */ |
| 42 | #define CACHE_SIZE ((EMMC_BLOCK_SIZE) * 2) |
| 43 | #define PARTITION_BLOCK_ADDR ((PLAT_FIP_ATTEMPT_OFFSET)/(EMMC_BLOCK_SIZE)) |
| 44 | |
| 45 | static uint32_t cached_partition_block; |
| 46 | static uint8_t cached_block[CACHE_SIZE]; |
| 47 | #endif |
| 48 | |
| 49 | static int set_card_data_width(struct sd_handle *handle, int width); |
| 50 | static int abort_err(struct sd_handle *handle); |
| 51 | static int err_recovery(struct sd_handle *handle, uint32_t errors); |
| 52 | static int xfer_data(struct sd_handle *handle, uint32_t mode, uint32_t addr, |
| 53 | uint32_t length, uint8_t *base); |
| 54 | |
| 55 | int set_boot_config(struct sd_handle *handle, uint32_t config) |
| 56 | { |
| 57 | return mmc_cmd6(handle, SDIO_HW_EMMC_EXT_CSD_BOOT_CNF | config); |
| 58 | } |
| 59 | |
| 60 | void process_csd_mmc_speed(struct sd_handle *handle, uint32_t csd_mmc_speed) |
| 61 | { |
| 62 | uint32_t div_ctrl_setting; |
| 63 | |
| 64 | /* CSD field TRAN_SPEED: |
| 65 | * Bits [2:0] 0 = 100 KHz |
| 66 | * 1 = 1 MHz |
| 67 | * 2 = 10 MHz |
| 68 | * 3 = 100 MHz |
| 69 | * 4...7 Reserved. |
| 70 | * Bits [6:3] 0 = Reserved |
| 71 | * 1 = 1.0 |
| 72 | * 2 = 1.2 |
| 73 | * 3 = 1.3 |
| 74 | * 4 = 1.5 |
| 75 | * 5 = 2.0 |
| 76 | * 6 = 2.6 |
| 77 | * 7 = 3.0 |
| 78 | * 8 = 3.5 |
| 79 | * 9 = 4.0 |
| 80 | * A = 4.5 |
| 81 | * B = 5.2 |
| 82 | * C = 5.5 |
| 83 | * D = 6.0 |
| 84 | * E = 7.0 |
| 85 | * F = 8.0 |
| 86 | * For cards supporting version 4.0, 4.1, and 4.2 of the standard, |
| 87 | * the value shall be 20 MHz (0x2A). |
| 88 | * For cards supporting version 4.3 , the value shall be 26 MHz (0x32) |
| 89 | */ |
| 90 | |
| 91 | switch (csd_mmc_speed & 0x7F) { |
| 92 | case 0x2A: |
| 93 | EMMC_TRACE("Speeding up eMMC clock to 20MHz\n"); |
| 94 | div_ctrl_setting = |
| 95 | chal_sd_freq_2_div_ctrl_setting(20 * 1000 * 1000); |
| 96 | break; |
| 97 | case 0x32: |
| 98 | EMMC_TRACE("Speeding up eMMC clock to 26MHz\n"); |
| 99 | div_ctrl_setting = |
| 100 | chal_sd_freq_2_div_ctrl_setting(26 * 1000 * 1000); |
| 101 | break; |
| 102 | default: |
| 103 | /* Unknown */ |
| 104 | return; |
| 105 | } |
| 106 | |
| 107 | chal_sd_set_clock((CHAL_HANDLE *) handle->device, div_ctrl_setting, 0); |
| 108 | |
| 109 | chal_sd_set_clock((CHAL_HANDLE *) handle->device, div_ctrl_setting, 1); |
| 110 | |
| 111 | SD_US_DELAY(1000); |
| 112 | } |
| 113 | |
| 114 | |
| 115 | /* |
| 116 | * The function changes SD/SDIO/MMC card data width if |
| 117 | * the card support configurable data width. The host controller |
| 118 | * and the card has to be in the same bus data width. |
| 119 | */ |
| 120 | int set_card_data_width(struct sd_handle *handle, int width) |
| 121 | { |
| 122 | uint32_t data_width = 0; |
| 123 | int is_valid_arg = 1; |
| 124 | int rc = SD_FAIL; |
| 125 | char *bitwidth_str = " "; |
| 126 | char *result_str = "failed"; |
| 127 | |
| 128 | switch (width) { |
| 129 | #ifdef DRIVER_EMMC_ENABLE_DATA_WIDTH_8BIT |
| 130 | case SD_BUS_DATA_WIDTH_8BIT: |
| 131 | data_width = SD_MMC_8BIT_MODE; |
| 132 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 133 | bitwidth_str = "8_BIT"; |
| 134 | #endif |
| 135 | break; |
| 136 | #endif |
| 137 | case SD_BUS_DATA_WIDTH_4BIT: |
| 138 | data_width = SD_MMC_4BIT_MODE; |
| 139 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 140 | bitwidth_str = "4_BIT"; |
| 141 | #endif |
| 142 | break; |
| 143 | |
| 144 | case SD_BUS_DATA_WIDTH_1BIT: |
| 145 | data_width = SD_MMC_1BIT_MODE; |
| 146 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 147 | bitwidth_str = "1_BIT"; |
| 148 | #endif |
| 149 | break; |
| 150 | |
| 151 | default: |
| 152 | is_valid_arg = 0; |
| 153 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 154 | bitwidth_str = "unknown"; |
| 155 | #endif |
| 156 | break; |
| 157 | } |
| 158 | |
| 159 | if (is_valid_arg) { |
| 160 | rc = mmc_cmd6(handle, data_width); |
| 161 | if (rc == SD_OK) { |
| 162 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 163 | result_str = "succeeded"; |
| 164 | #endif |
| 165 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 166 | width); |
| 167 | } else { |
| 168 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 169 | result_str = "failed"; |
| 170 | #endif |
| 171 | } |
| 172 | } else { |
| 173 | rc = SD_FAIL; |
| 174 | #if LOG_LEVEL >= LOG_LEVEL_VERBOSE |
| 175 | result_str = "ignored"; |
| 176 | #endif |
| 177 | } |
| 178 | |
| 179 | VERBOSE("SDIO Data Width(%s) %s.\n", bitwidth_str, result_str); |
| 180 | |
| 181 | return rc; |
| 182 | } |
| 183 | |
| 184 | |
| 185 | /* |
| 186 | * Error handling routine. Does abort data |
| 187 | * transmission if error is found. |
| 188 | */ |
| 189 | static int abort_err(struct sd_handle *handle) |
| 190 | { |
| 191 | uint32_t present, options, event, rel = 0; |
| 192 | struct sd_resp cmdRsp; |
| 193 | |
| 194 | handle->device->ctrl.argReg = 0; |
| 195 | handle->device->ctrl.cmdIndex = SD_CMD_STOP_TRANSMISSION; |
| 196 | |
| 197 | options = (SD_CMD_STOP_TRANSMISSION << 24) | |
| 198 | (SD_CMDR_RSP_TYPE_R1b_5b << SD_CMDR_RSP_TYPE_S) | |
| 199 | SD4_EMMC_TOP_CMD_CRC_EN_MASK | |
| 200 | SD4_EMMC_TOP_CMD_CCHK_EN_MASK; |
| 201 | |
| 202 | chal_sd_send_cmd((CHAL_HANDLE *) handle->device, |
| 203 | handle->device->ctrl.cmdIndex, |
| 204 | handle->device->ctrl.argReg, options); |
| 205 | |
| 206 | event = wait_for_event(handle, |
| 207 | SD4_EMMC_TOP_INTR_CMDDONE_MASK | |
| 208 | SD_ERR_INTERRUPTS, |
| 209 | handle->device->cfg.wfe_retry); |
| 210 | |
| 211 | if (event & SD_CMD_ERROR_INT) { |
| 212 | rel = SD_ERROR_NON_RECOVERABLE; |
| 213 | } else { |
| 214 | if (event & SD_DAT_TIMEOUT) { |
| 215 | return SD_ERROR_NON_RECOVERABLE; |
| 216 | } |
| 217 | |
| 218 | chal_sd_get_response((CHAL_HANDLE *) handle->device, |
| 219 | (uint32_t *)&cmdRsp); |
| 220 | |
| 221 | process_cmd_response(handle, handle->device->ctrl.cmdIndex, |
| 222 | cmdRsp.data.r2.rsp1, cmdRsp.data.r2.rsp2, |
| 223 | cmdRsp.data.r2.rsp3, cmdRsp.data.r2.rsp4, |
| 224 | &cmdRsp); |
| 225 | |
| 226 | SD_US_DELAY(2000); |
| 227 | |
| 228 | present = |
| 229 | chal_sd_get_present_status((CHAL_HANDLE *) handle->device); |
| 230 | |
| 231 | if ((present & 0x00F00000) == 0x00F00000) |
| 232 | rel = SD_ERROR_RECOVERABLE; |
| 233 | else |
| 234 | rel = SD_ERROR_NON_RECOVERABLE; |
| 235 | } |
| 236 | |
| 237 | return rel; |
| 238 | } |
| 239 | |
| 240 | |
| 241 | /* |
| 242 | * The function handles real data transmission on both DMA and |
| 243 | * none DMA mode, In None DMA mode the data transfer starts |
| 244 | * when the command is sent to the card, data has to be written |
| 245 | * into the host contollers buffer at this time one block |
| 246 | * at a time. |
| 247 | * In DMA mode, the real data transfer is done by the DMA engine |
| 248 | * and this functions just waits for the data transfer to complete. |
| 249 | * |
| 250 | */ |
| 251 | int process_data_xfer(struct sd_handle *handle, uint8_t *buffer, uint32_t addr, |
| 252 | uint32_t length, int dir) |
| 253 | { |
| 254 | if (dir == SD_XFER_HOST_TO_CARD) { |
| 255 | #ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE |
| 256 | if (handle->device->cfg.dma == SD_DMA_OFF) { |
| 257 | /* |
| 258 | * In NON DMA mode, the real data xfer starts from here |
| 259 | */ |
| 260 | if (write_buffer(handle, length, buffer)) |
| 261 | return SD_WRITE_ERROR; |
| 262 | } else { |
| 263 | wait_for_event(handle, |
| 264 | SD4_EMMC_TOP_INTR_TXDONE_MASK | |
| 265 | SD_ERR_INTERRUPTS, |
| 266 | handle->device->cfg.wfe_retry); |
| 267 | |
| 268 | if (handle->device->ctrl.cmdStatus == SD_OK) |
| 269 | return SD_OK; |
| 270 | |
| 271 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 272 | return SD_WRITE_ERROR; |
| 273 | } |
| 274 | #else |
| 275 | return SD_WRITE_ERROR; |
| 276 | #endif |
| 277 | } else { /* SD_XFER_CARD_TO_HOST */ |
| 278 | |
| 279 | if (handle->device->cfg.dma == SD_DMA_OFF) { |
| 280 | /* In NON DMA mode, the real data |
| 281 | * transfer starts from here |
| 282 | */ |
| 283 | if (read_buffer(handle, length, buffer)) |
| 284 | return SD_READ_ERROR; |
| 285 | |
| 286 | } else { /* for DMA mode */ |
| 287 | |
| 288 | /* |
| 289 | * once the data transmission is done |
| 290 | * copy data to the host buffer. |
| 291 | */ |
| 292 | wait_for_event(handle, |
| 293 | SD4_EMMC_TOP_INTR_TXDONE_MASK | |
| 294 | SD_ERR_INTERRUPTS, |
| 295 | handle->device->cfg.wfe_retry); |
| 296 | |
| 297 | if (handle->device->ctrl.cmdStatus == SD_OK) |
| 298 | return SD_OK; |
| 299 | |
| 300 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 301 | return SD_READ_ERROR; |
| 302 | } |
| 303 | } |
| 304 | return SD_OK; |
| 305 | } |
| 306 | |
| 307 | |
| 308 | /* |
| 309 | * The function sets block size for the next SD/SDIO/MMC |
| 310 | * card read/write command. |
| 311 | */ |
| 312 | int select_blk_sz(struct sd_handle *handle, uint16_t size) |
| 313 | { |
| 314 | return sd_cmd16(handle, size); |
| 315 | } |
| 316 | |
| 317 | |
| 318 | /* |
| 319 | * The function initalizes the SD/SDIO/MMC/CEATA and detects |
| 320 | * the card according to the flag of detection. |
| 321 | * Once this function is called, the card is put into ready state |
| 322 | * so application can do data transfer to and from the card. |
| 323 | */ |
| 324 | int init_card(struct sd_handle *handle, int detection) |
| 325 | { |
| 326 | /* |
| 327 | * After Reset, eMMC comes up in 1 Bit Data Width by default. |
| 328 | * Set host side to match. |
| 329 | */ |
| 330 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 331 | SD_BUS_DATA_WIDTH_1BIT); |
| 332 | |
| 333 | #ifdef USE_EMMC_FIP_TOC_CACHE |
| 334 | cached_partition_block = 0; |
| 335 | #endif |
| 336 | handle->device->ctrl.present = 0; /* init card present to be no card */ |
| 337 | |
| 338 | init_mmc_card(handle); |
| 339 | |
| 340 | handle->device->ctrl.present = 1; /* card is detected */ |
| 341 | |
| 342 | /* switch the data width back */ |
| 343 | if (handle->card->type != SD_CARD_MMC) |
| 344 | return SD_FAIL; |
| 345 | |
| 346 | /* |
| 347 | * Dynamically set Data Width to highest supported value. |
| 348 | * Try different data width settings (highest to lowest). |
| 349 | * Verify each setting by reading EXT_CSD and comparing |
| 350 | * against the EXT_CSD contents previously read in call to |
| 351 | * init_mmc_card() earlier. Stop at first verified data width |
| 352 | * setting. |
| 353 | */ |
| 354 | { |
| 355 | #define EXT_CSD_PROPERTIES_SECTION_START_INDEX 192 |
| 356 | #define EXT_CSD_PROPERTIES_SECTION_END_INDEX 511 |
| 357 | uint8_t buffer[EXT_CSD_SIZE]; |
| 358 | #ifdef DRIVER_EMMC_ENABLE_DATA_WIDTH_8BIT |
| 359 | /* Try 8 Bit Data Width */ |
| 360 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 361 | SD_BUS_DATA_WIDTH_8BIT); |
| 362 | if ((!set_card_data_width(handle, SD_BUS_DATA_WIDTH_8BIT)) && |
| 363 | (!mmc_cmd8(handle, buffer)) && |
| 364 | (!memcmp(&buffer[EXT_CSD_PROPERTIES_SECTION_START_INDEX], |
| 365 | &(emmc_global_buf_ptr->u.Ext_CSD_storage[EXT_CSD_PROPERTIES_SECTION_START_INDEX]), |
| 366 | EXT_CSD_PROPERTIES_SECTION_END_INDEX - EXT_CSD_PROPERTIES_SECTION_START_INDEX + 1))) |
| 367 | |
| 368 | return SD_OK; |
| 369 | #endif |
| 370 | /* Fall back to 4 Bit Data Width */ |
| 371 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 372 | SD_BUS_DATA_WIDTH_4BIT); |
| 373 | if ((!set_card_data_width(handle, SD_BUS_DATA_WIDTH_4BIT)) && |
| 374 | (!mmc_cmd8(handle, buffer)) && |
| 375 | (!memcmp(&buffer[EXT_CSD_PROPERTIES_SECTION_START_INDEX], |
| 376 | &(emmc_global_buf_ptr->u.Ext_CSD_storage[EXT_CSD_PROPERTIES_SECTION_START_INDEX]), |
| 377 | EXT_CSD_PROPERTIES_SECTION_END_INDEX - EXT_CSD_PROPERTIES_SECTION_START_INDEX + 1))) |
| 378 | |
| 379 | return SD_OK; |
| 380 | |
| 381 | /* Fall back to 1 Bit Data Width */ |
| 382 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 383 | SD_BUS_DATA_WIDTH_1BIT); |
| 384 | /* Just use 1 Bit Data Width then. */ |
| 385 | if (!set_card_data_width(handle, SD_BUS_DATA_WIDTH_1BIT)) |
| 386 | return SD_OK; |
| 387 | |
| 388 | } |
| 389 | return SD_CARD_INIT_ERROR; |
| 390 | } |
| 391 | |
| 392 | |
| 393 | /* |
| 394 | * The function handles MMC/CEATA card initalization. |
| 395 | */ |
| 396 | int init_mmc_card(struct sd_handle *handle) |
| 397 | { |
| 398 | uint32_t ocr = 0, newOcr, rc, limit = 0; |
| 399 | uint32_t cmd1_option = 0x40300000; |
| 400 | uint32_t sec_count; |
| 401 | |
| 402 | handle->card->type = SD_CARD_MMC; |
| 403 | |
| 404 | do { |
| 405 | SD_US_DELAY(1000); |
| 406 | newOcr = 0; |
| 407 | ocr = 0; |
| 408 | rc = sd_cmd1(handle, cmd1_option, &newOcr); |
| 409 | limit++; |
| 410 | |
| 411 | if (rc == SD_OK) |
| 412 | ocr = newOcr; |
| 413 | |
| 414 | } while (((ocr & SD_CARD_BUSY) == 0) && (limit < SD_CARD_RETRY_LIMIT)); |
| 415 | |
| 416 | if (limit >= SD_CARD_RETRY_LIMIT) { |
| 417 | handle->card->type = SD_CARD_UNKNOWN; |
| 418 | EMMC_TRACE("CMD1 Timeout: Device is not ready\n"); |
| 419 | return SD_CARD_UNKNOWN; |
| 420 | } |
| 421 | |
| 422 | /* Save the ocr register */ |
| 423 | handle->device->ctrl.ocr = ocr; |
| 424 | |
| 425 | /* Ready State */ |
| 426 | rc = sd_cmd2(handle); |
| 427 | if (rc != SD_OK) { |
| 428 | handle->card->type = SD_CARD_UNKNOWN; |
| 429 | return SD_CARD_UNKNOWN; |
| 430 | } |
| 431 | |
| 432 | rc = sd_cmd3(handle); |
| 433 | if (rc != SD_OK) { |
| 434 | handle->card->type = SD_CARD_UNKNOWN; |
| 435 | return SD_CARD_UNKNOWN; |
| 436 | } |
| 437 | /* read CSD */ |
| 438 | rc = sd_cmd9(handle, &emmc_global_vars_ptr->cardData); |
| 439 | if (rc != SD_OK) { |
| 440 | handle->card->type = SD_CARD_UNKNOWN; |
| 441 | return SD_CARD_UNKNOWN; |
| 442 | } |
| 443 | |
| 444 | /* Increase clock frequency according to what the card advertises */ |
| 445 | EMMC_TRACE("From CSD... cardData.csd.mmc.speed = 0x%X\n", |
| 446 | emmc_global_vars_ptr->cardData.csd.mmc.speed); |
| 447 | process_csd_mmc_speed(handle, |
| 448 | emmc_global_vars_ptr->cardData.csd.mmc.speed); |
| 449 | |
| 450 | /* goto transfer mode */ |
| 451 | rc = sd_cmd7(handle, handle->device->ctrl.rca); |
| 452 | if (rc != SD_OK) { |
| 453 | handle->card->type = SD_CARD_UNKNOWN; |
| 454 | return SD_CARD_UNKNOWN; |
| 455 | } |
| 456 | |
| 457 | rc = mmc_cmd8(handle, emmc_global_buf_ptr->u.Ext_CSD_storage); |
| 458 | if (rc == SD_OK) { |
| 459 | /* calcul real capacity */ |
| 460 | sec_count = emmc_global_buf_ptr->u.Ext_CSD_storage[212] | |
| 461 | emmc_global_buf_ptr->u.Ext_CSD_storage[213] << 8 | |
| 462 | emmc_global_buf_ptr->u.Ext_CSD_storage[214] << 16 | |
| 463 | emmc_global_buf_ptr->u.Ext_CSD_storage[215] << 24; |
| 464 | |
| 465 | EMMC_TRACE("Device density = %ldMBytes\n", |
| 466 | handle->card->size / (1024 * 1024)); |
| 467 | |
| 468 | if (sec_count > 0) { |
| 469 | handle->card->size = (uint64_t)sec_count * 512; |
| 470 | |
| 471 | EMMC_TRACE("Updated Device density = %ldMBytes\n", |
| 472 | handle->card->size / (1024 * 1024)); |
| 473 | } |
| 474 | |
| 475 | if (sec_count > (2u * 1024 * 1024 * 1024) / 512) { |
| 476 | handle->device->ctrl.ocr |= SD_CARD_HIGH_CAPACITY; |
| 477 | handle->device->cfg.blockSize = 512; |
| 478 | } |
| 479 | |
| 480 | if (handle->device->ctrl.ocr & SD_CARD_HIGH_CAPACITY) |
| 481 | EMMC_TRACE("Sector addressing\n"); |
| 482 | else |
| 483 | EMMC_TRACE("Byte addressing\n"); |
| 484 | |
| 485 | EMMC_TRACE("Ext_CSD_storage[162]: 0x%02X Ext_CSD_storage[179]: 0x%02X\n", |
| 486 | emmc_global_buf_ptr->u.Ext_CSD_storage[162], |
| 487 | emmc_global_buf_ptr->u.Ext_CSD_storage[179]); |
| 488 | } |
| 489 | |
| 490 | return handle->card->type; |
| 491 | } |
| 492 | |
| 493 | |
| 494 | /* |
| 495 | * The function send reset command to the card. |
| 496 | * The card will be in ready status after the reset. |
| 497 | */ |
| 498 | int reset_card(struct sd_handle *handle) |
| 499 | { |
| 500 | int res = SD_OK; |
| 501 | |
| 502 | /* on reset, card's RCA should return to 0 */ |
| 503 | handle->device->ctrl.rca = 0; |
| 504 | |
| 505 | res = sd_cmd0(handle); |
| 506 | |
| 507 | if (res != SD_OK) |
| 508 | return SD_RESET_ERROR; |
| 509 | |
| 510 | return res; |
| 511 | } |
| 512 | |
| 513 | |
| 514 | /* |
| 515 | * The function sends command to the card and starts |
| 516 | * data transmission. |
| 517 | */ |
| 518 | static int xfer_data(struct sd_handle *handle, |
| 519 | uint32_t mode, |
| 520 | uint32_t addr, uint32_t length, uint8_t *base) |
| 521 | { |
| 522 | int rc = SD_OK; |
| 523 | |
| 524 | VERBOSE("XFER: dest: 0x%llx, addr: 0x%x, size: 0x%x bytes\n", |
| 525 | (uint64_t)base, addr, length); |
| 526 | |
| 527 | if ((length / handle->device->cfg.blockSize) > 1) { |
| 528 | if (mode == SD_OP_READ) { |
| 529 | inv_dcache_range((uintptr_t)base, (uint64_t)length); |
| 530 | rc = sd_cmd18(handle, addr, length, base); |
| 531 | } else { |
| 532 | #ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE |
| 533 | flush_dcache_range((uintptr_t)base, (uint64_t)length); |
| 534 | rc = sd_cmd25(handle, addr, length, base); |
| 535 | #else |
| 536 | rc = SD_DATA_XFER_ERROR; |
| 537 | #endif |
| 538 | } |
| 539 | } else { |
| 540 | if (mode == SD_OP_READ) { |
| 541 | inv_dcache_range((uintptr_t)base, (uint64_t)length); |
| 542 | rc = sd_cmd17(handle, addr, |
| 543 | handle->device->cfg.blockSize, base); |
| 544 | } else { |
| 545 | #ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE |
| 546 | flush_dcache_range((uintptr_t)base, (uint64_t)length); |
| 547 | rc = sd_cmd24(handle, addr, |
| 548 | handle->device->cfg.blockSize, base); |
| 549 | #else |
| 550 | rc = SD_DATA_XFER_ERROR; |
| 551 | #endif |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | if (rc != SD_OK) |
| 556 | return SD_DATA_XFER_ERROR; |
| 557 | |
| 558 | return SD_OK; |
| 559 | } |
| 560 | |
| 561 | #ifdef INCLUDE_EMMC_DRIVER_ERASE_CODE |
| 562 | int erase_card(struct sd_handle *handle, uint32_t addr, uint32_t blocks) |
| 563 | { |
| 564 | uint32_t end_addr; |
| 565 | |
| 566 | INFO("ERASE: addr: 0x%x, num of sectors: 0x%x\n", addr, blocks); |
| 567 | |
| 568 | if (sd_cmd35(handle, addr) != SD_OK) |
| 569 | return SD_FAIL; |
| 570 | |
| 571 | end_addr = addr + blocks - 1; |
| 572 | if (sd_cmd36(handle, end_addr) != SD_OK) |
| 573 | return SD_FAIL; |
| 574 | |
| 575 | if (sd_cmd38(handle) != SD_OK) |
| 576 | return SD_FAIL; |
| 577 | |
| 578 | return SD_OK; |
| 579 | } |
| 580 | #endif |
| 581 | |
| 582 | /* |
| 583 | * The function reads block data from a card. |
| 584 | */ |
| 585 | #ifdef USE_EMMC_FIP_TOC_CACHE |
| 586 | int read_block(struct sd_handle *handle, |
| 587 | uint8_t *dst, uint32_t addr, uint32_t len) |
| 588 | { |
| 589 | int rel = SD_OK; |
| 590 | |
| 591 | /* |
| 592 | * Avoid doing repeated reads of the partition block |
| 593 | * by caching. |
| 594 | */ |
| 595 | if (cached_partition_block && |
| 596 | addr == PARTITION_BLOCK_ADDR && |
| 597 | len == CACHE_SIZE) { |
| 598 | memcpy(dst, cached_block, len); |
| 599 | } else { |
| 600 | rel = xfer_data(handle, SD_OP_READ, addr, len, dst); |
| 601 | |
| 602 | if (len == CACHE_SIZE && addr == PARTITION_BLOCK_ADDR) { |
| 603 | cached_partition_block = 1; |
| 604 | memcpy(cached_block, dst, len); |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | return rel; |
| 609 | } |
| 610 | #else |
| 611 | int read_block(struct sd_handle *handle, |
| 612 | uint8_t *dst, uint32_t addr, uint32_t len) |
| 613 | { |
| 614 | return xfer_data(handle, SD_OP_READ, addr, len, dst); |
| 615 | } |
| 616 | #endif |
| 617 | |
| 618 | #ifdef INCLUDE_EMMC_DRIVER_WRITE_CODE |
| 619 | |
| 620 | /* |
| 621 | * The function writes block data to a card. |
| 622 | */ |
| 623 | int write_block(struct sd_handle *handle, |
| 624 | uint8_t *src, uint32_t addr, uint32_t len) |
| 625 | { |
| 626 | int rel = SD_OK; |
| 627 | |
| 628 | /* |
| 629 | * Current HC has problem to get response of cmd16 after cmd12, |
| 630 | * the delay is necessary to sure the next cmd16 will not be timed out. |
| 631 | * The delay has to be at least 4 ms. |
| 632 | * The code removed cmd16 and use cmd13 to get card status before |
| 633 | * sending cmd18 or cmd25 to make sure the card is ready and thus |
| 634 | * no need to have delay here. |
| 635 | */ |
| 636 | |
| 637 | rel = xfer_data(handle, SD_OP_WRITE, addr, len, src); |
| 638 | |
| 639 | EMMC_TRACE("wr_blk addr:0x%08X src:0x%08X len:0x%08X result:%d\n", |
| 640 | addr, src, len, rel); |
| 641 | |
| 642 | return rel; |
| 643 | } |
| 644 | |
| 645 | |
| 646 | /* |
| 647 | * The function is called to write one block data directly to |
| 648 | * a card's data buffer. |
| 649 | * it is used in Non-DMA mode for card data transmission. |
| 650 | */ |
| 651 | int write_buffer(struct sd_handle *handle, uint32_t length, uint8_t *data) |
| 652 | { |
| 653 | uint32_t rem, blockSize, event; |
| 654 | uint8_t *pData = data; |
| 655 | |
| 656 | blockSize = handle->device->cfg.blockSize; |
| 657 | rem = length; |
| 658 | |
| 659 | if (rem == 0) |
| 660 | return SD_OK; |
| 661 | |
| 662 | while (rem > 0) { |
| 663 | |
| 664 | event = wait_for_event(handle, |
| 665 | SD4_EMMC_TOP_INTR_BWRDY_MASK | |
| 666 | SD_ERR_INTERRUPTS, |
| 667 | handle->device->cfg.wfe_retry); |
| 668 | |
| 669 | if (handle->device->ctrl.cmdStatus) { |
| 670 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 671 | return SD_WRITE_ERROR; |
| 672 | } |
| 673 | |
| 674 | if (rem >= blockSize) |
| 675 | chal_sd_write_buffer((CHAL_HANDLE *) handle->device, |
| 676 | blockSize, pData); |
| 677 | else |
| 678 | chal_sd_write_buffer((CHAL_HANDLE *) handle->device, |
| 679 | rem, pData); |
| 680 | |
| 681 | if (rem > blockSize) { |
| 682 | rem -= blockSize; |
| 683 | pData += blockSize; |
| 684 | } else { |
| 685 | pData += rem; |
| 686 | rem = 0; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | if ((event & SD4_EMMC_TOP_INTR_TXDONE_MASK) != |
| 691 | SD4_EMMC_TOP_INTR_TXDONE_MASK) { |
| 692 | event = wait_for_event(handle, |
| 693 | SD4_EMMC_TOP_INTR_TXDONE_MASK | |
| 694 | SD_ERR_INTERRUPTS, |
| 695 | handle->device->cfg.wfe_retry); |
| 696 | |
| 697 | if (handle->device->ctrl.cmdStatus != SD_OK) { |
| 698 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 699 | return SD_WRITE_ERROR; |
| 700 | } |
| 701 | } else { |
| 702 | handle->device->ctrl.eventList &= ~SD4_EMMC_TOP_INTR_TXDONE_MASK; |
| 703 | } |
| 704 | |
| 705 | return SD_OK; |
| 706 | } |
| 707 | #endif /* INCLUDE_EMMC_DRIVER_WRITE_CODE */ |
| 708 | |
| 709 | |
| 710 | /* |
| 711 | * The function is called to read maximal one block data |
| 712 | * directly from a card |
| 713 | * It is used in Non-DMA mode for card data transmission. |
| 714 | */ |
| 715 | int read_buffer(struct sd_handle *handle, uint32_t length, uint8_t *data) |
| 716 | { |
| 717 | uint32_t rem, blockSize, event = 0; |
| 718 | uint8_t *pData = data; |
| 719 | |
| 720 | blockSize = handle->device->cfg.blockSize; |
| 721 | rem = length; |
| 722 | |
| 723 | if (rem == 0) |
| 724 | return SD_OK; |
| 725 | |
| 726 | while (rem > 0) { |
| 727 | event = wait_for_event(handle, |
| 728 | SD4_EMMC_TOP_INTR_BRRDY_MASK | |
| 729 | SD_ERR_INTERRUPTS, |
| 730 | handle->device->cfg.wfe_retry); |
| 731 | |
| 732 | if (handle->device->ctrl.cmdStatus) { |
| 733 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 734 | return SD_READ_ERROR; |
| 735 | } |
| 736 | |
| 737 | if (rem >= blockSize) |
| 738 | chal_sd_read_buffer((CHAL_HANDLE *) handle->device, |
| 739 | blockSize, pData); |
| 740 | else |
| 741 | chal_sd_read_buffer((CHAL_HANDLE *) handle->device, rem, |
| 742 | pData); |
| 743 | |
| 744 | if (rem > blockSize) { |
| 745 | rem -= blockSize; |
| 746 | pData += blockSize; |
| 747 | } else { |
| 748 | pData += rem; |
| 749 | rem = 0; |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | /* In case, there are extra data in the SD FIFO, just dump them. */ |
| 754 | chal_sd_dump_fifo((CHAL_HANDLE *) handle->device); |
| 755 | |
| 756 | if ((event & SD4_EMMC_TOP_INTR_TXDONE_MASK) != |
| 757 | SD4_EMMC_TOP_INTR_TXDONE_MASK) { |
| 758 | event = wait_for_event(handle, SD4_EMMC_TOP_INTR_TXDONE_MASK, |
| 759 | handle->device->cfg.wfe_retry); |
| 760 | |
| 761 | if (handle->device->ctrl.cmdStatus) { |
| 762 | check_error(handle, handle->device->ctrl.cmdStatus); |
| 763 | return SD_READ_ERROR; |
| 764 | } |
| 765 | } else { |
| 766 | handle->device->ctrl.eventList &= ~SD4_EMMC_TOP_INTR_TXDONE_MASK; |
| 767 | } |
| 768 | |
| 769 | return SD_OK; |
| 770 | } |
| 771 | |
| 772 | |
| 773 | /* |
| 774 | * Error handling routine. |
| 775 | * The function just reset the DAT |
| 776 | * and CMD line if an error occures during data transmission. |
| 777 | */ |
| 778 | int check_error(struct sd_handle *handle, uint32_t ints) |
| 779 | { |
| 780 | uint32_t rel; |
| 781 | |
| 782 | chal_sd_set_irq_signal((CHAL_HANDLE *) handle->device, |
| 783 | SD_ERR_INTERRUPTS, 0); |
| 784 | |
| 785 | if (ints & SD4_EMMC_TOP_INTR_CMDERROR_MASK) { |
| 786 | |
| 787 | chal_sd_reset_line((CHAL_HANDLE *) handle->device, |
| 788 | SD4_EMMC_TOP_CTRL1_CMDRST_MASK); |
| 789 | rel = abort_err(handle); |
| 790 | |
| 791 | chal_sd_reset_line((CHAL_HANDLE *) handle->device, |
| 792 | SD4_EMMC_TOP_CTRL1_DATRST_MASK); |
| 793 | chal_sd_set_irq_signal((CHAL_HANDLE *) handle->device, |
| 794 | SD_ERR_INTERRUPTS, 1); |
| 795 | |
| 796 | return (rel == SD_ERROR_NON_RECOVERABLE) ? |
| 797 | SD_ERROR_NON_RECOVERABLE : SD_ERROR_RECOVERABLE; |
| 798 | } else { |
| 799 | rel = err_recovery(handle, ints); |
| 800 | } |
| 801 | |
| 802 | chal_sd_set_irq_signal((CHAL_HANDLE *) handle->device, |
| 803 | SD_ERR_INTERRUPTS, 1); |
| 804 | |
| 805 | return rel; |
| 806 | } |
| 807 | |
| 808 | |
| 809 | /* |
| 810 | * Error recovery routine. |
| 811 | * Try to recover from the error. |
| 812 | */ |
| 813 | static int err_recovery(struct sd_handle *handle, uint32_t errors) |
| 814 | { |
| 815 | uint32_t rel = 0; |
| 816 | |
| 817 | /* |
| 818 | * In case of timeout error, the cmd line and data line maybe |
| 819 | * still active or stuck at atcitve so it is needed to reset |
| 820 | * either data line or cmd line to make sure a new cmd can be sent. |
| 821 | */ |
| 822 | |
| 823 | if (errors & SD_CMD_ERROR_INT) |
| 824 | chal_sd_reset_line((CHAL_HANDLE *) handle->device, |
| 825 | SD4_EMMC_TOP_CTRL1_CMDRST_MASK); |
| 826 | |
| 827 | if (errors & SD_DAT_ERROR_INT) |
| 828 | chal_sd_reset_line((CHAL_HANDLE *) handle->device, |
| 829 | SD4_EMMC_TOP_CTRL1_DATRST_MASK); |
| 830 | |
| 831 | /* Abort transaction by sending out stop command */ |
| 832 | if ((handle->device->ctrl.cmdIndex == 18) || |
| 833 | (handle->device->ctrl.cmdIndex == 25)) |
| 834 | rel = abort_err(handle); |
| 835 | |
| 836 | return rel; |
| 837 | } |
| 838 | |
| 839 | |
| 840 | /* |
| 841 | * The function is called to read one block data directly from a card. |
| 842 | * It is used in Non-DMA mode for card data transmission. |
| 843 | */ |
| 844 | int process_cmd_response(struct sd_handle *handle, |
| 845 | uint32_t cmdIndex, |
| 846 | uint32_t rsp0, |
| 847 | uint32_t rsp1, |
| 848 | uint32_t rsp2, uint32_t rsp3, struct sd_resp *resp) |
| 849 | { |
| 850 | int result = SD_OK; |
| 851 | |
| 852 | /* R6 */ |
| 853 | uint32_t rca = (rsp0 >> 16) & 0xffff; |
| 854 | uint32_t cardStatus = rsp0; |
| 855 | |
| 856 | /* R4 */ |
| 857 | uint32_t cBit = (rsp0 >> 31) & 0x1; |
| 858 | uint32_t funcs = (rsp0 >> 28) & 0x7; |
| 859 | uint32_t memPresent = (rsp0 >> 27) & 0x1; |
| 860 | |
| 861 | resp->r1 = 0x3f; |
| 862 | resp->cardStatus = cardStatus; |
| 863 | |
| 864 | if (cmdIndex == SD_CMD_IO_SEND_OP_COND) { |
| 865 | resp->data.r4.cardReady = cBit; |
| 866 | resp->data.r4.funcs = funcs; |
| 867 | resp->data.r4.memPresent = memPresent; |
| 868 | resp->data.r4.ocr = cardStatus; |
| 869 | } |
| 870 | |
| 871 | if (cmdIndex == SD_CMD_MMC_SET_RCA) { |
| 872 | resp->data.r6.rca = rca; |
| 873 | resp->data.r6.cardStatus = cardStatus & 0xFFFF; |
| 874 | } |
| 875 | |
| 876 | if (cmdIndex == SD_CMD_SELECT_DESELECT_CARD) { |
| 877 | resp->data.r7.rca = rca; |
| 878 | } |
| 879 | |
| 880 | if (cmdIndex == SD_CMD_IO_RW_DIRECT) { |
| 881 | if (((rsp0 >> 16) & 0xffff) != 0) |
| 882 | result = SD_CMD_ERR_INVALID_RESPONSE; |
| 883 | |
| 884 | resp->data.r5.data = rsp0 & 0xff; |
| 885 | } |
| 886 | |
| 887 | if (cmdIndex == SD_CMD_IO_RW_EXTENDED) { |
| 888 | if (((rsp0 >> 16) & 0xffff) != 0) |
| 889 | result = SD_CMD_ERR_INVALID_RESPONSE; |
| 890 | |
| 891 | resp->data.r5.data = rsp0 & 0xff; |
| 892 | } |
| 893 | |
| 894 | if (cmdIndex == SD_ACMD_SD_SEND_OP_COND || |
| 895 | cmdIndex == SD_CMD_SEND_OPCOND) |
| 896 | resp->data.r3.ocr = cardStatus; |
| 897 | |
| 898 | if (cmdIndex == SD_CMD_SEND_CSD || |
| 899 | cmdIndex == SD_CMD_SEND_CID || |
| 900 | cmdIndex == SD_CMD_ALL_SEND_CID) { |
| 901 | resp->data.r2.rsp4 = rsp3; |
| 902 | resp->data.r2.rsp3 = rsp2; |
| 903 | resp->data.r2.rsp2 = rsp1; |
| 904 | resp->data.r2.rsp1 = rsp0; |
| 905 | } |
| 906 | |
| 907 | if ((cmdIndex == SD_CMD_READ_EXT_CSD) && |
| 908 | (handle->card->type == SD_CARD_SD)) { |
| 909 | if ((resp->cardStatus & 0xAA) != 0xAA) { |
| 910 | result = SD_CMD_ERR_INVALID_RESPONSE; |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | return result; |
| 915 | } |
| 916 | |
| 917 | |
| 918 | /* |
| 919 | * The function sets DMA buffer and data length, process |
| 920 | * block size and the number of blocks to be transferred. |
| 921 | * It returns the DMA buffer address. |
| 922 | * It copies dma data from user buffer to the DMA buffer |
| 923 | * if the operation is to write data to the SD card. |
| 924 | */ |
| 925 | void data_xfer_setup(struct sd_handle *handle, uint8_t *data, uint32_t length, |
| 926 | int dir) |
| 927 | { |
| 928 | chal_sd_setup_xfer((CHAL_HANDLE *)handle->device, data, length, dir); |
| 929 | } |
| 930 | |
| 931 | |
| 932 | /* |
| 933 | * The function does soft reset the host SD controller. After |
| 934 | * the function call all host controller's register are reset |
| 935 | * to default vallue; |
| 936 | * |
| 937 | * Note This function only resets the host controller it does not |
| 938 | * reset the controller's handler. |
| 939 | */ |
| 940 | int reset_host_ctrl(struct sd_handle *handle) |
| 941 | { |
| 942 | chal_sd_stop(); |
| 943 | |
| 944 | return SD_OK; |
| 945 | } |
| 946 | |
| 947 | static void pstate_log(struct sd_handle *handle) |
| 948 | { |
| 949 | ERROR("PSTATE: 0x%x\n", mmio_read_32 |
| 950 | (handle->device->ctrl.sdRegBaseAddr + |
| 951 | SD4_EMMC_TOP_PSTATE_SD4_OFFSET)); |
| 952 | ERROR("ERRSTAT: 0x%x\n", mmio_read_32 |
| 953 | (handle->device->ctrl.sdRegBaseAddr + |
| 954 | SD4_EMMC_TOP_ERRSTAT_OFFSET)); |
| 955 | } |
| 956 | |
| 957 | /* |
| 958 | * The function waits for one or a group of interrupts specified |
| 959 | * by mask. The function returns if any one the interrupt status |
| 960 | * is set. If interrupt mode is not enabled then it will poll |
| 961 | * the interrupt status register until a interrupt status is set |
| 962 | * an error interrupt happens. If interrupt mode is enabled then |
| 963 | * this function should be called after the interrupt |
| 964 | * is received by ISR routine. |
| 965 | */ |
| 966 | uint32_t wait_for_event(struct sd_handle *handle, |
| 967 | uint32_t mask, uint32_t retry) |
| 968 | { |
| 969 | uint32_t regval, cmd12, time = 0; |
| 970 | |
| 971 | handle->device->ctrl.cmdStatus = 0; /* no error */ |
| 972 | EMMC_TRACE("%s %d mask:0x%x timeout:%d irq_status:0x%x\n", |
| 973 | __func__, __LINE__, mask, retry, |
| 974 | chal_sd_get_irq_status((CHAL_HANDLE *)handle->device)); |
| 975 | |
| 976 | /* Polling mode */ |
| 977 | do { |
| 978 | regval = chal_sd_get_irq_status((CHAL_HANDLE *)handle->device); |
| 979 | |
| 980 | if (regval & SD4_EMMC_TOP_INTR_DMAIRQ_MASK) { |
| 981 | chal_sd_set_dma_addr((CHAL_HANDLE *)handle->device, |
| 982 | (uintptr_t) |
| 983 | chal_sd_get_dma_addr((CHAL_HANDLE *) |
| 984 | handle->device)); |
| 985 | chal_sd_clear_irq((CHAL_HANDLE *)handle->device, |
| 986 | SD4_EMMC_TOP_INTR_DMAIRQ_MASK); |
| 987 | } |
| 988 | |
| 989 | if (time++ > retry) { |
| 990 | ERROR("EMMC: No response (cmd%d) after %dus.\n", |
| 991 | handle->device->ctrl.cmdIndex, |
| 992 | time * EMMC_WFE_RETRY_DELAY_US); |
| 993 | handle->device->ctrl.cmdStatus = SD_CMD_MISSING; |
| 994 | pstate_log(handle); |
| 995 | ERROR("EMMC: INT[0x%x]\n", regval); |
| 996 | break; |
| 997 | } |
| 998 | |
| 999 | if (regval & SD4_EMMC_TOP_INTR_CTOERR_MASK) { |
| 1000 | ERROR("EMMC: Cmd%d timeout INT[0x%x]\n", |
| 1001 | handle->device->ctrl.cmdIndex, regval); |
| 1002 | handle->device->ctrl.cmdStatus = |
| 1003 | SD4_EMMC_TOP_INTR_CTOERR_MASK; |
| 1004 | pstate_log(handle); |
| 1005 | break; |
| 1006 | } |
| 1007 | if (regval & SD_CMD_ERROR_FLAGS) { |
| 1008 | ERROR("EMMC: Cmd%d error INT[0x%x]\n", |
| 1009 | handle->device->ctrl.cmdIndex, regval); |
| 1010 | handle->device->ctrl.cmdStatus = SD_CMD_ERROR_FLAGS; |
| 1011 | pstate_log(handle); |
| 1012 | break; |
| 1013 | } |
| 1014 | |
| 1015 | cmd12 = chal_sd_get_atuo12_error((CHAL_HANDLE *)handle->device); |
| 1016 | if (cmd12) { |
| 1017 | ERROR("EMMC: Cmd%d auto cmd12 err:0x%x\n", |
| 1018 | handle->device->ctrl.cmdIndex, cmd12); |
| 1019 | handle->device->ctrl.cmdStatus = cmd12; |
| 1020 | pstate_log(handle); |
| 1021 | break; |
| 1022 | } |
| 1023 | |
| 1024 | if (SD_DATA_ERROR_FLAGS & regval) { |
| 1025 | ERROR("EMMC: Data for cmd%d error, INT[0x%x]\n", |
| 1026 | handle->device->ctrl.cmdIndex, regval); |
| 1027 | handle->device->ctrl.cmdStatus = |
| 1028 | (SD_DATA_ERROR_FLAGS & regval); |
| 1029 | pstate_log(handle); |
| 1030 | break; |
| 1031 | } |
| 1032 | |
| 1033 | if ((regval & mask) == 0) |
| 1034 | udelay(EMMC_WFE_RETRY_DELAY_US); |
| 1035 | |
| 1036 | } while ((regval & mask) == 0); |
| 1037 | |
| 1038 | /* clear the interrupt since it is processed */ |
| 1039 | chal_sd_clear_irq((CHAL_HANDLE *)handle->device, (regval & mask)); |
| 1040 | |
| 1041 | return (regval & mask); |
| 1042 | } |
| 1043 | |
| 1044 | int32_t set_config(struct sd_handle *handle, uint32_t speed, uint32_t retry, |
| 1045 | uint32_t dma, uint32_t dmaBound, uint32_t blkSize, |
| 1046 | uint32_t wfe_retry) |
| 1047 | { |
| 1048 | int32_t rel = 0; |
| 1049 | |
| 1050 | if (handle == NULL) |
| 1051 | return SD_FAIL; |
| 1052 | |
| 1053 | handle->device->cfg.wfe_retry = wfe_retry; |
| 1054 | |
| 1055 | rel = chal_sd_config((CHAL_HANDLE *)handle->device, speed, retry, |
| 1056 | dmaBound, blkSize, dma); |
| 1057 | return rel; |
| 1058 | |
| 1059 | } |
| 1060 | |
| 1061 | int mmc_cmd1(struct sd_handle *handle) |
| 1062 | { |
| 1063 | uint32_t newOcr, res; |
| 1064 | uint32_t cmd1_option = MMC_OCR_OP_VOLT | MMC_OCR_SECTOR_ACCESS_MODE; |
| 1065 | |
| 1066 | /* |
| 1067 | * After Reset, eMMC comes up in 1 Bit Data Width by default. |
| 1068 | * Set host side to match. |
| 1069 | */ |
| 1070 | chal_sd_config_bus_width((CHAL_HANDLE *) handle->device, |
| 1071 | SD_BUS_DATA_WIDTH_1BIT); |
| 1072 | |
| 1073 | #ifdef USE_EMMC_FIP_TOC_CACHE |
| 1074 | cached_partition_block = 0; |
| 1075 | #endif |
| 1076 | handle->device->ctrl.present = 0; /* init card present to be no card */ |
| 1077 | |
| 1078 | handle->card->type = SD_CARD_MMC; |
| 1079 | |
| 1080 | res = sd_cmd1(handle, cmd1_option, &newOcr); |
| 1081 | |
| 1082 | if (res != SD_OK) { |
| 1083 | EMMC_TRACE("CMD1 Timeout: Device is not ready\n"); |
| 1084 | res = SD_CARD_UNKNOWN; |
| 1085 | } |
| 1086 | return res; |
| 1087 | } |