Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 1 | /* |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 2 | * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved. |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * Redistributions of source code must retain the above copyright notice, this |
| 8 | * list of conditions and the following disclaimer. |
| 9 | * |
| 10 | * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | * this list of conditions and the following disclaimer in the documentation |
| 12 | * and/or other materials provided with the distribution. |
| 13 | * |
| 14 | * Neither the name of ARM nor the names of its contributors may be used |
| 15 | * to endorse or promote products derived from this software without specific |
| 16 | * prior written permission. |
| 17 | * |
| 18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 19 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 20 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 21 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| 22 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 23 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 24 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 25 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 26 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 27 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 28 | * POSSIBILITY OF SUCH DAMAGE. |
| 29 | */ |
| 30 | |
| 31 | |
| 32 | /******************************************************************************* |
| 33 | * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a |
| 34 | * plug-in component to the Secure Monitor, registered as a runtime service. The |
| 35 | * SPD is expected to be a functional extension of the Secure Payload (SP) that |
| 36 | * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting |
| 37 | * the Trusted OS/Applications range to the dispatcher. The SPD will either |
| 38 | * handle the request locally or delegate it to the Secure Payload. It is also |
| 39 | * responsible for initialising and maintaining communication with the SP. |
| 40 | ******************************************************************************/ |
| 41 | #include <arch_helpers.h> |
| 42 | #include <assert.h> |
| 43 | #include <bl_common.h> |
| 44 | #include <bl31.h> |
| 45 | #include <context_mgmt.h> |
| 46 | #include <debug.h> |
| 47 | #include <errno.h> |
| 48 | #include <platform.h> |
| 49 | #include <runtime_svc.h> |
| 50 | #include <stddef.h> |
| 51 | #include <uuid.h> |
| 52 | #include "opteed_private.h" |
| 53 | #include "teesmc_opteed_macros.h" |
| 54 | #include "teesmc_opteed.h" |
| 55 | |
| 56 | /******************************************************************************* |
| 57 | * Address of the entrypoint vector table in OPTEE. It is |
| 58 | * initialised once on the primary core after a cold boot. |
| 59 | ******************************************************************************/ |
| 60 | optee_vectors_t *optee_vectors; |
| 61 | |
| 62 | /******************************************************************************* |
| 63 | * Array to keep track of per-cpu OPTEE state |
| 64 | ******************************************************************************/ |
| 65 | optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; |
| 66 | uint32_t opteed_rw; |
| 67 | |
| 68 | |
| 69 | |
| 70 | static int32_t opteed_init(void); |
| 71 | |
| 72 | /******************************************************************************* |
| 73 | * This function is the handler registered for S-EL1 interrupts by the |
| 74 | * OPTEED. It validates the interrupt and upon success arranges entry into |
| 75 | * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. |
| 76 | ******************************************************************************/ |
| 77 | static uint64_t opteed_sel1_interrupt_handler(uint32_t id, |
| 78 | uint32_t flags, |
| 79 | void *handle, |
| 80 | void *cookie) |
| 81 | { |
| 82 | uint32_t linear_id; |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 83 | optee_context_t *optee_ctx; |
| 84 | |
| 85 | /* Check the security state when the exception was generated */ |
| 86 | assert(get_interrupt_src_ss(flags) == NON_SECURE); |
| 87 | |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 88 | /* Sanity check the pointer to this cpu's context */ |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 89 | assert(handle == cm_get_context(NON_SECURE)); |
| 90 | |
| 91 | /* Save the non-secure context before entering the OPTEE */ |
| 92 | cm_el1_sysregs_context_save(NON_SECURE); |
| 93 | |
| 94 | /* Get a reference to this cpu's OPTEE context */ |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 95 | linear_id = plat_my_core_pos(); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 96 | optee_ctx = &opteed_sp_context[linear_id]; |
| 97 | assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); |
| 98 | |
| 99 | cm_set_elr_el3(SECURE, (uint64_t)&optee_vectors->fiq_entry); |
| 100 | cm_el1_sysregs_context_restore(SECURE); |
| 101 | cm_set_next_eret_context(SECURE); |
| 102 | |
| 103 | /* |
| 104 | * Tell the OPTEE that it has to handle an FIQ (synchronously). |
| 105 | * Also the instruction in normal world where the interrupt was |
| 106 | * generated is passed for debugging purposes. It is safe to |
| 107 | * retrieve this address from ELR_EL3 as the secure context will |
| 108 | * not take effect until el3_exit(). |
| 109 | */ |
| 110 | SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); |
| 111 | } |
| 112 | |
| 113 | /******************************************************************************* |
| 114 | * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type |
| 115 | * (aarch32/aarch64) if not already known and initialises the context for entry |
| 116 | * into OPTEE for its initialization. |
| 117 | ******************************************************************************/ |
| 118 | int32_t opteed_setup(void) |
| 119 | { |
| 120 | entry_point_info_t *optee_ep_info; |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 121 | uint32_t linear_id; |
| 122 | |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 123 | linear_id = plat_my_core_pos(); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 124 | |
| 125 | /* |
| 126 | * Get information about the Secure Payload (BL32) image. Its |
| 127 | * absence is a critical failure. TODO: Add support to |
| 128 | * conditionally include the SPD service |
| 129 | */ |
| 130 | optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); |
| 131 | if (!optee_ep_info) { |
| 132 | WARN("No OPTEE provided by BL2 boot loader, Booting device" |
| 133 | " without OPTEE initialization. SMC`s destined for OPTEE" |
| 134 | " will return SMC_UNK\n"); |
| 135 | return 1; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * If there's no valid entry point for SP, we return a non-zero value |
| 140 | * signalling failure initializing the service. We bail out without |
| 141 | * registering any handlers |
| 142 | */ |
| 143 | if (!optee_ep_info->pc) |
| 144 | return 1; |
| 145 | |
| 146 | /* |
| 147 | * We could inspect the SP image and determine it's execution |
| 148 | * state i.e whether AArch32 or AArch64. Assuming it's AArch32 |
| 149 | * for the time being. |
| 150 | */ |
Ashutosh Singh | 82a720e | 2016-05-27 15:51:17 +0100 | [diff] [blame] | 151 | opteed_rw = OPTEE_AARCH64; |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 152 | opteed_init_optee_ep_state(optee_ep_info, |
| 153 | opteed_rw, |
| 154 | optee_ep_info->pc, |
| 155 | &opteed_sp_context[linear_id]); |
| 156 | |
| 157 | /* |
| 158 | * All OPTEED initialization done. Now register our init function with |
| 159 | * BL31 for deferred invocation |
| 160 | */ |
| 161 | bl31_register_bl32_init(&opteed_init); |
| 162 | |
| 163 | return 0; |
| 164 | } |
| 165 | |
| 166 | /******************************************************************************* |
| 167 | * This function passes control to the OPTEE image (BL32) for the first time |
| 168 | * on the primary cpu after a cold boot. It assumes that a valid secure |
| 169 | * context has already been created by opteed_setup() which can be directly |
| 170 | * used. It also assumes that a valid non-secure context has been |
| 171 | * initialised by PSCI so it does not need to save and restore any |
| 172 | * non-secure state. This function performs a synchronous entry into |
| 173 | * OPTEE. OPTEE passes control back to this routine through a SMC. |
| 174 | ******************************************************************************/ |
| 175 | static int32_t opteed_init(void) |
| 176 | { |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 177 | uint32_t linear_id = plat_my_core_pos(); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 178 | optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; |
| 179 | entry_point_info_t *optee_entry_point; |
| 180 | uint64_t rc; |
| 181 | |
| 182 | /* |
| 183 | * Get information about the OPTEE (BL32) image. Its |
| 184 | * absence is a critical failure. |
| 185 | */ |
| 186 | optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); |
| 187 | assert(optee_entry_point); |
| 188 | |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 189 | cm_init_my_context(optee_entry_point); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 190 | |
| 191 | /* |
| 192 | * Arrange for an entry into OPTEE. It will be returned via |
| 193 | * OPTEE_ENTRY_DONE case |
| 194 | */ |
| 195 | rc = opteed_synchronous_sp_entry(optee_ctx); |
| 196 | assert(rc != 0); |
| 197 | |
| 198 | return rc; |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /******************************************************************************* |
| 203 | * This function is responsible for handling all SMCs in the Trusted OS/App |
| 204 | * range from the non-secure state as defined in the SMC Calling Convention |
| 205 | * Document. It is also responsible for communicating with the Secure |
| 206 | * payload to delegate work and return results back to the non-secure |
| 207 | * state. Lastly it will also return any information that OPTEE needs to do |
| 208 | * the work assigned to it. |
| 209 | ******************************************************************************/ |
| 210 | uint64_t opteed_smc_handler(uint32_t smc_fid, |
| 211 | uint64_t x1, |
| 212 | uint64_t x2, |
| 213 | uint64_t x3, |
| 214 | uint64_t x4, |
| 215 | void *cookie, |
| 216 | void *handle, |
| 217 | uint64_t flags) |
| 218 | { |
| 219 | cpu_context_t *ns_cpu_context; |
Soby Mathew | da43b66 | 2015-07-08 21:45:46 +0100 | [diff] [blame] | 220 | uint32_t linear_id = plat_my_core_pos(); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 221 | optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; |
| 222 | uint64_t rc; |
| 223 | |
| 224 | /* |
| 225 | * Determine which security state this SMC originated from |
| 226 | */ |
| 227 | |
| 228 | if (is_caller_non_secure(flags)) { |
| 229 | /* |
| 230 | * This is a fresh request from the non-secure client. |
| 231 | * The parameters are in x1 and x2. Figure out which |
| 232 | * registers need to be preserved, save the non-secure |
| 233 | * state and send the request to the secure payload. |
| 234 | */ |
| 235 | assert(handle == cm_get_context(NON_SECURE)); |
| 236 | |
| 237 | cm_el1_sysregs_context_save(NON_SECURE); |
| 238 | |
| 239 | /* |
| 240 | * We are done stashing the non-secure context. Ask the |
| 241 | * OPTEE to do the work now. |
| 242 | */ |
| 243 | |
| 244 | /* |
| 245 | * Verify if there is a valid context to use, copy the |
| 246 | * operation type and parameters to the secure context |
| 247 | * and jump to the fast smc entry point in the secure |
| 248 | * payload. Entry into S-EL1 will take place upon exit |
| 249 | * from this function. |
| 250 | */ |
| 251 | assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); |
| 252 | |
| 253 | /* Set appropriate entry for SMC. |
| 254 | * We expect OPTEE to manage the PSTATE.I and PSTATE.F |
| 255 | * flags as appropriate. |
| 256 | */ |
| 257 | if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { |
| 258 | cm_set_elr_el3(SECURE, (uint64_t) |
| 259 | &optee_vectors->fast_smc_entry); |
| 260 | } else { |
| 261 | cm_set_elr_el3(SECURE, (uint64_t) |
| 262 | &optee_vectors->std_smc_entry); |
| 263 | } |
| 264 | |
| 265 | cm_el1_sysregs_context_restore(SECURE); |
| 266 | cm_set_next_eret_context(SECURE); |
| 267 | |
Ashutosh Singh | 3270b84 | 2016-03-31 17:18:34 +0100 | [diff] [blame] | 268 | write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| 269 | CTX_GPREG_X4, |
| 270 | read_ctx_reg(get_gpregs_ctx(handle), |
| 271 | CTX_GPREG_X4)); |
| 272 | write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| 273 | CTX_GPREG_X5, |
| 274 | read_ctx_reg(get_gpregs_ctx(handle), |
| 275 | CTX_GPREG_X5)); |
| 276 | write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| 277 | CTX_GPREG_X6, |
| 278 | read_ctx_reg(get_gpregs_ctx(handle), |
| 279 | CTX_GPREG_X6)); |
Jens Wiklander | c288886 | 2014-08-04 15:39:58 +0200 | [diff] [blame] | 280 | /* Propagate hypervisor client ID */ |
| 281 | write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), |
| 282 | CTX_GPREG_X7, |
| 283 | read_ctx_reg(get_gpregs_ctx(handle), |
| 284 | CTX_GPREG_X7)); |
| 285 | |
| 286 | SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * Returning from OPTEE |
| 291 | */ |
| 292 | |
| 293 | switch (smc_fid) { |
| 294 | /* |
| 295 | * OPTEE has finished initialising itself after a cold boot |
| 296 | */ |
| 297 | case TEESMC_OPTEED_RETURN_ENTRY_DONE: |
| 298 | /* |
| 299 | * Stash the OPTEE entry points information. This is done |
| 300 | * only once on the primary cpu |
| 301 | */ |
| 302 | assert(optee_vectors == NULL); |
| 303 | optee_vectors = (optee_vectors_t *) x1; |
| 304 | |
| 305 | if (optee_vectors) { |
| 306 | set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); |
| 307 | |
| 308 | /* |
| 309 | * OPTEE has been successfully initialized. |
| 310 | * Register power management hooks with PSCI |
| 311 | */ |
| 312 | psci_register_spd_pm_hook(&opteed_pm); |
| 313 | |
| 314 | /* |
| 315 | * Register an interrupt handler for S-EL1 interrupts |
| 316 | * when generated during code executing in the |
| 317 | * non-secure state. |
| 318 | */ |
| 319 | flags = 0; |
| 320 | set_interrupt_rm_flag(flags, NON_SECURE); |
| 321 | rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, |
| 322 | opteed_sel1_interrupt_handler, |
| 323 | flags); |
| 324 | if (rc) |
| 325 | panic(); |
| 326 | } |
| 327 | |
| 328 | /* |
| 329 | * OPTEE reports completion. The OPTEED must have initiated |
| 330 | * the original request through a synchronous entry into |
| 331 | * OPTEE. Jump back to the original C runtime context. |
| 332 | */ |
| 333 | opteed_synchronous_sp_exit(optee_ctx, x1); |
| 334 | |
| 335 | |
| 336 | /* |
| 337 | * These function IDs is used only by OP-TEE to indicate it has |
| 338 | * finished: |
| 339 | * 1. turning itself on in response to an earlier psci |
| 340 | * cpu_on request |
| 341 | * 2. resuming itself after an earlier psci cpu_suspend |
| 342 | * request. |
| 343 | */ |
| 344 | case TEESMC_OPTEED_RETURN_ON_DONE: |
| 345 | case TEESMC_OPTEED_RETURN_RESUME_DONE: |
| 346 | |
| 347 | |
| 348 | /* |
| 349 | * These function IDs is used only by the SP to indicate it has |
| 350 | * finished: |
| 351 | * 1. suspending itself after an earlier psci cpu_suspend |
| 352 | * request. |
| 353 | * 2. turning itself off in response to an earlier psci |
| 354 | * cpu_off request. |
| 355 | */ |
| 356 | case TEESMC_OPTEED_RETURN_OFF_DONE: |
| 357 | case TEESMC_OPTEED_RETURN_SUSPEND_DONE: |
| 358 | case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: |
| 359 | case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: |
| 360 | |
| 361 | /* |
| 362 | * OPTEE reports completion. The OPTEED must have initiated the |
| 363 | * original request through a synchronous entry into OPTEE. |
| 364 | * Jump back to the original C runtime context, and pass x1 as |
| 365 | * return value to the caller |
| 366 | */ |
| 367 | opteed_synchronous_sp_exit(optee_ctx, x1); |
| 368 | |
| 369 | /* |
| 370 | * OPTEE is returning from a call or being preempted from a call, in |
| 371 | * either case execution should resume in the normal world. |
| 372 | */ |
| 373 | case TEESMC_OPTEED_RETURN_CALL_DONE: |
| 374 | /* |
| 375 | * This is the result from the secure client of an |
| 376 | * earlier request. The results are in x0-x3. Copy it |
| 377 | * into the non-secure context, save the secure state |
| 378 | * and return to the non-secure state. |
| 379 | */ |
| 380 | assert(handle == cm_get_context(SECURE)); |
| 381 | cm_el1_sysregs_context_save(SECURE); |
| 382 | |
| 383 | /* Get a reference to the non-secure context */ |
| 384 | ns_cpu_context = cm_get_context(NON_SECURE); |
| 385 | assert(ns_cpu_context); |
| 386 | |
| 387 | /* Restore non-secure state */ |
| 388 | cm_el1_sysregs_context_restore(NON_SECURE); |
| 389 | cm_set_next_eret_context(NON_SECURE); |
| 390 | |
| 391 | SMC_RET4(ns_cpu_context, x1, x2, x3, x4); |
| 392 | |
| 393 | /* |
| 394 | * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution |
| 395 | * should resume in the normal world. |
| 396 | */ |
| 397 | case TEESMC_OPTEED_RETURN_FIQ_DONE: |
| 398 | /* Get a reference to the non-secure context */ |
| 399 | ns_cpu_context = cm_get_context(NON_SECURE); |
| 400 | assert(ns_cpu_context); |
| 401 | |
| 402 | /* |
| 403 | * Restore non-secure state. There is no need to save the |
| 404 | * secure system register context since OPTEE was supposed |
| 405 | * to preserve it during S-EL1 interrupt handling. |
| 406 | */ |
| 407 | cm_el1_sysregs_context_restore(NON_SECURE); |
| 408 | cm_set_next_eret_context(NON_SECURE); |
| 409 | |
| 410 | SMC_RET0((uint64_t) ns_cpu_context); |
| 411 | |
| 412 | default: |
| 413 | panic(); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /* Define an OPTEED runtime service descriptor for fast SMC calls */ |
| 418 | DECLARE_RT_SVC( |
| 419 | opteed_fast, |
| 420 | |
| 421 | OEN_TOS_START, |
| 422 | OEN_TOS_END, |
| 423 | SMC_TYPE_FAST, |
| 424 | opteed_setup, |
| 425 | opteed_smc_handler |
| 426 | ); |
| 427 | |
| 428 | /* Define an OPTEED runtime service descriptor for standard SMC calls */ |
| 429 | DECLARE_RT_SVC( |
| 430 | opteed_std, |
| 431 | |
| 432 | OEN_TOS_START, |
| 433 | OEN_TOS_END, |
| 434 | SMC_TYPE_STD, |
| 435 | NULL, |
| 436 | opteed_smc_handler |
| 437 | ); |