blob: df313935ce608eee267298576f8feb6ee3c8c034 [file] [log] [blame]
Pankaj Guptaf24e1a32020-12-09 14:02:41 +05301/*
2 * Copyright 2018-2021 NXP
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 *
6 */
7
8#include <assert.h>
9
10#include <arch.h>
11#include <bl31/interrupt_mgmt.h>
12#include <caam.h>
13#include <cassert.h>
14#include <ccn.h>
15#include <common/debug.h>
16#include <dcfg.h>
17#ifdef I2C_INIT
18#include <i2c.h>
19#endif
20#include <lib/mmio.h>
21#include <lib/xlat_tables/xlat_tables_v2.h>
22#include <ls_interconnect.h>
23#ifdef POLICY_FUSE_PROVISION
24#include <nxp_gpio.h>
25#endif
26#if TRUSTED_BOARD_BOOT
27#include <nxp_smmu.h>
28#endif
29#include <nxp_timer.h>
30#include <plat_console.h>
31#include <plat_gic.h>
32#include <plat_tzc400.h>
33#include <pmu.h>
34#if defined(NXP_SFP_ENABLED)
35#include <sfp.h>
36#endif
37
38#include <errata.h>
39#include <ls_interrupt_mgmt.h>
Jiafei Pan566e7d92022-10-11 14:58:18 +080040#ifdef CONFIG_OCRAM_ECC_EN
41#include <ocram.h>
42#endif
Pankaj Guptaf24e1a32020-12-09 14:02:41 +053043#include "plat_common.h"
44#ifdef NXP_NV_SW_MAINT_LAST_EXEC_DATA
45#include <plat_nv_storage.h>
46#endif
47#ifdef NXP_WARM_BOOT
48#include <plat_warm_rst.h>
49#endif
50#include "platform_def.h"
51#include "soc.h"
52
53static struct soc_type soc_list[] = {
Jiafei Pan616a94a2022-06-10 17:26:34 +080054 /* SoC LX2160A */
Pankaj Guptaf24e1a32020-12-09 14:02:41 +053055 SOC_ENTRY(LX2160A, LX2160A, 8, 2),
Jiafei Pan616a94a2022-06-10 17:26:34 +080056 SOC_ENTRY(LX2160E, LX2160E, 8, 2),
57 SOC_ENTRY(LX2160C, LX2160C, 8, 2),
58 SOC_ENTRY(LX2160N, LX2160N, 8, 2),
Pankaj Guptaf24e1a32020-12-09 14:02:41 +053059 SOC_ENTRY(LX2080A, LX2080A, 8, 1),
Jiafei Pan616a94a2022-06-10 17:26:34 +080060 SOC_ENTRY(LX2080E, LX2080E, 8, 1),
61 SOC_ENTRY(LX2080C, LX2080C, 8, 1),
62 SOC_ENTRY(LX2080N, LX2080N, 8, 1),
Pankaj Guptaf24e1a32020-12-09 14:02:41 +053063 SOC_ENTRY(LX2120A, LX2120A, 6, 2),
Jiafei Pan616a94a2022-06-10 17:26:34 +080064 SOC_ENTRY(LX2120E, LX2120E, 6, 2),
65 SOC_ENTRY(LX2120C, LX2120C, 6, 2),
66 SOC_ENTRY(LX2120N, LX2120N, 6, 2),
67 /* SoC LX2162A */
68 SOC_ENTRY(LX2162A, LX2162A, 8, 2),
69 SOC_ENTRY(LX2162E, LX2162E, 8, 2),
70 SOC_ENTRY(LX2162C, LX2162C, 8, 2),
71 SOC_ENTRY(LX2162N, LX2162N, 8, 2),
72 SOC_ENTRY(LX2082A, LX2082A, 8, 1),
73 SOC_ENTRY(LX2082E, LX2082E, 8, 1),
74 SOC_ENTRY(LX2082C, LX2082C, 8, 1),
75 SOC_ENTRY(LX2082N, LX2082N, 8, 1),
76 SOC_ENTRY(LX2122A, LX2122A, 6, 2),
77 SOC_ENTRY(LX2122E, LX2122E, 6, 2),
78 SOC_ENTRY(LX2122C, LX2122C, 6, 2),
79 SOC_ENTRY(LX2122N, LX2122N, 6, 2),
Pankaj Guptaf24e1a32020-12-09 14:02:41 +053080};
81
82static dcfg_init_info_t dcfg_init_data = {
83 .g_nxp_dcfg_addr = NXP_DCFG_ADDR,
84 .nxp_sysclk_freq = NXP_SYSCLK_FREQ,
85 .nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
86 .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
87 };
88static const unsigned char master_to_6rn_id_map[] = {
89 PLAT_6CLUSTER_TO_CCN_ID_MAP
90};
91
92static const unsigned char master_to_rn_id_map[] = {
93 PLAT_CLUSTER_TO_CCN_ID_MAP
94};
95
96CASSERT(ARRAY_SIZE(master_to_rn_id_map) == NUMBER_OF_CLUSTERS,
97 assert_invalid_cluster_count_for_ccn_variant);
98
99static const ccn_desc_t plat_six_cluster_ccn_desc = {
100 .periphbase = NXP_CCN_ADDR,
101 .num_masters = ARRAY_SIZE(master_to_6rn_id_map),
102 .master_to_rn_id_map = master_to_6rn_id_map
103};
104
105static const ccn_desc_t plat_ccn_desc = {
106 .periphbase = NXP_CCN_ADDR,
107 .num_masters = ARRAY_SIZE(master_to_rn_id_map),
108 .master_to_rn_id_map = master_to_rn_id_map
109};
110
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530111/******************************************************************************
112 * Function returns the base counter frequency
113 * after reading the first entry at CNTFID0 (0x20 offset).
114 *
115 * Function is used by:
116 * 1. ARM common code for PSCI management.
117 * 2. ARM Generic Timer init.
118 *
119 *****************************************************************************/
120unsigned int plat_get_syscnt_freq2(void)
121{
122 unsigned int counter_base_frequency;
123 /*
124 * Below register specifies the base frequency of the system counter.
125 * As per NXP Board Manuals:
126 * The system counter always works with SYS_REF_CLK/4 frequency clock.
127 *
128 *
129 */
130 counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
131
132 return counter_base_frequency;
133}
134
135#ifdef IMAGE_BL2
136
137#ifdef POLICY_FUSE_PROVISION
138static gpio_init_info_t gpio_init_data = {
139 .gpio1_base_addr = NXP_GPIO1_ADDR,
140 .gpio2_base_addr = NXP_GPIO2_ADDR,
141 .gpio3_base_addr = NXP_GPIO3_ADDR,
142 .gpio4_base_addr = NXP_GPIO4_ADDR,
143};
144#endif
145
146static void soc_interconnect_config(void)
147{
148 unsigned long long val = 0x0U;
Jiafei Panb27ac802021-07-20 17:14:32 +0800149 uint8_t num_clusters, cores_per_cluster;
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530150
Jiafei Panb27ac802021-07-20 17:14:32 +0800151 get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
152 &num_clusters, &cores_per_cluster);
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530153
154 if (num_clusters == 6U) {
155 ccn_init(&plat_six_cluster_ccn_desc);
156 } else {
157 ccn_init(&plat_ccn_desc);
158 }
159
160 /*
161 * Enable Interconnect coherency for the primary CPU's cluster.
162 */
163 plat_ls_interconnect_enter_coherency(num_clusters);
164
165 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET);
166 val |= (1 << 17);
167 ccn_write_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET, val);
168
169 /* PCIe is Connected to RN-I 17 which is connected to HN-I 13. */
170 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET);
171 val |= (1 << 17);
172 ccn_write_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET, val);
173
174 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
175 val |= SERIALIZE_DEV_nGnRnE_WRITES;
176 ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
177
178 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
179 val &= ~(ENABLE_RESERVE_BIT53);
180 val |= SERIALIZE_DEV_nGnRnE_WRITES;
181 ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
182
183 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET);
184 val &= ~(HNI_POS_EN);
185 ccn_write_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET, val);
186
187 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET);
188 val &= ~(HNI_POS_EN);
189 ccn_write_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET, val);
190
191 val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
192 val &= ~(POS_EARLY_WR_COMP_EN);
193 ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
194
195 val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
196 val &= ~(POS_EARLY_WR_COMP_EN);
197 ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
198
199#if POLICY_PERF_WRIOP
200 uint16_t wriop_rni = 0U;
201
202 if (POLICY_PERF_WRIOP == 1) {
203 wriop_rni = 7U;
204 } else if (POLICY_PERF_WRIOP == 2) {
205 wriop_rni = 23U;
206 } else {
207 ERROR("Incorrect WRIOP selected.\n");
208 panic();
209 }
210
211 val = ccn_read_node_reg(NODE_TYPE_RNI, wriop_rni,
212 SA_AUX_CTRL_REG_OFFSET);
213 val |= ENABLE_WUO;
214 ccn_write_node_reg(NODE_TYPE_HNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET,
215 val);
216#else
217 val = ccn_read_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET);
218 val |= ENABLE_WUO;
219 ccn_write_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET, val);
220#endif
221}
222
223
224void soc_preload_setup(void)
225{
226 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
227#if defined(NXP_WARM_BOOT)
228 bool warm_reset = is_warm_boot();
229#endif
230 info_dram_regions->total_dram_size =
231#if defined(NXP_WARM_BOOT)
232 init_ddr(warm_reset);
233#else
234 init_ddr();
235#endif
236}
237
238/*******************************************************************************
239 * This function implements soc specific erratas
240 * This is called before DDR is initialized or MMU is enabled
241 ******************************************************************************/
242void soc_early_init(void)
243{
Jiafei Pan566e7d92022-10-11 14:58:18 +0800244#ifdef CONFIG_OCRAM_ECC_EN
245 ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE);
246#endif
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530247 dcfg_init(&dcfg_init_data);
248#ifdef POLICY_FUSE_PROVISION
249 gpio_init(&gpio_init_data);
250 sec_init(NXP_CAAM_ADDR);
251#endif
252#if LOG_LEVEL > 0
253 /* Initialize the console to provide early debug support */
254 plat_console_init(NXP_CONSOLE_ADDR,
255 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
256#endif
257
258 enable_timer_base_to_cluster(NXP_PMU_ADDR);
259 soc_interconnect_config();
260
261 enum boot_device dev = get_boot_dev();
262 /* Mark the buffer for SD in OCRAM as non secure.
263 * The buffer is assumed to be at end of OCRAM for
264 * the logic below to calculate TZPC programming
265 */
266 if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
267 /* Calculate the region in OCRAM which is secure
268 * The buffer for SD needs to be marked non-secure
269 * to allow SD to do DMA operations on it
270 */
271 uint32_t secure_region = (NXP_OCRAM_SIZE
272 - NXP_SD_BLOCK_BUF_SIZE);
273 uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
274
275 mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
276
277 /* Add the entry for buffer in MMU Table */
278 mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
279 NXP_SD_BLOCK_BUF_SIZE,
280 MT_DEVICE | MT_RW | MT_NS);
281 }
282
Jiafei Pan942f5672021-07-20 15:21:06 +0800283 soc_errata();
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530284
285#if (TRUSTED_BOARD_BOOT) || defined(POLICY_FUSE_PROVISION)
286 sfp_init(NXP_SFP_ADDR);
287#endif
288
289#if TRUSTED_BOARD_BOOT
290 uint32_t mode;
291
292 /* For secure boot disable SMMU.
293 * Later when platform security policy comes in picture,
294 * this might get modified based on the policy
295 */
296 if (check_boot_mode_secure(&mode) == true) {
297 bypass_smmu(NXP_SMMU_ADDR);
298 }
299
300 /* For Mbedtls currently crypto is not supported via CAAM
301 * enable it when that support is there. In tbbr.mk
302 * the CAAM_INTEG is set as 0.
303 */
304
305#ifndef MBEDTLS_X509
306 /* Initialize the crypto accelerator if enabled */
307 if (is_sec_enabled() == false)
308 INFO("SEC is disabled.\n");
309 else
310 sec_init(NXP_CAAM_ADDR);
311#endif
312#endif
313
314 /*
315 * Initialize system level generic timer for Layerscape Socs.
316 */
317 delay_timer_init(NXP_TIMER_ADDR);
318 i2c_init(NXP_I2C_ADDR);
319}
320
321void soc_bl2_prepare_exit(void)
322{
323#if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
324 set_sfp_wr_disable();
325#endif
326}
327
328/*****************************************************************************
329 * This function returns the boot device based on RCW_SRC
330 ****************************************************************************/
331enum boot_device get_boot_dev(void)
332{
333 enum boot_device src = BOOT_DEVICE_NONE;
334 uint32_t porsr1;
335 uint32_t rcw_src;
336
337 porsr1 = read_reg_porsr1();
338
339 rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
340
341 switch (rcw_src) {
342 case FLEXSPI_NOR:
343 src = BOOT_DEVICE_FLEXSPI_NOR;
344 INFO("RCW BOOT SRC is FLEXSPI NOR\n");
345 break;
346 case FLEXSPI_NAND2K_VAL:
347 case FLEXSPI_NAND4K_VAL:
348 INFO("RCW BOOT SRC is FLEXSPI NAND\n");
349 src = BOOT_DEVICE_FLEXSPI_NAND;
350 break;
351 case SDHC1_VAL:
352 src = BOOT_DEVICE_EMMC;
353 INFO("RCW BOOT SRC is SD\n");
354 break;
355 case SDHC2_VAL:
356 src = BOOT_DEVICE_SDHC2_EMMC;
357 INFO("RCW BOOT SRC is EMMC\n");
358 break;
359 default:
360 break;
361 }
362
363 return src;
364}
365
366
367void soc_mem_access(void)
368{
369 const devdisr5_info_t *devdisr5_info = get_devdisr5_info();
370 dram_regions_info_t *info_dram_regions = get_dram_regions_info();
371 struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
372 int dram_idx, index = 0U;
373
374 for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
375 dram_idx++) {
376 if (info_dram_regions->region[dram_idx].size == 0) {
377 ERROR("DDR init failure, or");
378 ERROR("DRAM regions not populated correctly.\n");
379 break;
380 }
381
382 index = populate_tzc400_reg_list(tzc400_reg_list,
383 dram_idx, index,
384 info_dram_regions->region[dram_idx].addr,
385 info_dram_regions->region[dram_idx].size,
386 NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
387 }
388
389 if (devdisr5_info->ddrc1_present != 0) {
390 INFO("DDR Controller 1.\n");
391 mem_access_setup(NXP_TZC_ADDR, index,
392 tzc400_reg_list);
393 mem_access_setup(NXP_TZC3_ADDR, index,
394 tzc400_reg_list);
395 }
396 if (devdisr5_info->ddrc2_present != 0) {
397 INFO("DDR Controller 2.\n");
398 mem_access_setup(NXP_TZC2_ADDR, index,
399 tzc400_reg_list);
400 mem_access_setup(NXP_TZC4_ADDR, index,
401 tzc400_reg_list);
402 }
403}
404
405#else
406const unsigned char _power_domain_tree_desc[] = {1, 8, 2, 2, 2, 2, 2, 2, 2, 2};
407
408CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
409 assert_invalid_lx2160a_cluster_count);
410
411/******************************************************************************
412 * This function returns the SoC topology
413 ****************************************************************************/
414
415const unsigned char *plat_get_power_domain_tree_desc(void)
416{
417
418 return _power_domain_tree_desc;
419}
420
421/*******************************************************************************
422 * This function returns the core count within the cluster corresponding to
423 * `mpidr`.
424 ******************************************************************************/
425unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
426{
427 return CORES_PER_CLUSTER;
428}
429
430
431void soc_early_platform_setup2(void)
432{
433 dcfg_init(&dcfg_init_data);
434 /*
435 * Initialize system level generic timer for Socs
436 */
437 delay_timer_init(NXP_TIMER_ADDR);
438
439#if LOG_LEVEL > 0
440 /* Initialize the console to provide early debug support */
441 plat_console_init(NXP_CONSOLE_ADDR,
442 NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
443#endif
444}
445
446void soc_platform_setup(void)
447{
448 /* Initialize the GIC driver, cpu and distributor interfaces */
449 static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
450 static interrupt_prop_t ls_interrupt_props[] = {
451 PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
452 PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
453 };
454
455 plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
456 PLATFORM_CORE_COUNT,
457 ls_interrupt_props,
458 ARRAY_SIZE(ls_interrupt_props),
459 target_mask_array,
460 plat_core_pos);
461
462 plat_ls_gic_init();
463 enable_init_timer();
464#ifdef LS_SYS_TIMCTL_BASE
465 ls_configure_sys_timer(LS_SYS_TIMCTL_BASE,
466 LS_CONFIG_CNTACR,
467 PLAT_LS_NSTIMER_FRAME_ID);
468#endif
469}
470
471/*******************************************************************************
472 * This function initializes the soc from the BL31 module
473 ******************************************************************************/
474void soc_init(void)
475{
Jiafei Panb27ac802021-07-20 17:14:32 +0800476 uint8_t num_clusters, cores_per_cluster;
477
478 get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
479 &num_clusters, &cores_per_cluster);
480
481 /* low-level init of the soc */
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530482 soc_init_start();
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530483 _init_global_data();
Jiafei Pana54d2e72022-06-10 11:47:15 +0800484 soc_init_percpu();
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530485 _initialize_psci();
486
487 if (ccn_get_part0_id(NXP_CCN_ADDR) != CCN_508_PART0_ID) {
488 ERROR("Unrecognized CCN variant detected.");
489 ERROR("Only CCN-508 is supported\n");
490 panic();
491 }
492
Pankaj Guptaf24e1a32020-12-09 14:02:41 +0530493 if (num_clusters == 6U) {
494 ccn_init(&plat_six_cluster_ccn_desc);
495 } else {
496 ccn_init(&plat_ccn_desc);
497 }
498
499 plat_ls_interconnect_enter_coherency(num_clusters);
500
501 /* Set platform security policies */
502 _set_platform_security();
503
504 /* make sure any parallel init tasks are finished */
505 soc_init_finish();
506
507 /* Initialize the crypto accelerator if enabled */
508 if (is_sec_enabled() == false) {
509 INFO("SEC is disabled.\n");
510 } else {
511 sec_init(NXP_CAAM_ADDR);
512 }
513
514}
515
516#ifdef NXP_WDOG_RESTART
517static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
518 void *handle, void *cookie)
519{
520 uint8_t data = WDOG_RESET_FLAG;
521
522 wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
523 (uint8_t *)&data, sizeof(data));
524
525 mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
526
527 return 0;
528}
529#endif
530
531void soc_runtime_setup(void)
532{
533
534#ifdef NXP_WDOG_RESTART
535 request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
536#endif
537}
538#endif