blob: e11d1600005aa509b0a890cede85c7c81e2809bd [file] [log] [blame]
Varun Wadekara0352ab2017-03-14 14:24:35 -07001/*
2 * Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 *
7 * Redistributions of source code must retain the above copyright notice, this
8 * list of conditions and the following disclaimer.
9 *
10 * Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
13 *
14 * Neither the name of ARM nor the names of its contributors may be used
15 * to endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31#include <arch.h>
32#include <arch_helpers.h>
33#include <debug.h>
34#include <denver.h>
35#include <mmio.h>
36#include <mce.h>
37#include <sys/errno.h>
38#include <t18x_ari.h>
39
40/*******************************************************************************
41 * Register offsets for ARI request/results
42 ******************************************************************************/
43#define ARI_REQUEST 0x0
44#define ARI_REQUEST_EVENT_MASK 0x4
45#define ARI_STATUS 0x8
46#define ARI_REQUEST_DATA_LO 0xC
47#define ARI_REQUEST_DATA_HI 0x10
48#define ARI_RESPONSE_DATA_LO 0x14
49#define ARI_RESPONSE_DATA_HI 0x18
50
51/* Status values for the current request */
52#define ARI_REQ_PENDING 1
53#define ARI_REQ_ONGOING 3
54#define ARI_REQUEST_VALID_BIT (1 << 8)
55#define ARI_EVT_MASK_STANDBYWFI_BIT (1 << 7)
56
57/*******************************************************************************
58 * ARI helper functions
59 ******************************************************************************/
60static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
61{
62 return mmio_read_32(ari_base + reg);
63}
64
65static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
66{
67 mmio_write_32(ari_base + reg, val);
68}
69
70static inline uint32_t ari_get_request_low(uint32_t ari_base)
71{
72 return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
73}
74
75static inline uint32_t ari_get_request_high(uint32_t ari_base)
76{
77 return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
78}
79
80static inline uint32_t ari_get_response_low(uint32_t ari_base)
81{
82 return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
83}
84
85static inline uint32_t ari_get_response_high(uint32_t ari_base)
86{
87 return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
88}
89
90static inline void ari_clobber_response(uint32_t ari_base)
91{
92 ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
93 ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
94}
95
96static int ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
97 uint32_t lo, uint32_t hi)
98{
99 int status;
100
101 /* program the request, event_mask, hi and lo registers */
102 ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
103 ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
104 ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
105 ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);
106
107 /*
108 * For commands that have an event trigger, we should bypass
109 * ARI_STATUS polling, since MCE is waiting for SW to trigger
110 * the event.
111 */
112 if (evt_mask)
113 return 0;
114
115 /* NOTE: add timeout check if needed */
116 status = ari_read_32(ari_base, ARI_STATUS);
117 while (status & (ARI_REQ_ONGOING | ARI_REQ_PENDING))
118 status = ari_read_32(ari_base, ARI_STATUS);
119
120 return 0;
121}
122
123int ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
124{
125 /* check for allowed power state */
126 if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
127 state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
128 ERROR("%s: unknown cstate (%d)\n", __func__, state);
129 return EINVAL;
130 }
131
132 /* Enter the cstate, to be woken up after wake_time (TSC ticks) */
133 return ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
134 TEGRA_ARI_ENTER_CSTATE, state, wake_time);
135}
136
137int ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
138 uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
139 uint8_t update_wake_mask)
140{
141 uint32_t val = 0;
142
143 /* update CLUSTER_CSTATE? */
144 if (cluster)
145 val |= (cluster & CLUSTER_CSTATE_MASK) |
146 CLUSTER_CSTATE_UPDATE_BIT;
147
148 /* update CCPLEX_CSTATE? */
149 if (ccplex)
150 val |= (ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT |
151 CCPLEX_CSTATE_UPDATE_BIT;
152
153 /* update SYSTEM_CSTATE? */
154 if (system)
155 val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
156 ((sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
157 SYSTEM_CSTATE_UPDATE_BIT);
158
159 /* update wake mask value? */
160 if (update_wake_mask)
161 val |= CSTATE_WAKE_MASK_UPDATE_BIT;
162
163 /* set the updated cstate info */
164 return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
165 wake_mask);
166}
167
168int ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
169{
170 /* sanity check crossover type */
171 if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
172 (type > TEGRA_ARI_CROSSOVER_CCP3_SC1))
173 return EINVAL;
174
175 /* update crossover threshold time */
176 return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CROSSOVER,
177 type, time);
178}
179
180uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
181{
182 int ret;
183
184 /* sanity check crossover type */
185 if (state == 0)
186 return EINVAL;
187
188 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_CSTATE_STATS, state, 0);
189 if (ret != 0)
190 return EINVAL;
191
192 return (uint64_t)ari_get_response_low(ari_base);
193}
194
195int ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
196{
197 /* write the cstate stats */
198 return ari_request_wait(ari_base, 0, TEGRA_ARI_WRITE_CSTATE_STATS, state,
199 stats);
200}
201
202uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
203{
204 uint64_t resp;
205 int ret;
206
207 /* clean the previous response state */
208 ari_clobber_response(ari_base);
209
210 /* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
211 if (cmd != TEGRA_ARI_MISC_ECHO)
212 data = 0;
213
214 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MISC, cmd, data);
215 if (ret)
216 return (uint64_t)ret;
217
218 /* get the command response */
219 resp = ari_get_response_low(ari_base);
220 resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);
221
222 return resp;
223}
224
225int ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
226{
227 int ret;
228
229 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7,
230 wake_time);
231 if (ret) {
232 ERROR("%s: failed (%d)\n", __func__, ret);
233 return 0;
234 }
235
236 /* 1 = CCx allowed, 0 = CCx not allowed */
237 return (ari_get_response_low(ari_base) & 0x1);
238}
239
240int ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
241{
242 int ret;
243
244 /* check for allowed power state */
245 if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
246 state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
247 ERROR("%s: unknown cstate (%d)\n", __func__, state);
248 return EINVAL;
249 }
250
251 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_SC7_ALLOWED, state,
252 wake_time);
253 if (ret) {
254 ERROR("%s: failed (%d)\n", __func__, ret);
255 return 0;
256 }
257
258 /* 1 = SC7 allowed, 0 = SC7 not allowed */
259 return !!ari_get_response_low(ari_base);
260}
261
262int ari_online_core(uint32_t ari_base, uint32_t core)
263{
264 int cpu = read_mpidr() & MPIDR_CPU_MASK;
265 int cluster = (read_mpidr() & MPIDR_CLUSTER_MASK) >>
266 MPIDR_AFFINITY_BITS;
267 int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
268
269 /* construct the current CPU # */
270 cpu |= (cluster << 2);
271
272 /* sanity check target core id */
273 if ((core >= MCE_CORE_ID_MAX) || (cpu == core)) {
274 ERROR("%s: unsupported core id (%d)\n", __func__, core);
275 return EINVAL;
276 }
277
278 /*
279 * The Denver cluster has 2 CPUs only - 0, 1.
280 */
281 if (impl == DENVER_IMPL && ((core == 2) || (core == 3))) {
282 ERROR("%s: unknown core id (%d)\n", __func__, core);
283 return EINVAL;
284 }
285
286 return ari_request_wait(ari_base, 0, TEGRA_ARI_ONLINE_CORE, core, 0);
287}
288
289int ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
290{
291 int val;
292
293 /*
294 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
295 * the SW visible voltage/frequency request registers for all non
296 * floorswept cores valid independent of StandbyWFI and disabling
297 * the IDLE voltage/frequency request register. If set, Auto-CC3
298 * will be enabled by setting the ARM SW visible voltage/frequency
299 * request registers for all non floorswept cores to be enabled by
300 * StandbyWFI or the equivalent signal, and always keeping the IDLE
301 * voltage/frequency request register enabled.
302 */
303 val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
304 ((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
305 (enable ? MCE_AUTO_CC3_ENABLE_BIT : 0));
306
307 return ari_request_wait(ari_base, 0, TEGRA_ARI_CC3_CTRL, val, 0);
308}
309
310int ari_reset_vector_update(uint32_t ari_base, uint32_t lo, uint32_t hi)
311{
312 /*
313 * Need to program the CPU reset vector one time during cold boot
314 * and SC7 exit
315 */
316 ari_request_wait(ari_base, 0, TEGRA_ARI_COPY_MISCREG_AA64_RST, lo, hi);
317
318 return 0;
319}
320
321int ari_roc_flush_cache_trbits(uint32_t ari_base)
322{
323 return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
324 0, 0);
325}
326
327int ari_roc_flush_cache(uint32_t ari_base)
328{
329 return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
330 0, 0);
331}
332
333int ari_roc_clean_cache(uint32_t ari_base)
334{
335 return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
336 0, 0);
337}
338
339uint64_t ari_read_write_mca(uint32_t ari_base, mca_cmd_t cmd, uint64_t *data)
340{
341 mca_arg_t mca_arg;
342 int ret;
343
344 /* Set data (write) */
345 mca_arg.data = data ? *data : 0ull;
346
347 /* Set command */
348 ari_write_32(ari_base, cmd.input.low, ARI_RESPONSE_DATA_LO);
349 ari_write_32(ari_base, cmd.input.high, ARI_RESPONSE_DATA_HI);
350
351 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MCA, mca_arg.arg.low,
352 mca_arg.arg.high);
353 if (!ret) {
354 mca_arg.arg.low = ari_get_response_low(ari_base);
355 mca_arg.arg.high = ari_get_response_high(ari_base);
356 if (!mca_arg.err.finish)
357 return (uint64_t)mca_arg.err.error;
358
359 if (data) {
360 mca_arg.arg.low = ari_get_request_low(ari_base);
361 mca_arg.arg.high = ari_get_request_high(ari_base);
362 *data = mca_arg.data;
363 }
364 }
365
366 return 0;
367}
368
369int ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
370{
371 /* sanity check GSC ID */
372 if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX)
373 return EINVAL;
374
375 /*
376 * The MCE code will read the GSC carveout value, corrseponding to
377 * the ID, from the MC registers and update the internal GSC registers
378 * of the CCPLEX.
379 */
380 ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0);
381
382 return 0;
383}
384
385void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
386{
387 /*
388 * The MCE will shutdown or restart the entire system
389 */
390 (void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, state_idx, 0);
391}
Varun Wadekar4ff3e8d2016-04-29 10:40:02 -0700392
393int ari_read_write_uncore_perfmon(uint32_t ari_base,
394 uncore_perfmon_req_t req, uint64_t *data)
395{
396 int ret;
397 uint32_t val;
398
399 /* sanity check input parameters */
400 if (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ && !data) {
401 ERROR("invalid parameters\n");
402 return EINVAL;
403 }
404
405 /*
406 * For "write" commands get the value that has to be written
407 * to the uncore perfmon registers
408 */
409 val = (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_WRITE) ?
410 *data : 0;
411
412 ret = ari_request_wait(ari_base, 0, TEGRA_ARI_PERFMON, val, req.data);
413 if (ret)
414 return ret;
415
416 /* read the command status value */
417 req.perfmon_status.val = ari_get_response_high(ari_base) &
418 UNCORE_PERFMON_RESP_STATUS_MASK;
419
420 /*
421 * For "read" commands get the data from the uncore
422 * perfmon registers
423 */
424 if ((req.perfmon_status.val == 0) && (req.perfmon_command.cmd ==
425 UNCORE_PERFMON_CMD_READ))
426 *data = ari_get_response_low(ari_base);
427
428 return (int)req.perfmon_status.val;
429}