blob: 37010e1a50985d0556d878beead0ec6779e290e4 [file] [log] [blame]
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +01001Arm Fixed Virtual Platforms (FVP)
2=================================
3
4Fixed Virtual Platform (FVP) Support
5------------------------------------
6
7This section lists the supported Arm |FVP| platforms. Please refer to the FVP
8documentation for a detailed description of the model parameter options.
9
10The latest version of the AArch64 build of TF-A has been tested on the following
11Arm FVPs without shifted affinities, and that do not support threaded CPU cores
12(64-bit host machine only).
13
14.. note::
15 The FVP models used are Version 11.6 Build 45, unless otherwise stated.
16
17- ``FVP_Base_AEMv8A-AEMv8A``
18- ``FVP_Base_AEMv8A-AEMv8A-AEMv8A-AEMv8A-CCN502``
19- ``FVP_Base_RevC-2xAEMv8A``
20- ``FVP_Base_Cortex-A32x4``
21- ``FVP_Base_Cortex-A35x4``
22- ``FVP_Base_Cortex-A53x4``
23- ``FVP_Base_Cortex-A55x4+Cortex-A75x4``
24- ``FVP_Base_Cortex-A55x4``
25- ``FVP_Base_Cortex-A57x1-A53x1``
26- ``FVP_Base_Cortex-A57x2-A53x4``
27- ``FVP_Base_Cortex-A57x4-A53x4``
28- ``FVP_Base_Cortex-A57x4``
29- ``FVP_Base_Cortex-A72x4-A53x4``
30- ``FVP_Base_Cortex-A72x4``
31- ``FVP_Base_Cortex-A73x4-A53x4``
32- ``FVP_Base_Cortex-A73x4``
33- ``FVP_Base_Cortex-A75x4``
34- ``FVP_Base_Cortex-A76x4``
35- ``FVP_Base_Cortex-A76AEx4``
36- ``FVP_Base_Cortex-A76AEx8``
37- ``FVP_Base_Cortex-A77x4`` (Version 11.7 build 36)
38- ``FVP_Base_Neoverse-N1x4``
39- ``FVP_Base_Zeusx4``
40- ``FVP_CSS_SGI-575`` (Version 11.3 build 42)
41- ``FVP_CSS_SGM-775`` (Version 11.3 build 42)
42- ``FVP_RD_E1Edge`` (Version 11.3 build 42)
43- ``FVP_RD_N1Edge``
44- ``Foundation_Platform``
45
46The latest version of the AArch32 build of TF-A has been tested on the
47following Arm FVPs without shifted affinities, and that do not support threaded
48CPU cores (64-bit host machine only).
49
50- ``FVP_Base_AEMv8A-AEMv8A``
51- ``FVP_Base_Cortex-A32x4``
52
53.. note::
54 The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
55 is not compatible with legacy GIC configurations. Therefore this FVP does not
56 support these legacy GIC configurations.
57
58The *Foundation* and *Base* FVPs can be downloaded free of charge. See the `Arm
59FVP website`_. The Cortex-A models listed above are also available to download
60from `Arm's website`_.
61
62.. note::
63 The build numbers quoted above are those reported by launching the FVP
64 with the ``--version`` parameter.
65
66.. note::
67 Linaro provides a ramdisk image in prebuilt FVP configurations and full
68 file systems that can be downloaded separately. To run an FVP with a virtio
69 file system image an additional FVP configuration option
70 ``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
71 used.
72
73.. note::
74 The software will not work on Version 1.0 of the Foundation FVP.
75 The commands below would report an ``unhandled argument`` error in this case.
76
77.. note::
78 FVPs can be launched with ``--cadi-server`` option such that a
79 CADI-compliant debugger (for example, Arm DS-5) can connect to and control
80 its execution.
81
82.. warning::
83 Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
84 the internal synchronisation timings changed compared to older versions of
85 the models. The models can be launched with ``-Q 100`` option if they are
86 required to match the run time characteristics of the older versions.
87
88All the above platforms have been tested with `Linaro Release 19.06`_.
89
90.. _build_options_arm_fvp_platform:
91
92Arm FVP Platform Specific Build Options
93---------------------------------------
94
95- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
96 build the topology tree within TF-A. By default TF-A is configured for dual
97 cluster topology and this option can be used to override the default value.
98
99- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
100 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
101 explained in the options below:
102
103 - ``FVP_CCI`` : The CCI driver is selected. This is the default
104 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
105 - ``FVP_CCN`` : The CCN driver is selected. This is the default
106 if ``FVP_CLUSTER_COUNT`` > 2.
107
108- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
109 a single cluster. This option defaults to 4.
110
111- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
112 in the system. This option defaults to 1. Note that the build option
113 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
114
115- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
116
117 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
118 - ``FVP_GICV2`` : The GICv2 only driver is selected
119 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
120
121- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
122 for functions that wait for an arbitrary time length (udelay and mdelay).
123 The default value is 0.
124
125- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
126 to DTB and packaged in FIP as the HW_CONFIG. See :ref:`Firmware Design` for
127 details on HW_CONFIG. By default, this is initialized to a sensible DTS
128 file in ``fdts/`` folder depending on other build options. But some cases,
129 like shifted affinity format for MPIDR, cannot be detected at build time
130 and this option is needed to specify the appropriate DTS file.
131
132- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
133 FIP. See :ref:`Firmware Design` for details on HW_CONFIG. This option is
134 similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
135 HW_CONFIG blob instead of the DTS file. This option is useful to override
136 the default HW_CONFIG selected by the build system.
137
138Booting Firmware Update images
139------------------------------
140
141When Firmware Update (FWU) is enabled there are at least 2 new images
142that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
143FWU FIP.
144
145The additional fip images must be loaded with:
146
147::
148
149 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
150 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
151
152The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
153In the same way, the address ns_bl2u_base_address is the value of
154NS_BL2U_BASE.
155
156Booting an EL3 payload
157----------------------
158
159The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
160the secondary CPUs holding pen to work properly. Unfortunately, its reset value
161is undefined on the FVP platform and the FVP platform code doesn't clear it.
162Therefore, one must modify the way the model is normally invoked in order to
163clear the mailbox at start-up.
164
165One way to do that is to create an 8-byte file containing all zero bytes using
166the following command:
167
168.. code:: shell
169
170 dd if=/dev/zero of=mailbox.dat bs=1 count=8
171
172and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
173using the following model parameters:
174
175::
176
177 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
178 --data=mailbox.dat@0x04000000 [Foundation FVP]
179
180To provide the model with the EL3 payload image, the following methods may be
181used:
182
183#. If the EL3 payload is able to execute in place, it may be programmed into
184 flash memory. On Base Cortex and AEM FVPs, the following model parameter
185 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
186 used for the FIP):
187
188 ::
189
190 -C bp.flashloader1.fname="<path-to>/<el3-payload>"
191
192 On Foundation FVP, there is no flash loader component and the EL3 payload
193 may be programmed anywhere in flash using method 3 below.
194
195#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
196 command may be used to load the EL3 payload ELF image over JTAG:
197
198 ::
199
200 load <path-to>/el3-payload.elf
201
202#. The EL3 payload may be pre-loaded in volatile memory using the following
203 model parameters:
204
205 ::
206
207 --data cluster0.cpu0="<path-to>/el3-payload>"@address [Base FVPs]
208 --data="<path-to>/<el3-payload>"@address [Foundation FVP]
209
210 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
211 used when building TF-A.
212
213Booting a preloaded kernel image (Base FVP)
214-------------------------------------------
215
216The following example uses a simplified boot flow by directly jumping from the
217TF-A to the Linux kernel, which will use a ramdisk as filesystem. This can be
218useful if both the kernel and the device tree blob (DTB) are already present in
219memory (like in FVP).
220
221For example, if the kernel is loaded at ``0x80080000`` and the DTB is loaded at
222address ``0x82000000``, the firmware can be built like this:
223
224.. code:: shell
225
Madhukar Pappireddyc0ba2482020-01-10 16:11:18 -0600226 CROSS_COMPILE=aarch64-none-elf- \
Paul Beesleyd2fcc4e2019-05-29 13:59:40 +0100227 make PLAT=fvp DEBUG=1 \
228 RESET_TO_BL31=1 \
229 ARM_LINUX_KERNEL_AS_BL33=1 \
230 PRELOADED_BL33_BASE=0x80080000 \
231 ARM_PRELOADED_DTB_BASE=0x82000000 \
232 all fip
233
234Now, it is needed to modify the DTB so that the kernel knows the address of the
235ramdisk. The following script generates a patched DTB from the provided one,
236assuming that the ramdisk is loaded at address ``0x84000000``. Note that this
237script assumes that the user is using a ramdisk image prepared for U-Boot, like
238the ones provided by Linaro. If using a ramdisk without this header,the ``0x40``
239offset in ``INITRD_START`` has to be removed.
240
241.. code:: bash
242
243 #!/bin/bash
244
245 # Path to the input DTB
246 KERNEL_DTB=<path-to>/<fdt>
247 # Path to the output DTB
248 PATCHED_KERNEL_DTB=<path-to>/<patched-fdt>
249 # Base address of the ramdisk
250 INITRD_BASE=0x84000000
251 # Path to the ramdisk
252 INITRD=<path-to>/<ramdisk.img>
253
254 # Skip uboot header (64 bytes)
255 INITRD_START=$(printf "0x%x" $((${INITRD_BASE} + 0x40)) )
256 INITRD_SIZE=$(stat -Lc %s ${INITRD})
257 INITRD_END=$(printf "0x%x" $((${INITRD_BASE} + ${INITRD_SIZE})) )
258
259 CHOSEN_NODE=$(echo \
260 "/ { \
261 chosen { \
262 linux,initrd-start = <${INITRD_START}>; \
263 linux,initrd-end = <${INITRD_END}>; \
264 }; \
265 };")
266
267 echo $(dtc -O dts -I dtb ${KERNEL_DTB}) ${CHOSEN_NODE} | \
268 dtc -O dtb -o ${PATCHED_KERNEL_DTB} -
269
270And the FVP binary can be run with the following command:
271
272.. code:: shell
273
274 <path-to>/FVP_Base_AEMv8A-AEMv8A \
275 -C pctl.startup=0.0.0.0 \
276 -C bp.secure_memory=1 \
277 -C cluster0.NUM_CORES=4 \
278 -C cluster1.NUM_CORES=4 \
279 -C cache_state_modelled=1 \
280 -C cluster0.cpu0.RVBAR=0x04020000 \
281 -C cluster0.cpu1.RVBAR=0x04020000 \
282 -C cluster0.cpu2.RVBAR=0x04020000 \
283 -C cluster0.cpu3.RVBAR=0x04020000 \
284 -C cluster1.cpu0.RVBAR=0x04020000 \
285 -C cluster1.cpu1.RVBAR=0x04020000 \
286 -C cluster1.cpu2.RVBAR=0x04020000 \
287 -C cluster1.cpu3.RVBAR=0x04020000 \
288 --data cluster0.cpu0="<path-to>/bl31.bin"@0x04020000 \
289 --data cluster0.cpu0="<path-to>/<patched-fdt>"@0x82000000 \
290 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
291 --data cluster0.cpu0="<path-to>/<ramdisk.img>"@0x84000000
292
293Obtaining the Flattened Device Trees
294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
295
296Depending on the FVP configuration and Linux configuration used, different
297FDT files are required. FDT source files for the Foundation and Base FVPs can
298be found in the TF-A source directory under ``fdts/``. The Foundation FVP has
299a subset of the Base FVP components. For example, the Foundation FVP lacks
300CLCD and MMC support, and has only one CPU cluster.
301
302.. note::
303 It is not recommended to use the FDTs built along the kernel because not
304 all FDTs are available from there.
305
306The dynamic configuration capability is enabled in the firmware for FVPs.
307This means that the firmware can authenticate and load the FDT if present in
308FIP. A default FDT is packaged into FIP during the build based on
309the build configuration. This can be overridden by using the ``FVP_HW_CONFIG``
310or ``FVP_HW_CONFIG_DTS`` build options (refer to
311:ref:`build_options_arm_fvp_platform` for details on the options).
312
313- ``fvp-base-gicv2-psci.dts``
314
315 For use with models such as the Cortex-A57-A53 Base FVPs without shifted
316 affinities and with Base memory map configuration.
317
318- ``fvp-base-gicv2-psci-aarch32.dts``
319
320 For use with models such as the Cortex-A32 Base FVPs without shifted
321 affinities and running Linux in AArch32 state with Base memory map
322 configuration.
323
324- ``fvp-base-gicv3-psci.dts``
325
326 For use with models such as the Cortex-A57-A53 Base FVPs without shifted
327 affinities and with Base memory map configuration and Linux GICv3 support.
328
329- ``fvp-base-gicv3-psci-1t.dts``
330
331 For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
332 single threaded CPUs, Base memory map configuration and Linux GICv3 support.
333
334- ``fvp-base-gicv3-psci-dynamiq.dts``
335
336 For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
337 single cluster, single threaded CPUs, Base memory map configuration and Linux
338 GICv3 support.
339
340- ``fvp-base-gicv3-psci-aarch32.dts``
341
342 For use with models such as the Cortex-A32 Base FVPs without shifted
343 affinities and running Linux in AArch32 state with Base memory map
344 configuration and Linux GICv3 support.
345
346- ``fvp-foundation-gicv2-psci.dts``
347
348 For use with Foundation FVP with Base memory map configuration.
349
350- ``fvp-foundation-gicv3-psci.dts``
351
352 (Default) For use with Foundation FVP with Base memory map configuration
353 and Linux GICv3 support.
354
355
356Running on the Foundation FVP with reset to BL1 entrypoint
357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
358
359The following ``Foundation_Platform`` parameters should be used to boot Linux with
3604 CPUs using the AArch64 build of TF-A.
361
362.. code:: shell
363
364 <path-to>/Foundation_Platform \
365 --cores=4 \
366 --arm-v8.0 \
367 --secure-memory \
368 --visualization \
369 --gicv3 \
370 --data="<path-to>/<bl1-binary>"@0x0 \
371 --data="<path-to>/<FIP-binary>"@0x08000000 \
372 --data="<path-to>/<kernel-binary>"@0x80080000 \
373 --data="<path-to>/<ramdisk-binary>"@0x84000000
374
375Notes:
376
377- BL1 is loaded at the start of the Trusted ROM.
378- The Firmware Image Package is loaded at the start of NOR FLASH0.
379- The firmware loads the FDT packaged in FIP to the DRAM. The FDT load address
380 is specified via the ``hw_config_addr`` property in `TB_FW_CONFIG for FVP`_.
381- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
382 and enable the GICv3 device in the model. Note that without this option,
383 the Foundation FVP defaults to legacy (Versatile Express) memory map which
384 is not supported by TF-A.
385- In order for TF-A to run correctly on the Foundation FVP, the architecture
386 versions must match. The Foundation FVP defaults to the highest v8.x
387 version it supports but the default build for TF-A is for v8.0. To avoid
388 issues either start the Foundation FVP to use v8.0 architecture using the
389 ``--arm-v8.0`` option, or build TF-A with an appropriate value for
390 ``ARM_ARCH_MINOR``.
391
392Running on the AEMv8 Base FVP with reset to BL1 entrypoint
393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
394
395The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
396with 8 CPUs using the AArch64 build of TF-A.
397
398.. code:: shell
399
400 <path-to>/FVP_Base_RevC-2xAEMv8A \
401 -C pctl.startup=0.0.0.0 \
402 -C bp.secure_memory=1 \
403 -C bp.tzc_400.diagnostics=1 \
404 -C cluster0.NUM_CORES=4 \
405 -C cluster1.NUM_CORES=4 \
406 -C cache_state_modelled=1 \
407 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
408 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
409 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
410 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
411
412.. note::
413 The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires
414 a specific DTS for all the CPUs to be loaded.
415
416Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
418
419The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
420with 8 CPUs using the AArch32 build of TF-A.
421
422.. code:: shell
423
424 <path-to>/FVP_Base_AEMv8A-AEMv8A \
425 -C pctl.startup=0.0.0.0 \
426 -C bp.secure_memory=1 \
427 -C bp.tzc_400.diagnostics=1 \
428 -C cluster0.NUM_CORES=4 \
429 -C cluster1.NUM_CORES=4 \
430 -C cache_state_modelled=1 \
431 -C cluster0.cpu0.CONFIG64=0 \
432 -C cluster0.cpu1.CONFIG64=0 \
433 -C cluster0.cpu2.CONFIG64=0 \
434 -C cluster0.cpu3.CONFIG64=0 \
435 -C cluster1.cpu0.CONFIG64=0 \
436 -C cluster1.cpu1.CONFIG64=0 \
437 -C cluster1.cpu2.CONFIG64=0 \
438 -C cluster1.cpu3.CONFIG64=0 \
439 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
440 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
441 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
442 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
443
444Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
446
447The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
448boot Linux with 8 CPUs using the AArch64 build of TF-A.
449
450.. code:: shell
451
452 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
453 -C pctl.startup=0.0.0.0 \
454 -C bp.secure_memory=1 \
455 -C bp.tzc_400.diagnostics=1 \
456 -C cache_state_modelled=1 \
457 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
458 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
459 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
460 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
461
462Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
464
465The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
466boot Linux with 4 CPUs using the AArch32 build of TF-A.
467
468.. code:: shell
469
470 <path-to>/FVP_Base_Cortex-A32x4 \
471 -C pctl.startup=0.0.0.0 \
472 -C bp.secure_memory=1 \
473 -C bp.tzc_400.diagnostics=1 \
474 -C cache_state_modelled=1 \
475 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
476 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
477 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
478 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
479
480
481Running on the AEMv8 Base FVP with reset to BL31 entrypoint
482^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
483
484The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
485with 8 CPUs using the AArch64 build of TF-A.
486
487.. code:: shell
488
489 <path-to>/FVP_Base_RevC-2xAEMv8A \
490 -C pctl.startup=0.0.0.0 \
491 -C bp.secure_memory=1 \
492 -C bp.tzc_400.diagnostics=1 \
493 -C cluster0.NUM_CORES=4 \
494 -C cluster1.NUM_CORES=4 \
495 -C cache_state_modelled=1 \
496 -C cluster0.cpu0.RVBAR=0x04010000 \
497 -C cluster0.cpu1.RVBAR=0x04010000 \
498 -C cluster0.cpu2.RVBAR=0x04010000 \
499 -C cluster0.cpu3.RVBAR=0x04010000 \
500 -C cluster1.cpu0.RVBAR=0x04010000 \
501 -C cluster1.cpu1.RVBAR=0x04010000 \
502 -C cluster1.cpu2.RVBAR=0x04010000 \
503 -C cluster1.cpu3.RVBAR=0x04010000 \
504 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
505 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
506 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
507 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
508 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
509 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
510
511Notes:
512
513- If Position Independent Executable (PIE) support is enabled for BL31
514 in this config, it can be loaded at any valid address for execution.
515
516- Since a FIP is not loaded when using BL31 as reset entrypoint, the
517 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
518 parameter is needed to load the individual bootloader images in memory.
519 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
520 Payload. For the same reason, the FDT needs to be compiled from the DT source
521 and loaded via the ``--data cluster0.cpu0="<path-to>/<fdt>"@0x82000000``
522 parameter.
523
524- The ``FVP_Base_RevC-2xAEMv8A`` has shifted affinities and requires a
525 specific DTS for all the CPUs to be loaded.
526
527- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
528 X and Y are the cluster and CPU numbers respectively, is used to set the
529 reset vector for each core.
530
531- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
532 changing the value of
533 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
534 ``BL32_BASE``.
535
536
537Running on the AEMv8 Base FVP (AArch32) with reset to SP_MIN entrypoint
538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
539
540The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
541with 8 CPUs using the AArch32 build of TF-A.
542
543.. code:: shell
544
545 <path-to>/FVP_Base_AEMv8A-AEMv8A \
546 -C pctl.startup=0.0.0.0 \
547 -C bp.secure_memory=1 \
548 -C bp.tzc_400.diagnostics=1 \
549 -C cluster0.NUM_CORES=4 \
550 -C cluster1.NUM_CORES=4 \
551 -C cache_state_modelled=1 \
552 -C cluster0.cpu0.CONFIG64=0 \
553 -C cluster0.cpu1.CONFIG64=0 \
554 -C cluster0.cpu2.CONFIG64=0 \
555 -C cluster0.cpu3.CONFIG64=0 \
556 -C cluster1.cpu0.CONFIG64=0 \
557 -C cluster1.cpu1.CONFIG64=0 \
558 -C cluster1.cpu2.CONFIG64=0 \
559 -C cluster1.cpu3.CONFIG64=0 \
560 -C cluster0.cpu0.RVBAR=0x04002000 \
561 -C cluster0.cpu1.RVBAR=0x04002000 \
562 -C cluster0.cpu2.RVBAR=0x04002000 \
563 -C cluster0.cpu3.RVBAR=0x04002000 \
564 -C cluster1.cpu0.RVBAR=0x04002000 \
565 -C cluster1.cpu1.RVBAR=0x04002000 \
566 -C cluster1.cpu2.RVBAR=0x04002000 \
567 -C cluster1.cpu3.RVBAR=0x04002000 \
568 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
569 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
570 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
571 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
572 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
573
574.. note::
575 The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
576 It should match the address programmed into the RVBAR register as well.
577
578Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
580
581The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
582boot Linux with 8 CPUs using the AArch64 build of TF-A.
583
584.. code:: shell
585
586 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
587 -C pctl.startup=0.0.0.0 \
588 -C bp.secure_memory=1 \
589 -C bp.tzc_400.diagnostics=1 \
590 -C cache_state_modelled=1 \
591 -C cluster0.cpu0.RVBARADDR=0x04010000 \
592 -C cluster0.cpu1.RVBARADDR=0x04010000 \
593 -C cluster0.cpu2.RVBARADDR=0x04010000 \
594 -C cluster0.cpu3.RVBARADDR=0x04010000 \
595 -C cluster1.cpu0.RVBARADDR=0x04010000 \
596 -C cluster1.cpu1.RVBARADDR=0x04010000 \
597 -C cluster1.cpu2.RVBARADDR=0x04010000 \
598 -C cluster1.cpu3.RVBARADDR=0x04010000 \
599 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04010000 \
600 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0xff000000 \
601 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
602 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
603 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
604 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
605
606Running on the Cortex-A32 Base FVP (AArch32) with reset to SP_MIN entrypoint
607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
608
609The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
610boot Linux with 4 CPUs using the AArch32 build of TF-A.
611
612.. code:: shell
613
614 <path-to>/FVP_Base_Cortex-A32x4 \
615 -C pctl.startup=0.0.0.0 \
616 -C bp.secure_memory=1 \
617 -C bp.tzc_400.diagnostics=1 \
618 -C cache_state_modelled=1 \
619 -C cluster0.cpu0.RVBARADDR=0x04002000 \
620 -C cluster0.cpu1.RVBARADDR=0x04002000 \
621 -C cluster0.cpu2.RVBARADDR=0x04002000 \
622 -C cluster0.cpu3.RVBARADDR=0x04002000 \
623 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04002000 \
624 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
625 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
626 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
627 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
628
629--------------
630
631*Copyright (c) 2019, Arm Limited. All rights reserved.*
632
633.. _TB_FW_CONFIG for FVP: ../plat/arm/board/fvp/fdts/fvp_tb_fw_config.dts
634.. _Arm's website: `FVP models`_
635.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
636.. _Linaro Release 19.06: http://releases.linaro.org/members/arm/platforms/19.06
637.. _Arm FVP website: https://developer.arm.com/products/system-design/fixed-virtual-platforms