blob: 880fe7d9b70215d9972e0470423cd950e1f96e66 [file] [log] [blame]
Dan Handley610e7e12018-03-01 18:44:00 +00001Trusted Firmware-A User Guide
2=============================
Douglas Raillardd7c21b72017-06-28 15:23:03 +01003
4
5.. section-numbering::
6 :suffix: .
7
8.. contents::
9
Dan Handley610e7e12018-03-01 18:44:00 +000010This document describes how to build Trusted Firmware-A (TF-A) and run it with a
Douglas Raillardd7c21b72017-06-28 15:23:03 +010011tested set of other software components using defined configurations on the Juno
Dan Handley610e7e12018-03-01 18:44:00 +000012Arm development platform and Arm Fixed Virtual Platform (FVP) models. It is
Douglas Raillardd7c21b72017-06-28 15:23:03 +010013possible to use other software components, configurations and platforms but that
14is outside the scope of this document.
15
16This document assumes that the reader has previous experience running a fully
17bootable Linux software stack on Juno or FVP using the prebuilt binaries and
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010018filesystems provided by `Linaro`_. Further information may be found in the
19`Linaro instructions`_. It also assumes that the user understands the role of
20the different software components required to boot a Linux system:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010021
22- Specific firmware images required by the platform (e.g. SCP firmware on Juno)
23- Normal world bootloader (e.g. UEFI or U-Boot)
24- Device tree
25- Linux kernel image
26- Root filesystem
27
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010028This document also assumes that the user is familiar with the `FVP models`_ and
Douglas Raillardd7c21b72017-06-28 15:23:03 +010029the different command line options available to launch the model.
30
31This document should be used in conjunction with the `Firmware Design`_.
32
33Host machine requirements
34-------------------------
35
36The minimum recommended machine specification for building the software and
37running the FVP models is a dual-core processor running at 2GHz with 12GB of
38RAM. For best performance, use a machine with a quad-core processor running at
392.6GHz with 16GB of RAM.
40
Joel Huttonfe027712018-03-19 11:59:57 +000041The software has been tested on Ubuntu 16.04 LTS (64-bit). Packages used for
Douglas Raillardd7c21b72017-06-28 15:23:03 +010042building the software were installed from that distribution unless otherwise
43specified.
44
45The software has also been built on Windows 7 Enterprise SP1, using CMD.EXE,
David Cunadob2de0992017-06-29 12:01:33 +010046Cygwin, and Msys (MinGW) shells, using version 5.3.1 of the GNU toolchain.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010047
48Tools
49-----
50
Dan Handley610e7e12018-03-01 18:44:00 +000051Install the required packages to build TF-A with the following command:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010052
53::
54
55 sudo apt-get install build-essential gcc make git libssl-dev
56
Dan Handley610e7e12018-03-01 18:44:00 +000057TF-A has been tested with `Linaro Release 17.10`_.
David Cunadob2de0992017-06-29 12:01:33 +010058
Douglas Raillardd7c21b72017-06-28 15:23:03 +010059Download and install the AArch32 or AArch64 little-endian GCC cross compiler.
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +010060The `Linaro Release Notes`_ documents which version of the compiler to use for a
61given Linaro Release. Also, these `Linaro instructions`_ provide further
62guidance and a script, which can be used to download Linaro deliverables
63automatically.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010064
Dan Handley610e7e12018-03-01 18:44:00 +000065Optionally, TF-A can be built using clang or Arm Compiler 6.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010066See instructions below on how to switch the default compiler.
67
68In addition, the following optional packages and tools may be needed:
69
70- ``device-tree-compiler`` package if you need to rebuild the Flattened Device
71 Tree (FDT) source files (``.dts`` files) provided with this software.
72
Dan Handley610e7e12018-03-01 18:44:00 +000073- For debugging, Arm `Development Studio 5 (DS-5)`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010074
Antonio Nino Diazb5d68092017-05-23 11:49:22 +010075- To create and modify the diagram files included in the documentation, `Dia`_.
76 This tool can be found in most Linux distributions. Inkscape is needed to
77 generate the actual *.png files.
78
Dan Handley610e7e12018-03-01 18:44:00 +000079Getting the TF-A source code
80----------------------------
Douglas Raillardd7c21b72017-06-28 15:23:03 +010081
Dan Handley610e7e12018-03-01 18:44:00 +000082Download the TF-A source code from Github:
Douglas Raillardd7c21b72017-06-28 15:23:03 +010083
84::
85
86 git clone https://github.com/ARM-software/arm-trusted-firmware.git
87
Dan Handley610e7e12018-03-01 18:44:00 +000088Building TF-A
89-------------
Douglas Raillardd7c21b72017-06-28 15:23:03 +010090
Dan Handley610e7e12018-03-01 18:44:00 +000091- Before building TF-A, the environment variable ``CROSS_COMPILE`` must point
92 to the Linaro cross compiler.
Douglas Raillardd7c21b72017-06-28 15:23:03 +010093
94 For AArch64:
95
96 ::
97
98 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
99
100 For AArch32:
101
102 ::
103
104 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
105
Dan Handley610e7e12018-03-01 18:44:00 +0000106 It is possible to build TF-A using clang or Arm Compiler 6. To do so
107 ``CC`` needs to point to the clang or armclang binary. Only the compiler
108 is switched; the assembler and linker need to be provided by the GNU
109 toolchain, thus ``CROSS_COMPILE`` should be set as described above.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100110
Dan Handley610e7e12018-03-01 18:44:00 +0000111 Arm Compiler 6 will be selected when the base name of the path assigned
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100112 to ``CC`` matches the string 'armclang'.
113
Dan Handley610e7e12018-03-01 18:44:00 +0000114 For AArch64 using Arm Compiler 6:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100115
116 ::
117
118 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
119 make CC=<path-to-armclang>/bin/armclang PLAT=<platform> all
120
121 Clang will be selected when the base name of the path assigned to ``CC``
122 contains the string 'clang'. This is to allow both clang and clang-X.Y
123 to work.
124
125 For AArch64 using clang:
126
127 ::
128
129 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
130 make CC=<path-to-clang>/bin/clang PLAT=<platform> all
131
Dan Handley610e7e12018-03-01 18:44:00 +0000132- Change to the root directory of the TF-A source tree and build.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100133
134 For AArch64:
135
136 ::
137
138 make PLAT=<platform> all
139
140 For AArch32:
141
142 ::
143
144 make PLAT=<platform> ARCH=aarch32 AARCH32_SP=sp_min all
145
146 Notes:
147
148 - If ``PLAT`` is not specified, ``fvp`` is assumed by default. See the
149 `Summary of build options`_ for more information on available build
150 options.
151
152 - (AArch32 only) Currently only ``PLAT=fvp`` is supported.
153
154 - (AArch32 only) ``AARCH32_SP`` is the AArch32 EL3 Runtime Software and it
155 corresponds to the BL32 image. A minimal ``AARCH32_SP``, sp\_min, is
Dan Handley610e7e12018-03-01 18:44:00 +0000156 provided by TF-A to demonstrate how PSCI Library can be integrated with
157 an AArch32 EL3 Runtime Software. Some AArch32 EL3 Runtime Software may
158 include other runtime services, for example Trusted OS services. A guide
159 to integrate PSCI library with AArch32 EL3 Runtime Software can be found
160 `here`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100161
162 - (AArch64 only) The TSP (Test Secure Payload), corresponding to the BL32
163 image, is not compiled in by default. Refer to the
164 `Building the Test Secure Payload`_ section below.
165
166 - By default this produces a release version of the build. To produce a
167 debug version instead, refer to the "Debugging options" section below.
168
169 - The build process creates products in a ``build`` directory tree, building
170 the objects and binaries for each boot loader stage in separate
171 sub-directories. The following boot loader binary files are created
172 from the corresponding ELF files:
173
174 - ``build/<platform>/<build-type>/bl1.bin``
175 - ``build/<platform>/<build-type>/bl2.bin``
176 - ``build/<platform>/<build-type>/bl31.bin`` (AArch64 only)
177 - ``build/<platform>/<build-type>/bl32.bin`` (mandatory for AArch32)
178
179 where ``<platform>`` is the name of the chosen platform and ``<build-type>``
180 is either ``debug`` or ``release``. The actual number of images might differ
181 depending on the platform.
182
183- Build products for a specific build variant can be removed using:
184
185 ::
186
187 make DEBUG=<D> PLAT=<platform> clean
188
189 ... where ``<D>`` is ``0`` or ``1``, as specified when building.
190
191 The build tree can be removed completely using:
192
193 ::
194
195 make realclean
196
197Summary of build options
198~~~~~~~~~~~~~~~~~~~~~~~~
199
Dan Handley610e7e12018-03-01 18:44:00 +0000200The TF-A build system supports the following build options. Unless mentioned
201otherwise, these options are expected to be specified at the build command
202line and are not to be modified in any component makefiles. Note that the
203build system doesn't track dependency for build options. Therefore, if any of
204the build options are changed from a previous build, a clean build must be
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100205performed.
206
207Common build options
208^^^^^^^^^^^^^^^^^^^^
209
210- ``AARCH32_SP`` : Choose the AArch32 Secure Payload component to be built as
211 as the BL32 image when ``ARCH=aarch32``. The value should be the path to the
212 directory containing the SP source, relative to the ``bl32/``; the directory
213 is expected to contain a makefile called ``<aarch32_sp-value>.mk``.
214
Dan Handley610e7e12018-03-01 18:44:00 +0000215- ``ARCH`` : Choose the target build architecture for TF-A. It can take either
216 ``aarch64`` or ``aarch32`` as values. By default, it is defined to
217 ``aarch64``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100218
Dan Handley610e7e12018-03-01 18:44:00 +0000219- ``ARM_ARCH_MAJOR``: The major version of Arm Architecture to target when
220 compiling TF-A. Its value must be numeric, and defaults to 8 . See also,
221 *Armv8 Architecture Extensions* and *Armv7 Architecture Extensions* in
222 `Firmware Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100223
Dan Handley610e7e12018-03-01 18:44:00 +0000224- ``ARM_ARCH_MINOR``: The minor version of Arm Architecture to target when
225 compiling TF-A. Its value must be a numeric, and defaults to 0. See also,
226 *Armv8 Architecture Extensions* in `Firmware Design`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100227
Dan Handley610e7e12018-03-01 18:44:00 +0000228- ``ARM_GIC_ARCH``: Choice of Arm GIC architecture version used by the Arm
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100229 Legacy GIC driver for implementing the platform GIC API. This API is used
230 by the interrupt management framework. Default is 2 (that is, version 2.0).
231 This build option is deprecated.
232
Dan Handley610e7e12018-03-01 18:44:00 +0000233- ``ARM_PLAT_MT``: This flag determines whether the Arm platform layer has to
Jeenu Viswambharan528d21b2016-11-15 13:53:57 +0000234 cater for the multi-threading ``MT`` bit when accessing MPIDR. When this flag
235 is set, the functions which deal with MPIDR assume that the ``MT`` bit in
236 MPIDR is set and access the bit-fields in MPIDR accordingly. Default value of
237 this flag is 0. Note that this option is not used on FVP platforms.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100238
239- ``BL2``: This is an optional build option which specifies the path to BL2
Dan Handley610e7e12018-03-01 18:44:00 +0000240 image for the ``fip`` target. In this case, the BL2 in the TF-A will not be
241 built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100242
243- ``BL2U``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000244 BL2U image. In this case, the BL2U in TF-A will not be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100245
Roberto Vargasb1584272017-11-20 13:36:10 +0000246- ``BL2_AT_EL3``: This is an optional build option that enables the use of
247 BL2 at EL3 execution level.
248
Jiafei Pan43a7bf42018-03-21 07:20:09 +0000249- ``BL2_IN_XIP_MEM``: In some use-cases BL2 will be stored in eXecute In Place
250 (XIP) memory, like BL1. In these use-cases, it is necessary to initialize
251 the RW sections in RAM, while leaving the RO sections in place. This option
252 enable this use-case. For now, this option is only supported when BL2_AT_EL3
253 is set to '1'.
254
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100255- ``BL31``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000256 BL31 image for the ``fip`` target. In this case, the BL31 in TF-A will not
257 be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100258
259- ``BL31_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
260 file that contains the BL31 private key in PEM format. If ``SAVE_KEYS=1``,
261 this file name will be used to save the key.
262
263- ``BL32``: This is an optional build option which specifies the path to
Dan Handley610e7e12018-03-01 18:44:00 +0000264 BL32 image for the ``fip`` target. In this case, the BL32 in TF-A will not
265 be built.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100266
Summer Qin80726782017-04-20 16:28:39 +0100267- ``BL32_EXTRA1``: This is an optional build option which specifies the path to
268 Trusted OS Extra1 image for the ``fip`` target.
269
270- ``BL32_EXTRA2``: This is an optional build option which specifies the path to
271 Trusted OS Extra2 image for the ``fip`` target.
272
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100273- ``BL32_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
274 file that contains the BL32 private key in PEM format. If ``SAVE_KEYS=1``,
275 this file name will be used to save the key.
276
277- ``BL33``: Path to BL33 image in the host file system. This is mandatory for
Dan Handley610e7e12018-03-01 18:44:00 +0000278 ``fip`` target in case TF-A BL2 is used.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100279
280- ``BL33_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
281 file that contains the BL33 private key in PEM format. If ``SAVE_KEYS=1``,
282 this file name will be used to save the key.
283
284- ``BUILD_MESSAGE_TIMESTAMP``: String used to identify the time and date of the
285 compilation of each build. It must be set to a C string (including quotes
286 where applicable). Defaults to a string that contains the time and date of
287 the compilation.
288
Dan Handley610e7e12018-03-01 18:44:00 +0000289- ``BUILD_STRING``: Input string for VERSION\_STRING, which allows the TF-A
290 build to be uniquely identified. Defaults to the current git commit id.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100291
292- ``CFLAGS``: Extra user options appended on the compiler's command line in
293 addition to the options set by the build system.
294
295- ``COLD_BOOT_SINGLE_CPU``: This option indicates whether the platform may
296 release several CPUs out of reset. It can take either 0 (several CPUs may be
297 brought up) or 1 (only one CPU will ever be brought up during cold reset).
298 Default is 0. If the platform always brings up a single CPU, there is no
299 need to distinguish between primary and secondary CPUs and the boot path can
300 be optimised. The ``plat_is_my_cpu_primary()`` and
301 ``plat_secondary_cold_boot_setup()`` platform porting interfaces do not need
302 to be implemented in this case.
303
304- ``CRASH_REPORTING``: A non-zero value enables a console dump of processor
305 register state when an unexpected exception occurs during execution of
306 BL31. This option defaults to the value of ``DEBUG`` - i.e. by default
307 this is only enabled for a debug build of the firmware.
308
309- ``CREATE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
310 certificate generation tool to create new keys in case no valid keys are
311 present or specified. Allowed options are '0' or '1'. Default is '1'.
312
313- ``CTX_INCLUDE_AARCH32_REGS`` : Boolean option that, when set to 1, will cause
314 the AArch32 system registers to be included when saving and restoring the
315 CPU context. The option must be set to 0 for AArch64-only platforms (that
316 is on hardware that does not implement AArch32, or at least not at EL1 and
317 higher ELs). Default value is 1.
318
319- ``CTX_INCLUDE_FPREGS``: Boolean option that, when set to 1, will cause the FP
320 registers to be included when saving and restoring the CPU context. Default
321 is 0.
322
323- ``DEBUG``: Chooses between a debug and release build. It can take either 0
324 (release) or 1 (debug) as values. 0 is the default.
325
326- ``EL3_PAYLOAD_BASE``: This option enables booting an EL3 payload instead of
327 the normal boot flow. It must specify the entry point address of the EL3
328 payload. Please refer to the "Booting an EL3 payload" section for more
329 details.
330
Dimitris Papastamosfcedb692017-10-16 11:40:10 +0100331- ``ENABLE_AMU``: Boolean option to enable Activity Monitor Unit extensions.
Dimitris Papastamose08005a2017-10-12 13:02:29 +0100332 This is an optional architectural feature available on v8.4 onwards. Some
333 v8.2 implementations also implement an AMU and this option can be used to
334 enable this feature on those systems as well. Default is 0.
Dimitris Papastamosfcedb692017-10-16 11:40:10 +0100335
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100336- ``ENABLE_ASSERTIONS``: This option controls whether or not calls to ``assert()``
337 are compiled out. For debug builds, this option defaults to 1, and calls to
338 ``assert()`` are left in place. For release builds, this option defaults to 0
339 and calls to ``assert()`` function are compiled out. This option can be set
340 independently of ``DEBUG``. It can also be used to hide any auxiliary code
341 that is only required for the assertion and does not fit in the assertion
342 itself.
343
344- ``ENABLE_PMF``: Boolean option to enable support for optional Performance
345 Measurement Framework(PMF). Default is 0.
346
347- ``ENABLE_PSCI_STAT``: Boolean option to enable support for optional PSCI
348 functions ``PSCI_STAT_RESIDENCY`` and ``PSCI_STAT_COUNT``. Default is 0.
349 In the absence of an alternate stat collection backend, ``ENABLE_PMF`` must
350 be enabled. If ``ENABLE_PMF`` is set, the residency statistics are tracked in
351 software.
352
353- ``ENABLE_RUNTIME_INSTRUMENTATION``: Boolean option to enable runtime
Dan Handley610e7e12018-03-01 18:44:00 +0000354 instrumentation which injects timestamp collection points into TF-A to
355 allow runtime performance to be measured. Currently, only PSCI is
356 instrumented. Enabling this option enables the ``ENABLE_PMF`` build option
357 as well. Default is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100358
Jeenu Viswambharand73dcf32017-07-19 13:52:12 +0100359- ``ENABLE_SPE_FOR_LOWER_ELS`` : Boolean option to enable Statistical Profiling
Dimitris Papastamos9da09cd2017-10-13 15:07:45 +0100360 extensions. This is an optional architectural feature for AArch64.
361 The default is 1 but is automatically disabled when the target architecture
362 is AArch32.
Jeenu Viswambharand73dcf32017-07-19 13:52:12 +0100363
David Cunadoce88eee2017-10-20 11:30:57 +0100364- ``ENABLE_SVE_FOR_NS``: Boolean option to enable Scalable Vector Extension
365 (SVE) for the Non-secure world only. SVE is an optional architectural feature
366 for AArch64. Note that when SVE is enabled for the Non-secure world, access
367 to SIMD and floating-point functionality from the Secure world is disabled.
368 This is to avoid corruption of the Non-secure world data in the Z-registers
369 which are aliased by the SIMD and FP registers. The build option is not
370 compatible with the ``CTX_INCLUDE_FPREGS`` build option, and will raise an
371 assert on platforms where SVE is implemented and ``ENABLE_SVE_FOR_NS`` set to
372 1. The default is 1 but is automatically disabled when the target
373 architecture is AArch32.
374
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100375- ``ENABLE_STACK_PROTECTOR``: String option to enable the stack protection
376 checks in GCC. Allowed values are "all", "strong" and "0" (default).
377 "strong" is the recommended stack protection level if this feature is
378 desired. 0 disables the stack protection. For all values other than 0, the
379 ``plat_get_stack_protector_canary()`` platform hook needs to be implemented.
380 The value is passed as the last component of the option
381 ``-fstack-protector-$ENABLE_STACK_PROTECTOR``.
382
383- ``ERROR_DEPRECATED``: This option decides whether to treat the usage of
384 deprecated platform APIs, helper functions or drivers within Trusted
385 Firmware as error. It can take the value 1 (flag the use of deprecated
386 APIs as error) or 0. The default is 0.
387
Jeenu Viswambharan10a67272017-09-22 08:32:10 +0100388- ``EL3_EXCEPTION_HANDLING``: When set to ``1``, enable handling of exceptions
389 targeted at EL3. When set ``0`` (default), no exceptions are expected or
390 handled at EL3, and a panic will result. This is supported only for AArch64
391 builds.
392
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100393- ``FIP_NAME``: This is an optional build option which specifies the FIP
394 filename for the ``fip`` target. Default is ``fip.bin``.
395
396- ``FWU_FIP_NAME``: This is an optional build option which specifies the FWU
397 FIP filename for the ``fwu_fip`` target. Default is ``fwu_fip.bin``.
398
399- ``GENERATE_COT``: Boolean flag used to build and execute the ``cert_create``
400 tool to create certificates as per the Chain of Trust described in
401 `Trusted Board Boot`_. The build system then calls ``fiptool`` to
402 include the certificates in the FIP and FWU\_FIP. Default value is '0'.
403
404 Specify both ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=1`` to include support
405 for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
406 the corresponding certificates, and to include those certificates in the
407 FIP and FWU\_FIP.
408
409 Note that if ``TRUSTED_BOARD_BOOT=0`` and ``GENERATE_COT=1``, the BL1 and BL2
410 images will not include support for Trusted Board Boot. The FIP will still
411 include the corresponding certificates. This FIP can be used to verify the
412 Chain of Trust on the host machine through other mechanisms.
413
414 Note that if ``TRUSTED_BOARD_BOOT=1`` and ``GENERATE_COT=0``, the BL1 and BL2
415 images will include support for Trusted Board Boot, but the FIP and FWU\_FIP
416 will not include the corresponding certificates, causing a boot failure.
417
Jeenu Viswambharanc06f05c2017-09-22 08:32:09 +0100418- ``GICV2_G0_FOR_EL3``: Unlike GICv3, the GICv2 architecture doesn't have
419 inherent support for specific EL3 type interrupts. Setting this build option
420 to ``1`` assumes GICv2 *Group 0* interrupts are expected to target EL3, both
421 by `platform abstraction layer`__ and `Interrupt Management Framework`__.
422 This allows GICv2 platforms to enable features requiring EL3 interrupt type.
423 This also means that all GICv2 Group 0 interrupts are delivered to EL3, and
424 the Secure Payload interrupts needs to be synchronously handed over to Secure
425 EL1 for handling. The default value of this option is ``0``, which means the
426 Group 0 interrupts are assumed to be handled by Secure EL1.
427
428 .. __: `platform-interrupt-controller-API.rst`
429 .. __: `interrupt-framework-design.rst`
430
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100431- ``HANDLE_EA_EL3_FIRST``: When defined External Aborts and SError Interrupts
432 will be always trapped in EL3 i.e. in BL31 at runtime.
433
Dan Handley610e7e12018-03-01 18:44:00 +0000434- ``HW_ASSISTED_COHERENCY``: On most Arm systems to-date, platform-specific
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100435 software operations are required for CPUs to enter and exit coherency.
436 However, there exists newer systems where CPUs' entry to and exit from
437 coherency is managed in hardware. Such systems require software to only
438 initiate the operations, and the rest is managed in hardware, minimizing
Dan Handley610e7e12018-03-01 18:44:00 +0000439 active software management. In such systems, this boolean option enables
440 TF-A to carry out build and run-time optimizations during boot and power
441 management operations. This option defaults to 0 and if it is enabled,
442 then it implies ``WARMBOOT_ENABLE_DCACHE_EARLY`` is also enabled.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100443
444- ``JUNO_AARCH32_EL3_RUNTIME``: This build flag enables you to execute EL3
445 runtime software in AArch32 mode, which is required to run AArch32 on Juno.
446 By default this flag is set to '0'. Enabling this flag builds BL1 and BL2 in
447 AArch64 and facilitates the loading of ``SP_MIN`` and BL33 as AArch32 executable
448 images.
449
Soby Mathew13b16052017-08-31 11:49:32 +0100450- ``KEY_ALG``: This build flag enables the user to select the algorithm to be
451 used for generating the PKCS keys and subsequent signing of the certificate.
Qixiang Xu1a1f2912017-11-09 13:56:29 +0800452 It accepts 3 values viz. ``rsa``, ``rsa_1_5``, ``ecdsa``. The ``rsa_1_5`` is
Soby Mathew2fd70f62017-08-31 11:50:29 +0100453 the legacy PKCS#1 RSA 1.5 algorithm which is not TBBR compliant and is
454 retained only for compatibility. The default value of this flag is ``rsa``
455 which is the TBBR compliant PKCS#1 RSA 2.1 scheme.
Soby Mathew13b16052017-08-31 11:49:32 +0100456
Qixiang Xu1a1f2912017-11-09 13:56:29 +0800457- ``HASH_ALG``: This build flag enables the user to select the secure hash
458 algorithm. It accepts 3 values viz. ``sha256``, ``sha384``, ``sha512``.
459 The default value of this flag is ``sha256``.
460
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100461- ``LDFLAGS``: Extra user options appended to the linkers' command line in
462 addition to the one set by the build system.
463
464- ``LOAD_IMAGE_V2``: Boolean option to enable support for new version (v2) of
465 image loading, which provides more flexibility and scalability around what
466 images are loaded and executed during boot. Default is 0.
467 Note: ``TRUSTED_BOARD_BOOT`` is currently only supported for AArch64 when
468 ``LOAD_IMAGE_V2`` is enabled.
469
470- ``LOG_LEVEL``: Chooses the log level, which controls the amount of console log
471 output compiled into the build. This should be one of the following:
472
473 ::
474
475 0 (LOG_LEVEL_NONE)
476 10 (LOG_LEVEL_NOTICE)
477 20 (LOG_LEVEL_ERROR)
478 30 (LOG_LEVEL_WARNING)
479 40 (LOG_LEVEL_INFO)
480 50 (LOG_LEVEL_VERBOSE)
481
482 All log output up to and including the log level is compiled into the build.
483 The default value is 40 in debug builds and 20 in release builds.
484
485- ``NON_TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
486 specifies the file that contains the Non-Trusted World private key in PEM
487 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
488
489- ``NS_BL2U``: Path to NS\_BL2U image in the host file system. This image is
490 optional. It is only needed if the platform makefile specifies that it
491 is required in order to build the ``fwu_fip`` target.
492
493- ``NS_TIMER_SWITCH``: Enable save and restore for non-secure timer register
494 contents upon world switch. It can take either 0 (don't save and restore) or
495 1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
496 wants the timer registers to be saved and restored.
497
498- ``PL011_GENERIC_UART``: Boolean option to indicate the PL011 driver that
499 the underlying hardware is not a full PL011 UART but a minimally compliant
500 generic UART, which is a subset of the PL011. The driver will not access
501 any register that is not part of the SBSA generic UART specification.
502 Default value is 0 (a full PL011 compliant UART is present).
503
Dan Handley610e7e12018-03-01 18:44:00 +0000504- ``PLAT``: Choose a platform to build TF-A for. The chosen platform name
505 must be subdirectory of any depth under ``plat/``, and must contain a
506 platform makefile named ``platform.mk``. For example, to build TF-A for the
507 Arm Juno board, select PLAT=juno.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100508
509- ``PRELOADED_BL33_BASE``: This option enables booting a preloaded BL33 image
510 instead of the normal boot flow. When defined, it must specify the entry
511 point address for the preloaded BL33 image. This option is incompatible with
512 ``EL3_PAYLOAD_BASE``. If both are defined, ``EL3_PAYLOAD_BASE`` has priority
513 over ``PRELOADED_BL33_BASE``.
514
515- ``PROGRAMMABLE_RESET_ADDRESS``: This option indicates whether the reset
516 vector address can be programmed or is fixed on the platform. It can take
517 either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
518 programmable reset address, it is expected that a CPU will start executing
519 code directly at the right address, both on a cold and warm reset. In this
520 case, there is no need to identify the entrypoint on boot and the boot path
521 can be optimised. The ``plat_get_my_entrypoint()`` platform porting interface
522 does not need to be implemented in this case.
523
524- ``PSCI_EXTENDED_STATE_ID``: As per PSCI1.0 Specification, there are 2 formats
525 possible for the PSCI power-state parameter viz original and extended
526 State-ID formats. This flag if set to 1, configures the generic PSCI layer
527 to use the extended format. The default value of this flag is 0, which
528 means by default the original power-state format is used by the PSCI
529 implementation. This flag should be specified by the platform makefile
530 and it governs the return value of PSCI\_FEATURES API for CPU\_SUSPEND
Dan Handley610e7e12018-03-01 18:44:00 +0000531 smc function id. When this option is enabled on Arm platforms, the
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100532 option ``ARM_RECOM_STATE_ID_ENC`` needs to be set to 1 as well.
533
Jeenu Viswambharan9a7ce2f2018-04-04 16:07:11 +0100534- ``RAS_EXTENSION``: When set to ``1``, enable Armv8.2 RAS features. RAS features
535 are an optional extension for pre-Armv8.2 CPUs, but are mandatory for Armv8.2
536 or later CPUs.
537
538 When ``RAS_EXTENSION`` is set to ``1``, ``HANDLE_EA_EL3_FIRST`` must also be
539 set to ``1``.
540
541 This option is disabled by default.
542
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100543- ``RESET_TO_BL31``: Enable BL31 entrypoint as the CPU reset vector instead
544 of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
545 entrypoint) or 1 (CPU reset to BL31 entrypoint).
546 The default value is 0.
547
Dan Handley610e7e12018-03-01 18:44:00 +0000548- ``RESET_TO_SP_MIN``: SP\_MIN is the minimal AArch32 Secure Payload provided
549 in TF-A. This flag configures SP\_MIN entrypoint as the CPU reset vector
550 instead of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
551 entrypoint) or 1 (CPU reset to SP\_MIN entrypoint). The default value is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100552
553- ``ROT_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
554 file that contains the ROT private key in PEM format. If ``SAVE_KEYS=1``, this
555 file name will be used to save the key.
556
557- ``SAVE_KEYS``: This option is used when ``GENERATE_COT=1``. It tells the
558 certificate generation tool to save the keys used to establish the Chain of
559 Trust. Allowed options are '0' or '1'. Default is '0' (do not save).
560
561- ``SCP_BL2``: Path to SCP\_BL2 image in the host file system. This image is optional.
562 If a SCP\_BL2 image is present then this option must be passed for the ``fip``
563 target.
564
565- ``SCP_BL2_KEY``: This option is used when ``GENERATE_COT=1``. It specifies the
566 file that contains the SCP\_BL2 private key in PEM format. If ``SAVE_KEYS=1``,
567 this file name will be used to save the key.
568
569- ``SCP_BL2U``: Path to SCP\_BL2U image in the host file system. This image is
570 optional. It is only needed if the platform makefile specifies that it
571 is required in order to build the ``fwu_fip`` target.
572
Jeenu Viswambharan04e3a7f2017-10-16 08:43:14 +0100573- ``SDEI_SUPPORT``: Setting this to ``1`` enables support for Software
574 Delegated Exception Interface to BL31 image. This defaults to ``0``.
575
576 When set to ``1``, the build option ``EL3_EXCEPTION_HANDLING`` must also be
577 set to ``1``.
578
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100579- ``SEPARATE_CODE_AND_RODATA``: Whether code and read-only data should be
580 isolated on separate memory pages. This is a trade-off between security and
581 memory usage. See "Isolating code and read-only data on separate memory
582 pages" section in `Firmware Design`_. This flag is disabled by default and
583 affects all BL images.
584
Antonio Nino Diaz35c8cfc2018-04-23 15:43:29 +0100585- ``SMCCC_MAJOR_VERSION``: Numeric value that indicates the major version of
586 the SMC Calling Convention that the Trusted Firmware supports. The only two
587 allowed values are 1 and 2, and it defaults to 1. The minor version is
588 determined using this value.
589
Dan Handley610e7e12018-03-01 18:44:00 +0000590- ``SPD``: Choose a Secure Payload Dispatcher component to be built into TF-A.
591 This build option is only valid if ``ARCH=aarch64``. The value should be
592 the path to the directory containing the SPD source, relative to
593 ``services/spd/``; the directory is expected to contain a makefile called
594 ``<spd-value>.mk``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100595
596- ``SPIN_ON_BL1_EXIT``: This option introduces an infinite loop in BL1. It can
597 take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
598 execution in BL1 just before handing over to BL31. At this point, all
599 firmware images have been loaded in memory, and the MMU and caches are
600 turned off. Refer to the "Debugging options" section for more details.
601
Etienne Carrieredc0fea72017-08-09 15:48:53 +0200602- ``SP_MIN_WITH_SECURE_FIQ``: Boolean flag to indicate the SP_MIN handles
603 secure interrupts (caught through the FIQ line). Platforms can enable
604 this directive if they need to handle such interruption. When enabled,
605 the FIQ are handled in monitor mode and non secure world is not allowed
606 to mask these events. Platforms that enable FIQ handling in SP_MIN shall
607 implement the api ``sp_min_plat_fiq_handler()``. The default value is 0.
608
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100609- ``TRUSTED_BOARD_BOOT``: Boolean flag to include support for the Trusted Board
610 Boot feature. When set to '1', BL1 and BL2 images include support to load
611 and verify the certificates and images in a FIP, and BL1 includes support
612 for the Firmware Update. The default value is '0'. Generation and inclusion
613 of certificates in the FIP and FWU\_FIP depends upon the value of the
614 ``GENERATE_COT`` option.
615
616 Note: This option depends on ``CREATE_KEYS`` to be enabled. If the keys
617 already exist in disk, they will be overwritten without further notice.
618
619- ``TRUSTED_WORLD_KEY``: This option is used when ``GENERATE_COT=1``. It
620 specifies the file that contains the Trusted World private key in PEM
621 format. If ``SAVE_KEYS=1``, this file name will be used to save the key.
622
623- ``TSP_INIT_ASYNC``: Choose BL32 initialization method as asynchronous or
624 synchronous, (see "Initializing a BL32 Image" section in
625 `Firmware Design`_). It can take the value 0 (BL32 is initialized using
626 synchronous method) or 1 (BL32 is initialized using asynchronous method).
627 Default is 0.
628
629- ``TSP_NS_INTR_ASYNC_PREEMPT``: A non zero value enables the interrupt
630 routing model which routes non-secure interrupts asynchronously from TSP
631 to EL3 causing immediate preemption of TSP. The EL3 is responsible
632 for saving and restoring the TSP context in this routing model. The
633 default routing model (when the value is 0) is to route non-secure
634 interrupts to TSP allowing it to save its context and hand over
635 synchronously to EL3 via an SMC.
636
Jeenu Viswambharan2f40f322018-01-11 14:30:22 +0000637 Note: when ``EL3_EXCEPTION_HANDLING`` is ``1``, ``TSP_NS_INTR_ASYNC_PREEMPT``
638 must also be set to ``1``.
639
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100640- ``USE_COHERENT_MEM``: This flag determines whether to include the coherent
641 memory region in the BL memory map or not (see "Use of Coherent memory in
Dan Handley610e7e12018-03-01 18:44:00 +0000642 TF-A" section in `Firmware Design`_). It can take the value 1
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100643 (Coherent memory region is included) or 0 (Coherent memory region is
644 excluded). Default is 1.
645
646- ``V``: Verbose build. If assigned anything other than 0, the build commands
647 are printed. Default is 0.
648
Dan Handley610e7e12018-03-01 18:44:00 +0000649- ``VERSION_STRING``: String used in the log output for each TF-A image.
650 Defaults to a string formed by concatenating the version number, build type
651 and build string.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100652
653- ``WARMBOOT_ENABLE_DCACHE_EARLY`` : Boolean option to enable D-cache early on
654 the CPU after warm boot. This is applicable for platforms which do not
655 require interconnect programming to enable cache coherency (eg: single
656 cluster platforms). If this option is enabled, then warm boot path
657 enables D-caches immediately after enabling MMU. This option defaults to 0.
658
Dan Handley610e7e12018-03-01 18:44:00 +0000659Arm development platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
661
662- ``ARM_BL31_IN_DRAM``: Boolean option to select loading of BL31 in TZC secured
663 DRAM. By default, BL31 is in the secure SRAM. Set this flag to 1 to load
664 BL31 in TZC secured DRAM. If TSP is present, then setting this option also
665 sets the TSP location to DRAM and ignores the ``ARM_TSP_RAM_LOCATION`` build
666 flag.
667
668- ``ARM_BOARD_OPTIMISE_MEM``: Boolean option to enable or disable optimisation
669 of the memory reserved for each image. This affects the maximum size of each
670 BL image as well as the number of allocated memory regions and translation
671 tables. By default this flag is 0, which means it uses the default
Dan Handley610e7e12018-03-01 18:44:00 +0000672 unoptimised values for these macros. Arm development platforms that wish to
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100673 optimise memory usage need to set this flag to 1 and must override the
674 related macros.
675
676- ``ARM_CONFIG_CNTACR``: boolean option to unlock access to the ``CNTBase<N>``
677 frame registers by setting the ``CNTCTLBase.CNTACR<N>`` register bits. The
678 frame number ``<N>`` is defined by ``PLAT_ARM_NSTIMER_FRAME_ID``, which should
679 match the frame used by the Non-Secure image (normally the Linux kernel).
680 Default is true (access to the frame is allowed).
681
682- ``ARM_DISABLE_TRUSTED_WDOG``: boolean option to disable the Trusted Watchdog.
Dan Handley610e7e12018-03-01 18:44:00 +0000683 By default, Arm platforms use a watchdog to trigger a system reset in case
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100684 an error is encountered during the boot process (for example, when an image
685 could not be loaded or authenticated). The watchdog is enabled in the early
686 platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
687 Trusted Watchdog may be disabled at build time for testing or development
688 purposes.
689
690- ``ARM_RECOM_STATE_ID_ENC``: The PSCI1.0 specification recommends an encoding
691 for the construction of composite state-ID in the power-state parameter.
692 The existing PSCI clients currently do not support this encoding of
693 State-ID yet. Hence this flag is used to configure whether to use the
694 recommended State-ID encoding or not. The default value of this flag is 0,
695 in which case the platform is configured to expect NULL in the State-ID
696 field of power-state parameter.
697
698- ``ARM_ROTPK_LOCATION``: used when ``TRUSTED_BOARD_BOOT=1``. It specifies the
699 location of the ROTPK hash returned by the function ``plat_get_rotpk_info()``
Dan Handley610e7e12018-03-01 18:44:00 +0000700 for Arm platforms. Depending on the selected option, the proper private key
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100701 must be specified using the ``ROT_KEY`` option when building the Trusted
702 Firmware. This private key will be used by the certificate generation tool
703 to sign the BL2 and Trusted Key certificates. Available options for
704 ``ARM_ROTPK_LOCATION`` are:
705
706 - ``regs`` : return the ROTPK hash stored in the Trusted root-key storage
707 registers. The private key corresponding to this ROTPK hash is not
708 currently available.
709 - ``devel_rsa`` : return a development public key hash embedded in the BL1
710 and BL2 binaries. This hash has been obtained from the RSA public key
711 ``arm_rotpk_rsa.der``, located in ``plat/arm/board/common/rotpk``. To use
712 this option, ``arm_rotprivk_rsa.pem`` must be specified as ``ROT_KEY`` when
713 creating the certificates.
Qixiang Xu1c2aef12017-08-24 15:12:20 +0800714 - ``devel_ecdsa`` : return a development public key hash embedded in the BL1
715 and BL2 binaries. This hash has been obtained from the ECDSA public key
716 ``arm_rotpk_ecdsa.der``, located in ``plat/arm/board/common/rotpk``. To use
717 this option, ``arm_rotprivk_ecdsa.pem`` must be specified as ``ROT_KEY``
718 when creating the certificates.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100719
720- ``ARM_TSP_RAM_LOCATION``: location of the TSP binary. Options:
721
Qixiang Xuc7b12c52017-10-13 09:04:12 +0800722 - ``tsram`` : Trusted SRAM (default option when TBB is not enabled)
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100723 - ``tdram`` : Trusted DRAM (if available)
Qixiang Xuc7b12c52017-10-13 09:04:12 +0800724 - ``dram`` : Secure region in DRAM (default option when TBB is enabled,
725 configured by the TrustZone controller)
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100726
Dan Handley610e7e12018-03-01 18:44:00 +0000727- ``ARM_XLAT_TABLES_LIB_V1``: boolean option to compile TF-A with version 1
728 of the translation tables library instead of version 2. It is set to 0 by
729 default, which selects version 2.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100730
Dan Handley610e7e12018-03-01 18:44:00 +0000731- ``ARM_CRYPTOCELL_INTEG`` : bool option to enable TF-A to invoke Arm®
732 TrustZone® CryptoCell functionality for Trusted Board Boot on capable Arm
733 platforms. If this option is specified, then the path to the CryptoCell
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100734 SBROM library must be specified via ``CCSBROM_LIB_PATH`` flag.
735
Dan Handley610e7e12018-03-01 18:44:00 +0000736For a better understanding of these options, the Arm development platform memory
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100737map is explained in the `Firmware Design`_.
738
Dan Handley610e7e12018-03-01 18:44:00 +0000739Arm CSS platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
741
742- ``CSS_DETECT_PRE_1_7_0_SCP``: Boolean flag to detect SCP version
743 incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
744 compatible change to the MTL protocol, used for AP/SCP communication.
Dan Handley610e7e12018-03-01 18:44:00 +0000745 TF-A no longer supports earlier SCP versions. If this option is set to 1
746 then TF-A will detect if an earlier version is in use. Default is 1.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100747
748- ``CSS_LOAD_SCP_IMAGES``: Boolean flag, which when set, adds SCP\_BL2 and
749 SCP\_BL2U to the FIP and FWU\_FIP respectively, and enables them to be loaded
750 during boot. Default is 1.
751
Soby Mathew1ced6b82017-06-12 12:37:10 +0100752- ``CSS_USE_SCMI_SDS_DRIVER``: Boolean flag which selects SCMI/SDS drivers
753 instead of SCPI/BOM driver for communicating with the SCP during power
754 management operations and for SCP RAM Firmware transfer. If this option
755 is set to 1, then SCMI/SDS drivers will be used. Default is 0.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100756
Dan Handley610e7e12018-03-01 18:44:00 +0000757Arm FVP platform specific build options
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
759
760- ``FVP_CLUSTER_COUNT`` : Configures the cluster count to be used to
Dan Handley610e7e12018-03-01 18:44:00 +0000761 build the topology tree within TF-A. By default TF-A is configured for dual
762 cluster topology and this option can be used to override the default value.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100763
764- ``FVP_INTERCONNECT_DRIVER``: Selects the interconnect driver to be built. The
765 default interconnect driver depends on the value of ``FVP_CLUSTER_COUNT`` as
766 explained in the options below:
767
768 - ``FVP_CCI`` : The CCI driver is selected. This is the default
769 if 0 < ``FVP_CLUSTER_COUNT`` <= 2.
770 - ``FVP_CCN`` : The CCN driver is selected. This is the default
771 if ``FVP_CLUSTER_COUNT`` > 2.
772
Jeenu Viswambharan75421132018-01-31 14:52:08 +0000773- ``FVP_MAX_CPUS_PER_CLUSTER``: Sets the maximum number of CPUs implemented in
774 a single cluster. This option defaults to 4.
775
Jeenu Viswambharan528d21b2016-11-15 13:53:57 +0000776- ``FVP_MAX_PE_PER_CPU``: Sets the maximum number of PEs implemented on any CPU
777 in the system. This option defaults to 1. Note that the build option
778 ``ARM_PLAT_MT`` doesn't have any effect on FVP platforms.
779
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100780- ``FVP_USE_GIC_DRIVER`` : Selects the GIC driver to be built. Options:
781
782 - ``FVP_GIC600`` : The GIC600 implementation of GICv3 is selected
783 - ``FVP_GICV2`` : The GICv2 only driver is selected
784 - ``FVP_GICV3`` : The GICv3 only driver is selected (default option)
785 - ``FVP_GICV3_LEGACY``: The Legacy GICv3 driver is selected (deprecated)
Dan Handley610e7e12018-03-01 18:44:00 +0000786 Note: If TF-A is compiled with this option on FVPs with GICv3 hardware,
787 then it configures the hardware to run in GICv2 emulation mode
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100788
789- ``FVP_USE_SP804_TIMER`` : Use the SP804 timer instead of the Generic Timer
790 for functions that wait for an arbitrary time length (udelay and mdelay).
791 The default value is 0.
792
Soby Mathewb1bf0442018-02-16 14:52:52 +0000793- ``FVP_HW_CONFIG_DTS`` : Specify the path to the DTS file to be compiled
794 to DTB and packaged in FIP as the HW_CONFIG. See `Firmware Design`_ for
795 details on HW_CONFIG. By default, this is initialized to a sensible DTS
796 file in ``fdts/`` folder depending on other build options. But some cases,
797 like shifted affinity format for MPIDR, cannot be detected at build time
798 and this option is needed to specify the appropriate DTS file.
799
800- ``FVP_HW_CONFIG`` : Specify the path to the HW_CONFIG blob to be packaged in
801 FIP. See `Firmware Design`_ for details on HW_CONFIG. This option is
802 similar to the ``FVP_HW_CONFIG_DTS`` option, but it directly specifies the
803 HW_CONFIG blob instead of the DTS file. This option is useful to override
804 the default HW_CONFIG selected by the build system.
805
Summer Qin13b95c22018-03-02 15:51:14 +0800806ARM JUNO platform specific build options
807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
808
809- ``JUNO_TZMP1`` : Boolean option to configure Juno to be used for TrustZone
810 Media Protection (TZ-MP1). Default value of this flag is 0.
811
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100812Debugging options
813~~~~~~~~~~~~~~~~~
814
815To compile a debug version and make the build more verbose use
816
817::
818
819 make PLAT=<platform> DEBUG=1 V=1 all
820
821AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
822example DS-5) might not support this and may need an older version of DWARF
823symbols to be emitted by GCC. This can be achieved by using the
824``-gdwarf-<version>`` flag, with the version being set to 2 or 3. Setting the
825version to 2 is recommended for DS-5 versions older than 5.16.
826
827When debugging logic problems it might also be useful to disable all compiler
828optimizations by using ``-O0``.
829
830NOTE: Using ``-O0`` could cause output images to be larger and base addresses
Dan Handley610e7e12018-03-01 18:44:00 +0000831might need to be recalculated (see the **Memory layout on Arm development
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100832platforms** section in the `Firmware Design`_).
833
834Extra debug options can be passed to the build system by setting ``CFLAGS`` or
835``LDFLAGS``:
836
837.. code:: makefile
838
839 CFLAGS='-O0 -gdwarf-2' \
840 make PLAT=<platform> DEBUG=1 V=1 all
841
842Note that using ``-Wl,`` style compilation driver options in ``CFLAGS`` will be
843ignored as the linker is called directly.
844
845It is also possible to introduce an infinite loop to help in debugging the
Dan Handley610e7e12018-03-01 18:44:00 +0000846post-BL2 phase of TF-A. This can be done by rebuilding BL1 with the
847``SPIN_ON_BL1_EXIT=1`` build flag. Refer to the `Summary of build options`_
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100848section. In this case, the developer may take control of the target using a
849debugger when indicated by the console output. When using DS-5, the following
850commands can be used:
851
852::
853
854 # Stop target execution
855 interrupt
856
857 #
858 # Prepare your debugging environment, e.g. set breakpoints
859 #
860
861 # Jump over the debug loop
862 set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4
863
864 # Resume execution
865 continue
866
867Building the Test Secure Payload
868~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
869
870The TSP is coupled with a companion runtime service in the BL31 firmware,
871called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
872must be recompiled as well. For more information on SPs and SPDs, see the
873`Secure-EL1 Payloads and Dispatchers`_ section in the `Firmware Design`_.
874
Dan Handley610e7e12018-03-01 18:44:00 +0000875First clean the TF-A build directory to get rid of any previous BL31 binary.
876Then to build the TSP image use:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100877
878::
879
880 make PLAT=<platform> SPD=tspd all
881
882An additional boot loader binary file is created in the ``build`` directory:
883
884::
885
886 build/<platform>/<build-type>/bl32.bin
887
888Checking source code style
889~~~~~~~~~~~~~~~~~~~~~~~~~~
890
891When making changes to the source for submission to the project, the source
892must be in compliance with the Linux style guide, and to assist with this check
893the project Makefile contains two targets, which both utilise the
894``checkpatch.pl`` script that ships with the Linux source tree.
895
Joel Huttonfe027712018-03-19 11:59:57 +0000896To check the entire source tree, you must first download copies of
897``checkpatch.pl``, ``spelling.txt`` and ``const_structs.checkpatch`` available
898in the `Linux master tree`_ scripts directory, then set the ``CHECKPATCH``
899environment variable to point to ``checkpatch.pl`` (with the other 2 files in
900the same directory) and build the target
901checkcodebase:
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100902
903::
904
905 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
906
907To just check the style on the files that differ between your local branch and
908the remote master, use:
909
910::
911
912 make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
913
914If you wish to check your patch against something other than the remote master,
915set the ``BASE_COMMIT`` variable to your desired branch. By default, ``BASE_COMMIT``
916is set to ``origin/master``.
917
918Building and using the FIP tool
919~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
920
Dan Handley610e7e12018-03-01 18:44:00 +0000921Firmware Image Package (FIP) is a packaging format used by TF-A to package
922firmware images in a single binary. The number and type of images that should
923be packed in a FIP is platform specific and may include TF-A images and other
924firmware images required by the platform. For example, most platforms require
925a BL33 image which corresponds to the normal world bootloader (e.g. UEFI or
926U-Boot).
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100927
Dan Handley610e7e12018-03-01 18:44:00 +0000928The TF-A build system provides the make target ``fip`` to create a FIP file
929for the specified platform using the FIP creation tool included in the TF-A
930project. Examples below show how to build a FIP file for FVP, packaging TF-A
931and BL33 images.
Douglas Raillardd7c21b72017-06-28 15:23:03 +0100932
933For AArch64:
934
935::
936
937 make PLAT=fvp BL33=<path/to/bl33.bin> fip
938
939For AArch32:
940
941::
942
943 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=<path/to/bl33.bin> fip
944
945Note that AArch32 support for Normal world boot loader (BL33), like U-boot or
946UEFI, on FVP is not available upstream. Hence custom solutions are required to
947allow Linux boot on FVP. These instructions assume such a custom boot loader
948(BL33) is available.
949
950The resulting FIP may be found in:
951
952::
953
954 build/fvp/<build-type>/fip.bin
955
956For advanced operations on FIP files, it is also possible to independently build
957the tool and create or modify FIPs using this tool. To do this, follow these
958steps:
959
960It is recommended to remove old artifacts before building the tool:
961
962::
963
964 make -C tools/fiptool clean
965
966Build the tool:
967
968::
969
970 make [DEBUG=1] [V=1] fiptool
971
972The tool binary can be located in:
973
974::
975
976 ./tools/fiptool/fiptool
977
978Invoking the tool with ``--help`` will print a help message with all available
979options.
980
981Example 1: create a new Firmware package ``fip.bin`` that contains BL2 and BL31:
982
983::
984
985 ./tools/fiptool/fiptool create \
986 --tb-fw build/<platform>/<build-type>/bl2.bin \
987 --soc-fw build/<platform>/<build-type>/bl31.bin \
988 fip.bin
989
990Example 2: view the contents of an existing Firmware package:
991
992::
993
994 ./tools/fiptool/fiptool info <path-to>/fip.bin
995
996Example 3: update the entries of an existing Firmware package:
997
998::
999
1000 # Change the BL2 from Debug to Release version
1001 ./tools/fiptool/fiptool update \
1002 --tb-fw build/<platform>/release/bl2.bin \
1003 build/<platform>/debug/fip.bin
1004
1005Example 4: unpack all entries from an existing Firmware package:
1006
1007::
1008
1009 # Images will be unpacked to the working directory
1010 ./tools/fiptool/fiptool unpack <path-to>/fip.bin
1011
1012Example 5: remove an entry from an existing Firmware package:
1013
1014::
1015
1016 ./tools/fiptool/fiptool remove \
1017 --tb-fw build/<platform>/debug/fip.bin
1018
1019Note that if the destination FIP file exists, the create, update and
1020remove operations will automatically overwrite it.
1021
1022The unpack operation will fail if the images already exist at the
1023destination. In that case, use -f or --force to continue.
1024
1025More information about FIP can be found in the `Firmware Design`_ document.
1026
1027Migrating from fip\_create to fiptool
1028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1029
1030The previous version of fiptool was called fip\_create. A compatibility script
1031that emulates the basic functionality of the previous fip\_create is provided.
1032However, users are strongly encouraged to migrate to fiptool.
1033
1034- To create a new FIP file, replace "fip\_create" with "fiptool create".
1035- To update a FIP file, replace "fip\_create" with "fiptool update".
1036- To dump the contents of a FIP file, replace "fip\_create --dump"
1037 with "fiptool info".
1038
1039Building FIP images with support for Trusted Board Boot
1040~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1041
1042Trusted Board Boot primarily consists of the following two features:
1043
1044- Image Authentication, described in `Trusted Board Boot`_, and
1045- Firmware Update, described in `Firmware Update`_
1046
1047The following steps should be followed to build FIP and (optionally) FWU\_FIP
1048images with support for these features:
1049
1050#. Fulfill the dependencies of the ``mbedtls`` cryptographic and image parser
1051 modules by checking out a recent version of the `mbed TLS Repository`_. It
Dan Handley610e7e12018-03-01 18:44:00 +00001052 is important to use a version that is compatible with TF-A and fixes any
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001053 known security vulnerabilities. See `mbed TLS Security Center`_ for more
Dan Handley610e7e12018-03-01 18:44:00 +00001054 information. The latest version of TF-A is tested with tag
1055 ``mbedtls-2.6.0``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001056
1057 The ``drivers/auth/mbedtls/mbedtls_*.mk`` files contain the list of mbed TLS
1058 source files the modules depend upon.
1059 ``include/drivers/auth/mbedtls/mbedtls_config.h`` contains the configuration
1060 options required to build the mbed TLS sources.
1061
1062 Note that the mbed TLS library is licensed under the Apache version 2.0
Dan Handley610e7e12018-03-01 18:44:00 +00001063 license. Using mbed TLS source code will affect the licensing of TF-A
1064 binaries that are built using this library.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001065
1066#. To build the FIP image, ensure the following command line variables are set
Dan Handley610e7e12018-03-01 18:44:00 +00001067 while invoking ``make`` to build TF-A:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001068
1069 - ``MBEDTLS_DIR=<path of the directory containing mbed TLS sources>``
1070 - ``TRUSTED_BOARD_BOOT=1``
1071 - ``GENERATE_COT=1``
1072
Dan Handley610e7e12018-03-01 18:44:00 +00001073 In the case of Arm platforms, the location of the ROTPK hash must also be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001074 specified at build time. Two locations are currently supported (see
1075 ``ARM_ROTPK_LOCATION`` build option):
1076
1077 - ``ARM_ROTPK_LOCATION=regs``: the ROTPK hash is obtained from the Trusted
1078 root-key storage registers present in the platform. On Juno, this
1079 registers are read-only. On FVP Base and Cortex models, the registers
1080 are read-only, but the value can be specified using the command line
1081 option ``bp.trusted_key_storage.public_key`` when launching the model.
1082 On both Juno and FVP models, the default value corresponds to an
1083 ECDSA-SECP256R1 public key hash, whose private part is not currently
1084 available.
1085
1086 - ``ARM_ROTPK_LOCATION=devel_rsa``: use the ROTPK hash that is hardcoded
Dan Handley610e7e12018-03-01 18:44:00 +00001087 in the Arm platform port. The private/public RSA key pair may be
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001088 found in ``plat/arm/board/common/rotpk``.
1089
Qixiang Xu1c2aef12017-08-24 15:12:20 +08001090 - ``ARM_ROTPK_LOCATION=devel_ecdsa``: use the ROTPK hash that is hardcoded
Dan Handley610e7e12018-03-01 18:44:00 +00001091 in the Arm platform port. The private/public ECDSA key pair may be
Qixiang Xu1c2aef12017-08-24 15:12:20 +08001092 found in ``plat/arm/board/common/rotpk``.
1093
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001094 Example of command line using RSA development keys:
1095
1096 ::
1097
1098 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1099 make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1100 ARM_ROTPK_LOCATION=devel_rsa \
1101 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1102 BL33=<path-to>/<bl33_image> \
1103 all fip
1104
1105 The result of this build will be the bl1.bin and the fip.bin binaries. This
1106 FIP will include the certificates corresponding to the Chain of Trust
1107 described in the TBBR-client document. These certificates can also be found
1108 in the output build directory.
1109
1110#. The optional FWU\_FIP contains any additional images to be loaded from
1111 Non-Volatile storage during the `Firmware Update`_ process. To build the
1112 FWU\_FIP, any FWU images required by the platform must be specified on the
Dan Handley610e7e12018-03-01 18:44:00 +00001113 command line. On Arm development platforms like Juno, these are:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001114
1115 - NS\_BL2U. The AP non-secure Firmware Updater image.
1116 - SCP\_BL2U. The SCP Firmware Update Configuration image.
1117
1118 Example of Juno command line for generating both ``fwu`` and ``fwu_fip``
1119 targets using RSA development:
1120
1121 ::
1122
1123 MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
1124 make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 \
1125 ARM_ROTPK_LOCATION=devel_rsa \
1126 ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem \
1127 BL33=<path-to>/<bl33_image> \
1128 SCP_BL2=<path-to>/<scp_bl2_image> \
1129 SCP_BL2U=<path-to>/<scp_bl2u_image> \
1130 NS_BL2U=<path-to>/<ns_bl2u_image> \
1131 all fip fwu_fip
1132
1133 Note: The BL2U image will be built by default and added to the FWU\_FIP.
1134 The user may override this by adding ``BL2U=<path-to>/<bl2u_image>``
1135 to the command line above.
1136
1137 Note: Building and installing the non-secure and SCP FWU images (NS\_BL1U,
1138 NS\_BL2U and SCP\_BL2U) is outside the scope of this document.
1139
1140 The result of this build will be bl1.bin, fip.bin and fwu\_fip.bin binaries.
1141 Both the FIP and FWU\_FIP will include the certificates corresponding to the
1142 Chain of Trust described in the TBBR-client document. These certificates
1143 can also be found in the output build directory.
1144
1145Building the Certificate Generation Tool
1146~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1147
Dan Handley610e7e12018-03-01 18:44:00 +00001148The ``cert_create`` tool is built as part of the TF-A build process when the
1149``fip`` make target is specified and TBB is enabled (as described in the
1150previous section), but it can also be built separately with the following
1151command:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001152
1153::
1154
1155 make PLAT=<platform> [DEBUG=1] [V=1] certtool
1156
1157For platforms that do not require their own IDs in certificate files,
1158the generic 'cert\_create' tool can be built with the following command:
1159
1160::
1161
1162 make USE_TBBR_DEFS=1 [DEBUG=1] [V=1] certtool
1163
1164``DEBUG=1`` builds the tool in debug mode. ``V=1`` makes the build process more
1165verbose. The following command should be used to obtain help about the tool:
1166
1167::
1168
1169 ./tools/cert_create/cert_create -h
1170
1171Building a FIP for Juno and FVP
1172-------------------------------
1173
1174This section provides Juno and FVP specific instructions to build Trusted
1175Firmware, obtain the additional required firmware, and pack it all together in
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001176a single FIP binary. It assumes that a `Linaro Release`_ has been installed.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001177
David Cunadob2de0992017-06-29 12:01:33 +01001178Note: Pre-built binaries for AArch32 are available from Linaro Release 16.12
1179onwards. Before that release, pre-built binaries are only available for AArch64.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001180
Joel Huttonfe027712018-03-19 11:59:57 +00001181Note: Follow the full instructions for one platform before switching to a
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001182different one. Mixing instructions for different platforms may result in
1183corrupted binaries.
1184
Joel Huttonfe027712018-03-19 11:59:57 +00001185Note: The uboot image downloaded by the Linaro workspace script does not always
1186match the uboot image packaged as BL33 in the corresponding fip file. It is
1187recommended to use the version that is packaged in the fip file using the
1188instructions below.
1189
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001190#. Clean the working directory
1191
1192 ::
1193
1194 make realclean
1195
1196#. Obtain SCP\_BL2 (Juno) and BL33 (all platforms)
1197
1198 Use the fiptool to extract the SCP\_BL2 and BL33 images from the FIP
1199 package included in the Linaro release:
1200
1201 ::
1202
1203 # Build the fiptool
1204 make [DEBUG=1] [V=1] fiptool
1205
1206 # Unpack firmware images from Linaro FIP
1207 ./tools/fiptool/fiptool unpack \
1208 <path/to/linaro/release>/fip.bin
1209
1210 The unpack operation will result in a set of binary images extracted to the
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001211 current working directory. The SCP\_BL2 image corresponds to
1212 ``scp-fw.bin`` and BL33 corresponds to ``nt-fw.bin``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001213
Joel Huttonfe027712018-03-19 11:59:57 +00001214 Note: The fiptool will complain if the images to be unpacked already
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001215 exist in the current directory. If that is the case, either delete those
1216 files or use the ``--force`` option to overwrite.
1217
Joel Huttonfe027712018-03-19 11:59:57 +00001218 Note: For AArch32, the instructions below assume that nt-fw.bin is a custom
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001219 Normal world boot loader that supports AArch32.
1220
Dan Handley610e7e12018-03-01 18:44:00 +00001221#. Build TF-A images and create a new FIP for FVP
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001222
1223 ::
1224
1225 # AArch64
1226 make PLAT=fvp BL33=nt-fw.bin all fip
1227
1228 # AArch32
1229 make PLAT=fvp ARCH=aarch32 AARCH32_SP=sp_min BL33=nt-fw.bin all fip
1230
Dan Handley610e7e12018-03-01 18:44:00 +00001231#. Build TF-A images and create a new FIP for Juno
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001232
1233 For AArch64:
1234
1235 Building for AArch64 on Juno simply requires the addition of ``SCP_BL2``
1236 as a build parameter.
1237
1238 ::
1239
1240 make PLAT=juno all fip \
1241 BL33=<path-to-juno-oe-uboot>/SOFTWARE/bl33-uboot.bin \
1242 SCP_BL2=<path-to-juno-busybox-uboot>/SOFTWARE/scp_bl2.bin
1243
1244 For AArch32:
1245
1246 Hardware restrictions on Juno prevent cold reset into AArch32 execution mode,
1247 therefore BL1 and BL2 must be compiled for AArch64, and BL32 is compiled
1248 separately for AArch32.
1249
1250 - Before building BL32, the environment variable ``CROSS_COMPILE`` must point
1251 to the AArch32 Linaro cross compiler.
1252
1253 ::
1254
1255 export CROSS_COMPILE=<path-to-aarch32-gcc>/bin/arm-linux-gnueabihf-
1256
1257 - Build BL32 in AArch32.
1258
1259 ::
1260
1261 make ARCH=aarch32 PLAT=juno AARCH32_SP=sp_min \
1262 RESET_TO_SP_MIN=1 JUNO_AARCH32_EL3_RUNTIME=1 bl32
1263
1264 - Before building BL1 and BL2, the environment variable ``CROSS_COMPILE``
1265 must point to the AArch64 Linaro cross compiler.
1266
1267 ::
1268
1269 export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
1270
1271 - The following parameters should be used to build BL1 and BL2 in AArch64
1272 and point to the BL32 file.
1273
1274 ::
1275
1276 make ARCH=aarch64 PLAT=juno LOAD_IMAGE_V2=1 JUNO_AARCH32_EL3_RUNTIME=1 \
1277 BL33=<path-to-juno32-oe-uboot>/SOFTWARE/bl33-uboot.bin \
Soby Mathewbf169232017-11-14 14:10:10 +00001278 SCP_BL2=<path-to-juno32-oe-uboot>/SOFTWARE/scp_bl2.bin \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001279 BL32=<path-to-bl32>/bl32.bin all fip
1280
1281The resulting BL1 and FIP images may be found in:
1282
1283::
1284
1285 # Juno
1286 ./build/juno/release/bl1.bin
1287 ./build/juno/release/fip.bin
1288
1289 # FVP
1290 ./build/fvp/release/bl1.bin
1291 ./build/fvp/release/fip.bin
1292
Roberto Vargas096f3a02017-10-17 10:19:00 +01001293
1294Booting Firmware Update images
1295-------------------------------------
1296
1297When Firmware Update (FWU) is enabled there are at least 2 new images
1298that have to be loaded, the Non-Secure FWU ROM (NS-BL1U), and the
1299FWU FIP.
1300
1301Juno
1302~~~~
1303
1304The new images must be programmed in flash memory by adding
1305an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1306on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1307Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1308programming" for more information. User should ensure these do not
1309overlap with any other entries in the file.
1310
1311::
1312
1313 NOR10UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1314 NOR10ADDRESS: 0x00400000 ;Image Flash Address [ns_bl2u_base_address]
1315 NOR10FILE: \SOFTWARE\fwu_fip.bin ;Image File Name
1316 NOR10LOAD: 00000000 ;Image Load Address
1317 NOR10ENTRY: 00000000 ;Image Entry Point
1318
1319 NOR11UPDATE: AUTO ;Image Update:NONE/AUTO/FORCE
1320 NOR11ADDRESS: 0x03EB8000 ;Image Flash Address [ns_bl1u_base_address]
1321 NOR11FILE: \SOFTWARE\ns_bl1u.bin ;Image File Name
1322 NOR11LOAD: 00000000 ;Image Load Address
1323
1324The address ns_bl1u_base_address is the value of NS_BL1U_BASE - 0x8000000.
1325In the same way, the address ns_bl2u_base_address is the value of
1326NS_BL2U_BASE - 0x8000000.
1327
1328FVP
1329~~~
1330
1331The additional fip images must be loaded with:
1332
1333::
1334
1335 --data cluster0.cpu0="<path_to>/ns_bl1u.bin"@0x0beb8000 [ns_bl1u_base_address]
1336 --data cluster0.cpu0="<path_to>/fwu_fip.bin"@0x08400000 [ns_bl2u_base_address]
1337
1338The address ns_bl1u_base_address is the value of NS_BL1U_BASE.
1339In the same way, the address ns_bl2u_base_address is the value of
1340NS_BL2U_BASE.
1341
1342
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001343EL3 payloads alternative boot flow
1344----------------------------------
1345
1346On a pre-production system, the ability to execute arbitrary, bare-metal code at
1347the highest exception level is required. It allows full, direct access to the
1348hardware, for example to run silicon soak tests.
1349
1350Although it is possible to implement some baremetal secure firmware from
1351scratch, this is a complex task on some platforms, depending on the level of
1352configuration required to put the system in the expected state.
1353
1354Rather than booting a baremetal application, a possible compromise is to boot
Dan Handley610e7e12018-03-01 18:44:00 +00001355``EL3 payloads`` through TF-A instead. This is implemented as an alternative
1356boot flow, where a modified BL2 boots an EL3 payload, instead of loading the
1357other BL images and passing control to BL31. It reduces the complexity of
1358developing EL3 baremetal code by:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001359
1360- putting the system into a known architectural state;
1361- taking care of platform secure world initialization;
1362- loading the SCP\_BL2 image if required by the platform.
1363
Dan Handley610e7e12018-03-01 18:44:00 +00001364When booting an EL3 payload on Arm standard platforms, the configuration of the
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001365TrustZone controller is simplified such that only region 0 is enabled and is
1366configured to permit secure access only. This gives full access to the whole
1367DRAM to the EL3 payload.
1368
1369The system is left in the same state as when entering BL31 in the default boot
1370flow. In particular:
1371
1372- Running in EL3;
1373- Current state is AArch64;
1374- Little-endian data access;
1375- All exceptions disabled;
1376- MMU disabled;
1377- Caches disabled.
1378
1379Booting an EL3 payload
1380~~~~~~~~~~~~~~~~~~~~~~
1381
1382The EL3 payload image is a standalone image and is not part of the FIP. It is
Dan Handley610e7e12018-03-01 18:44:00 +00001383not loaded by TF-A. Therefore, there are 2 possible scenarios:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001384
1385- The EL3 payload may reside in non-volatile memory (NVM) and execute in
1386 place. In this case, booting it is just a matter of specifying the right
Dan Handley610e7e12018-03-01 18:44:00 +00001387 address in NVM through ``EL3_PAYLOAD_BASE`` when building TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001388
1389- The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
1390 run-time.
1391
1392To help in the latter scenario, the ``SPIN_ON_BL1_EXIT=1`` build option can be
1393used. The infinite loop that it introduces in BL1 stops execution at the right
1394moment for a debugger to take control of the target and load the payload (for
1395example, over JTAG).
1396
1397It is expected that this loading method will work in most cases, as a debugger
1398connection is usually available in a pre-production system. The user is free to
1399use any other platform-specific mechanism to load the EL3 payload, though.
1400
1401Booting an EL3 payload on FVP
1402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1403
1404The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
1405the secondary CPUs holding pen to work properly. Unfortunately, its reset value
1406is undefined on the FVP platform and the FVP platform code doesn't clear it.
1407Therefore, one must modify the way the model is normally invoked in order to
1408clear the mailbox at start-up.
1409
1410One way to do that is to create an 8-byte file containing all zero bytes using
1411the following command:
1412
1413::
1414
1415 dd if=/dev/zero of=mailbox.dat bs=1 count=8
1416
1417and pre-load it into the FVP memory at the mailbox address (i.e. ``0x04000000``)
1418using the following model parameters:
1419
1420::
1421
1422 --data cluster0.cpu0=mailbox.dat@0x04000000 [Base FVPs]
1423 --data=mailbox.dat@0x04000000 [Foundation FVP]
1424
1425To provide the model with the EL3 payload image, the following methods may be
1426used:
1427
1428#. If the EL3 payload is able to execute in place, it may be programmed into
1429 flash memory. On Base Cortex and AEM FVPs, the following model parameter
1430 loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
1431 used for the FIP):
1432
1433 ::
1434
1435 -C bp.flashloader1.fname="/path/to/el3-payload"
1436
1437 On Foundation FVP, there is no flash loader component and the EL3 payload
1438 may be programmed anywhere in flash using method 3 below.
1439
1440#. When using the ``SPIN_ON_BL1_EXIT=1`` loading method, the following DS-5
1441 command may be used to load the EL3 payload ELF image over JTAG:
1442
1443 ::
1444
1445 load /path/to/el3-payload.elf
1446
1447#. The EL3 payload may be pre-loaded in volatile memory using the following
1448 model parameters:
1449
1450 ::
1451
1452 --data cluster0.cpu0="/path/to/el3-payload"@address [Base FVPs]
1453 --data="/path/to/el3-payload"@address [Foundation FVP]
1454
1455 The address provided to the FVP must match the ``EL3_PAYLOAD_BASE`` address
Dan Handley610e7e12018-03-01 18:44:00 +00001456 used when building TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001457
1458Booting an EL3 payload on Juno
1459^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1460
1461If the EL3 payload is able to execute in place, it may be programmed in flash
1462memory by adding an entry in the ``SITE1/HBI0262x/images.txt`` configuration file
1463on the Juno SD card (where ``x`` depends on the revision of the Juno board).
1464Refer to the `Juno Getting Started Guide`_, section 2.3 "Flash memory
1465programming" for more information.
1466
1467Alternatively, the same DS-5 command mentioned in the FVP section above can
1468be used to load the EL3 payload's ELF file over JTAG on Juno.
1469
1470Preloaded BL33 alternative boot flow
1471------------------------------------
1472
1473Some platforms have the ability to preload BL33 into memory instead of relying
Dan Handley610e7e12018-03-01 18:44:00 +00001474on TF-A to load it. This may simplify packaging of the normal world code and
1475improve performance in a development environment. When secure world cold boot
1476is complete, TF-A simply jumps to a BL33 base address provided at build time.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001477
1478For this option to be used, the ``PRELOADED_BL33_BASE`` build option has to be
Dan Handley610e7e12018-03-01 18:44:00 +00001479used when compiling TF-A. For example, the following command will create a FIP
1480without a BL33 and prepare to jump to a BL33 image loaded at address
14810x80000000:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001482
1483::
1484
1485 make PRELOADED_BL33_BASE=0x80000000 PLAT=fvp all fip
1486
1487Boot of a preloaded bootwrapped kernel image on Base FVP
1488~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1489
1490The following example uses the AArch64 boot wrapper. This simplifies normal
Dan Handley610e7e12018-03-01 18:44:00 +00001491world booting while also making use of TF-A features. It can be obtained from
1492its repository with:
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001493
1494::
1495
1496 git clone git://git.kernel.org/pub/scm/linux/kernel/git/mark/boot-wrapper-aarch64.git
1497
1498After compiling it, an ELF file is generated. It can be loaded with the
1499following command:
1500
1501::
1502
1503 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1504 -C bp.secureflashloader.fname=bl1.bin \
1505 -C bp.flashloader0.fname=fip.bin \
1506 -a cluster0.cpu0=<bootwrapped-kernel.elf> \
1507 --start cluster0.cpu0=0x0
1508
1509The ``-a cluster0.cpu0=<bootwrapped-kernel.elf>`` option loads the ELF file. It
1510also sets the PC register to the ELF entry point address, which is not the
1511desired behaviour, so the ``--start cluster0.cpu0=0x0`` option forces the PC back
1512to 0x0 (the BL1 entry point address) on CPU #0. The ``PRELOADED_BL33_BASE`` define
1513used when compiling the FIP must match the ELF entry point.
1514
1515Boot of a preloaded bootwrapped kernel image on Juno
1516~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1517
1518The procedure to obtain and compile the boot wrapper is very similar to the case
1519of the FVP. The execution must be stopped at the end of bl2\_main(), and the
1520loading method explained above in the EL3 payload boot flow section may be used
1521to load the ELF file over JTAG on Juno.
1522
1523Running the software on FVP
1524---------------------------
1525
David Cunado7c032642018-03-12 18:47:05 +00001526The latest version of the AArch64 build of TF-A has been tested on the following
1527Arm FVPs without shifted affinities, and that do not support threaded CPU cores
1528(64-bit host machine only).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001529
David Cunado82509be2017-12-19 16:33:25 +00001530NOTE: Unless otherwise stated, the model version is Version 11.2 Build 11.2.33.
David Cunado124415e2017-06-27 17:31:12 +01001531
1532- ``Foundation_Platform``
David Cunado7c032642018-03-12 18:47:05 +00001533- ``FVP_Base_AEMv8A-AEMv8A`` (and also Version 9.0, Build 0.8.9005)
David Cunado124415e2017-06-27 17:31:12 +01001534- ``FVP_Base_Cortex-A35x4``
1535- ``FVP_Base_Cortex-A53x4``
1536- ``FVP_Base_Cortex-A57x4-A53x4``
1537- ``FVP_Base_Cortex-A57x4``
1538- ``FVP_Base_Cortex-A72x4-A53x4``
1539- ``FVP_Base_Cortex-A72x4``
1540- ``FVP_Base_Cortex-A73x4-A53x4``
1541- ``FVP_Base_Cortex-A73x4``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001542
David Cunado7c032642018-03-12 18:47:05 +00001543Additionally, the AArch64 build was tested on the following Arm FVPs with
1544shifted affinities, supporting threaded CPU cores (64-bit host machine only).
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001545
David Cunado7c032642018-03-12 18:47:05 +00001546- ``FVP_Base_Cortex-A55x4-A75x4`` (Version 0.0, build 0.0.4395)
1547- ``FVP_Base_Cortex-A55x4`` (Version 0.0, build 0.0.4395)
1548- ``FVP_Base_Cortex-A75x4`` (Version 0.0, build 0.0.4395)
1549- ``FVP_Base_RevC-2xAEMv8A``
1550
1551The latest version of the AArch32 build of TF-A has been tested on the following
1552Arm FVPs without shifted affinities, and that do not support threaded CPU cores
1553(64-bit host machine only).
1554
1555- ``FVP_Base_AEMv8A-AEMv8A``
David Cunado124415e2017-06-27 17:31:12 +01001556- ``FVP_Base_Cortex-A32x4``
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001557
David Cunado7c032642018-03-12 18:47:05 +00001558NOTE: The ``FVP_Base_RevC-2xAEMv8A`` FVP only supports shifted affinities, which
1559is not compatible with legacy GIC configurations. Therefore this FVP does not
1560support these legacy GIC configurations.
1561
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001562NOTE: The build numbers quoted above are those reported by launching the FVP
1563with the ``--version`` parameter.
1564
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001565NOTE: Linaro provides a ramdisk image in prebuilt FVP configurations and full
1566file systems that can be downloaded separately. To run an FVP with a virtio
1567file system image an additional FVP configuration option
1568``-C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>`` can be
1569used.
1570
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001571NOTE: The software will not work on Version 1.0 of the Foundation FVP.
1572The commands below would report an ``unhandled argument`` error in this case.
1573
1574NOTE: FVPs can be launched with ``--cadi-server`` option such that a
Dan Handley610e7e12018-03-01 18:44:00 +00001575CADI-compliant debugger (for example, Arm DS-5) can connect to and control its
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001576execution.
1577
Eleanor Bonnicie124dc42017-10-04 15:03:33 +01001578NOTE: Since FVP model Version 11.0 Build 11.0.34 and Version 8.5 Build 0.8.5202
David Cunado97309462017-07-31 12:24:51 +01001579the internal synchronisation timings changed compared to older versions of the
1580models. The models can be launched with ``-Q 100`` option if they are required
1581to match the run time characteristics of the older versions.
1582
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001583The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
Dan Handley610e7e12018-03-01 18:44:00 +00001584downloaded for free from `Arm's website`_.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001585
David Cunado124415e2017-06-27 17:31:12 +01001586The Cortex-A models listed above are also available to download from
Dan Handley610e7e12018-03-01 18:44:00 +00001587`Arm's website`_.
David Cunado124415e2017-06-27 17:31:12 +01001588
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001589Please refer to the FVP documentation for a detailed description of the model
Dan Handley610e7e12018-03-01 18:44:00 +00001590parameter options. A brief description of the important ones that affect TF-A
1591and normal world software behavior is provided below.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001592
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001593Obtaining the Flattened Device Trees
1594~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1595
1596Depending on the FVP configuration and Linux configuration used, different
1597FDT files are required. FDTs for the Foundation and Base FVPs can be found in
Dan Handley610e7e12018-03-01 18:44:00 +00001598the TF-A source directory under ``fdts/``. The Foundation FVP has a subset of
1599the Base FVP components. For example, the Foundation FVP lacks CLCD and MMC
1600support, and has only one CPU cluster.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001601
1602Note: It is not recommended to use the FDTs built along the kernel because not
1603all FDTs are available from there.
1604
1605- ``fvp-base-gicv2-psci.dtb``
1606
David Cunado7c032642018-03-12 18:47:05 +00001607 For use with models such as the Cortex-A57-A53 Base FVPs without shifted
1608 affinities and with Base memory map configuration.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001609
1610- ``fvp-base-gicv2-psci-aarch32.dtb``
1611
David Cunado7c032642018-03-12 18:47:05 +00001612 For use with models such as the Cortex-A32 Base FVPs without shifted
1613 affinities and running Linux in AArch32 state with Base memory map
1614 configuration.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001615
1616- ``fvp-base-gicv3-psci.dtb``
1617
David Cunado7c032642018-03-12 18:47:05 +00001618 For use with models such as the Cortex-A57-A53 Base FVPs without shifted
1619 affinities and with Base memory map configuration and Linux GICv3 support.
1620
1621- ``fvp-base-gicv3-psci-1t.dtb``
1622
1623 For use with models such as the AEMv8-RevC Base FVP with shifted affinities,
1624 single threaded CPUs, Base memory map configuration and Linux GICv3 support.
1625
1626- ``fvp-base-gicv3-psci-dynamiq.dtb``
1627
1628 For use with models as the Cortex-A55-A75 Base FVPs with shifted affinities,
1629 single cluster, single threaded CPUs, Base memory map configuration and Linux
1630 GICv3 support.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001631
1632- ``fvp-base-gicv3-psci-aarch32.dtb``
1633
David Cunado7c032642018-03-12 18:47:05 +00001634 For use with models such as the Cortex-A32 Base FVPs without shifted
1635 affinities and running Linux in AArch32 state with Base memory map
1636 configuration and Linux GICv3 support.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001637
1638- ``fvp-foundation-gicv2-psci.dtb``
1639
1640 For use with Foundation FVP with Base memory map configuration.
1641
1642- ``fvp-foundation-gicv3-psci.dtb``
1643
1644 (Default) For use with Foundation FVP with Base memory map configuration
1645 and Linux GICv3 support.
1646
1647Running on the Foundation FVP with reset to BL1 entrypoint
1648~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1649
1650The following ``Foundation_Platform`` parameters should be used to boot Linux with
Dan Handley610e7e12018-03-01 18:44:00 +000016514 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001652
1653::
1654
1655 <path-to>/Foundation_Platform \
1656 --cores=4 \
Antonio Nino Diazb44eda52018-02-23 11:01:31 +00001657 --arm-v8.0 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001658 --secure-memory \
1659 --visualization \
1660 --gicv3 \
1661 --data="<path-to>/<bl1-binary>"@0x0 \
1662 --data="<path-to>/<FIP-binary>"@0x08000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001663 --data="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001664 --data="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001665 --data="<path-to>/<ramdisk-binary>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001666
1667Notes:
1668
1669- BL1 is loaded at the start of the Trusted ROM.
1670- The Firmware Image Package is loaded at the start of NOR FLASH0.
1671- The Linux kernel image and device tree are loaded in DRAM.
1672- The default use-case for the Foundation FVP is to use the ``--gicv3`` option
1673 and enable the GICv3 device in the model. Note that without this option,
1674 the Foundation FVP defaults to legacy (Versatile Express) memory map which
Dan Handley610e7e12018-03-01 18:44:00 +00001675 is not supported by TF-A.
1676- In order for TF-A to run correctly on the Foundation FVP, the architecture
1677 versions must match. The Foundation FVP defaults to the highest v8.x
1678 version it supports but the default build for TF-A is for v8.0. To avoid
1679 issues either start the Foundation FVP to use v8.0 architecture using the
1680 ``--arm-v8.0`` option, or build TF-A with an appropriate value for
1681 ``ARM_ARCH_MINOR``.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001682
1683Running on the AEMv8 Base FVP with reset to BL1 entrypoint
1684~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1685
David Cunado7c032642018-03-12 18:47:05 +00001686The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001687with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001688
1689::
1690
David Cunado7c032642018-03-12 18:47:05 +00001691 <path-to>/FVP_Base_RevC-2xAEMv8A \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001692 -C pctl.startup=0.0.0.0 \
1693 -C bp.secure_memory=1 \
1694 -C bp.tzc_400.diagnostics=1 \
1695 -C cluster0.NUM_CORES=4 \
1696 -C cluster1.NUM_CORES=4 \
1697 -C cache_state_modelled=1 \
1698 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1699 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001700 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001701 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001702 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001703
1704Running on the AEMv8 Base FVP (AArch32) with reset to BL1 entrypoint
1705~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1706
1707The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001708with 8 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001709
1710::
1711
1712 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1713 -C pctl.startup=0.0.0.0 \
1714 -C bp.secure_memory=1 \
1715 -C bp.tzc_400.diagnostics=1 \
1716 -C cluster0.NUM_CORES=4 \
1717 -C cluster1.NUM_CORES=4 \
1718 -C cache_state_modelled=1 \
1719 -C cluster0.cpu0.CONFIG64=0 \
1720 -C cluster0.cpu1.CONFIG64=0 \
1721 -C cluster0.cpu2.CONFIG64=0 \
1722 -C cluster0.cpu3.CONFIG64=0 \
1723 -C cluster1.cpu0.CONFIG64=0 \
1724 -C cluster1.cpu1.CONFIG64=0 \
1725 -C cluster1.cpu2.CONFIG64=0 \
1726 -C cluster1.cpu3.CONFIG64=0 \
1727 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1728 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001729 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001730 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001731 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001732
1733Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint
1734~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1735
1736The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001737boot Linux with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001738
1739::
1740
1741 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1742 -C pctl.startup=0.0.0.0 \
1743 -C bp.secure_memory=1 \
1744 -C bp.tzc_400.diagnostics=1 \
1745 -C cache_state_modelled=1 \
1746 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1747 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001748 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001749 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001750 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001751
1752Running on the Cortex-A32 Base FVP (AArch32) with reset to BL1 entrypoint
1753~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1754
1755The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001756boot Linux with 4 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001757
1758::
1759
1760 <path-to>/FVP_Base_Cortex-A32x4 \
1761 -C pctl.startup=0.0.0.0 \
1762 -C bp.secure_memory=1 \
1763 -C bp.tzc_400.diagnostics=1 \
1764 -C cache_state_modelled=1 \
1765 -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
1766 -C bp.flashloader0.fname="<path-to>/<FIP-binary>" \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001767 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001768 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001769 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001770
1771Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1772~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1773
David Cunado7c032642018-03-12 18:47:05 +00001774The following ``FVP_Base_RevC-2xAEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001775with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001776
1777::
1778
David Cunado7c032642018-03-12 18:47:05 +00001779 <path-to>/FVP_Base_RevC-2xAEMv8A \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001780 -C pctl.startup=0.0.0.0 \
1781 -C bp.secure_memory=1 \
1782 -C bp.tzc_400.diagnostics=1 \
1783 -C cluster0.NUM_CORES=4 \
1784 -C cluster1.NUM_CORES=4 \
1785 -C cache_state_modelled=1 \
Qixiang Xua5f72812017-08-31 11:45:32 +08001786 -C cluster0.cpu0.RVBAR=0x04020000 \
1787 -C cluster0.cpu1.RVBAR=0x04020000 \
1788 -C cluster0.cpu2.RVBAR=0x04020000 \
1789 -C cluster0.cpu3.RVBAR=0x04020000 \
1790 -C cluster1.cpu0.RVBAR=0x04020000 \
1791 -C cluster1.cpu1.RVBAR=0x04020000 \
1792 -C cluster1.cpu2.RVBAR=0x04020000 \
1793 -C cluster1.cpu3.RVBAR=0x04020000 \
1794 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001795 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1796 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001797 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001798 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001799 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001800
1801Notes:
1802
1803- Since a FIP is not loaded when using BL31 as reset entrypoint, the
1804 ``--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>``
1805 parameter is needed to load the individual bootloader images in memory.
1806 BL32 image is only needed if BL31 has been built to expect a Secure-EL1
1807 Payload.
1808
1809- The ``-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>`` parameter, where
1810 X and Y are the cluster and CPU numbers respectively, is used to set the
1811 reset vector for each core.
1812
1813- Changing the default value of ``ARM_TSP_RAM_LOCATION`` will also require
1814 changing the value of
1815 ``--data="<path-to><bl32-binary>"@<base-address-of-bl32>`` to the new value of
1816 ``BL32_BASE``.
1817
1818Running on the AEMv8 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1819~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1820
1821The following ``FVP_Base_AEMv8A-AEMv8A`` parameters should be used to boot Linux
Dan Handley610e7e12018-03-01 18:44:00 +00001822with 8 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001823
1824::
1825
1826 <path-to>/FVP_Base_AEMv8A-AEMv8A \
1827 -C pctl.startup=0.0.0.0 \
1828 -C bp.secure_memory=1 \
1829 -C bp.tzc_400.diagnostics=1 \
1830 -C cluster0.NUM_CORES=4 \
1831 -C cluster1.NUM_CORES=4 \
1832 -C cache_state_modelled=1 \
1833 -C cluster0.cpu0.CONFIG64=0 \
1834 -C cluster0.cpu1.CONFIG64=0 \
1835 -C cluster0.cpu2.CONFIG64=0 \
1836 -C cluster0.cpu3.CONFIG64=0 \
1837 -C cluster1.cpu0.CONFIG64=0 \
1838 -C cluster1.cpu1.CONFIG64=0 \
1839 -C cluster1.cpu2.CONFIG64=0 \
1840 -C cluster1.cpu3.CONFIG64=0 \
1841 -C cluster0.cpu0.RVBAR=0x04001000 \
1842 -C cluster0.cpu1.RVBAR=0x04001000 \
1843 -C cluster0.cpu2.RVBAR=0x04001000 \
1844 -C cluster0.cpu3.RVBAR=0x04001000 \
1845 -C cluster1.cpu0.RVBAR=0x04001000 \
1846 -C cluster1.cpu1.RVBAR=0x04001000 \
1847 -C cluster1.cpu2.RVBAR=0x04001000 \
1848 -C cluster1.cpu3.RVBAR=0x04001000 \
1849 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1850 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001851 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001852 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001853 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001854
1855Note: The load address of ``<bl32-binary>`` depends on the value ``BL32_BASE``.
1856It should match the address programmed into the RVBAR register as well.
1857
1858Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1859~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1860
1861The following ``FVP_Base_Cortex-A57x4-A53x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001862boot Linux with 8 CPUs using the AArch64 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001863
1864::
1865
1866 <path-to>/FVP_Base_Cortex-A57x4-A53x4 \
1867 -C pctl.startup=0.0.0.0 \
1868 -C bp.secure_memory=1 \
1869 -C bp.tzc_400.diagnostics=1 \
1870 -C cache_state_modelled=1 \
Qixiang Xua5f72812017-08-31 11:45:32 +08001871 -C cluster0.cpu0.RVBARADDR=0x04020000 \
1872 -C cluster0.cpu1.RVBARADDR=0x04020000 \
1873 -C cluster0.cpu2.RVBARADDR=0x04020000 \
1874 -C cluster0.cpu3.RVBARADDR=0x04020000 \
1875 -C cluster1.cpu0.RVBARADDR=0x04020000 \
1876 -C cluster1.cpu1.RVBARADDR=0x04020000 \
1877 -C cluster1.cpu2.RVBARADDR=0x04020000 \
1878 -C cluster1.cpu3.RVBARADDR=0x04020000 \
1879 --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04020000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001880 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1881 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001882 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001883 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001884 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001885
1886Running on the Cortex-A32 Base FVP (AArch32) with reset to SP\_MIN entrypoint
1887~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1888
1889The following ``FVP_Base_Cortex-A32x4`` model parameters should be used to
Dan Handley610e7e12018-03-01 18:44:00 +00001890boot Linux with 4 CPUs using the AArch32 build of TF-A.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001891
1892::
1893
1894 <path-to>/FVP_Base_Cortex-A32x4 \
1895 -C pctl.startup=0.0.0.0 \
1896 -C bp.secure_memory=1 \
1897 -C bp.tzc_400.diagnostics=1 \
1898 -C cache_state_modelled=1 \
1899 -C cluster0.cpu0.RVBARADDR=0x04001000 \
1900 -C cluster0.cpu1.RVBARADDR=0x04001000 \
1901 -C cluster0.cpu2.RVBARADDR=0x04001000 \
1902 -C cluster0.cpu3.RVBARADDR=0x04001000 \
1903 --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000 \
1904 --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001905 --data cluster0.cpu0="<path-to>/<fdt>"@0x82000000 \
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001906 --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001907 --data cluster0.cpu0="<path-to>/<ramdisk>"@0x84000000
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001908
1909Running the software on Juno
1910----------------------------
1911
Dan Handley610e7e12018-03-01 18:44:00 +00001912This version of TF-A has been tested on variants r0, r1 and r2 of Juno.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001913
1914To execute the software stack on Juno, the version of the Juno board recovery
1915image indicated in the `Linaro Release Notes`_ must be installed. If you have an
1916earlier version installed or are unsure which version is installed, please
1917re-install the recovery image by following the
1918`Instructions for using Linaro's deliverables on Juno`_.
1919
Dan Handley610e7e12018-03-01 18:44:00 +00001920Preparing TF-A images
1921~~~~~~~~~~~~~~~~~~~~~
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001922
Dan Handley610e7e12018-03-01 18:44:00 +00001923After building TF-A, the files ``bl1.bin`` and ``fip.bin`` need copying to the
1924``SOFTWARE/`` directory of the Juno SD card.
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001925
1926Other Juno software information
1927~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1928
Dan Handley610e7e12018-03-01 18:44:00 +00001929Please visit the `Arm Platforms Portal`_ to get support and obtain any other Juno
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001930software information. Please also refer to the `Juno Getting Started Guide`_ to
Dan Handley610e7e12018-03-01 18:44:00 +00001931get more detailed information about the Juno Arm development platform and how to
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001932configure it.
1933
1934Testing SYSTEM SUSPEND on Juno
1935~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1936
1937The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1938to RAM. For more details refer to section 5.16 of `PSCI`_. To test system suspend
1939on Juno, at the linux shell prompt, issue the following command:
1940
1941::
1942
1943 echo +10 > /sys/class/rtc/rtc0/wakealarm
1944 echo -n mem > /sys/power/state
1945
1946The Juno board should suspend to RAM and then wakeup after 10 seconds due to
1947wakeup interrupt from RTC.
1948
1949--------------
1950
Dan Handley610e7e12018-03-01 18:44:00 +00001951*Copyright (c) 2013-2018, Arm Limited and Contributors. All rights reserved.*
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001952
David Cunadob2de0992017-06-29 12:01:33 +01001953.. _Linaro: `Linaro Release Notes`_
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001954.. _Linaro Release: `Linaro Release Notes`_
David Cunado82509be2017-12-19 16:33:25 +00001955.. _Linaro Release Notes: https://community.arm.com/dev-platforms/w/docs/226/old-linaro-release-notes
1956.. _Linaro Release 17.10: https://community.arm.com/dev-platforms/w/docs/226/old-linaro-release-notes#1710
1957.. _Linaro instructions: https://community.arm.com/dev-platforms/w/docs/304/linaro-software-deliverables
1958.. _Instructions for using Linaro's deliverables on Juno: https://community.arm.com/dev-platforms/w/docs/303/juno
Dan Handley610e7e12018-03-01 18:44:00 +00001959.. _Arm Platforms Portal: https://community.arm.com/dev-platforms/
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001960.. _Development Studio 5 (DS-5): http://www.arm.com/products/tools/software-tools/ds-5/index.php
Joel Huttonfe027712018-03-19 11:59:57 +00001961.. _Linux master tree: <https://github.com/torvalds/linux/tree/master/>
Antonio Nino Diazb5d68092017-05-23 11:49:22 +01001962.. _Dia: https://wiki.gnome.org/Apps/Dia/Download
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001963.. _here: psci-lib-integration-guide.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001964.. _Trusted Board Boot: trusted-board-boot.rst
1965.. _Secure-EL1 Payloads and Dispatchers: firmware-design.rst#user-content-secure-el1-payloads-and-dispatchers
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001966.. _Firmware Update: firmware-update.rst
1967.. _Firmware Design: firmware-design.rst
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001968.. _mbed TLS Repository: https://github.com/ARMmbed/mbedtls.git
1969.. _mbed TLS Security Center: https://tls.mbed.org/security
Dan Handley610e7e12018-03-01 18:44:00 +00001970.. _Arm's website: `FVP models`_
Eleanor Bonnicic61b22e2017-07-07 14:33:24 +01001971.. _FVP models: https://developer.arm.com/products/system-design/fixed-virtual-platforms
Douglas Raillardd7c21b72017-06-28 15:23:03 +01001972.. _Juno Getting Started Guide: http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
David Cunadob2de0992017-06-29 12:01:33 +01001973.. _PSCI: http://infocenter.arm.com/help/topic/com.arm.doc.den0022d/Power_State_Coordination_Interface_PDD_v1_1_DEN0022D.pdf