Jiafei Pan | b9d543c | 2022-02-18 15:26:08 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2022 NXP |
| 3 | * |
| 4 | * SPDX-License-Identifier: BSD-3-Clause |
| 5 | */ |
| 6 | |
| 7 | #include <assert.h> |
| 8 | |
| 9 | #include <arch.h> |
| 10 | #include <caam.h> |
| 11 | #include <cci.h> |
| 12 | #include <common/debug.h> |
| 13 | #include <dcfg.h> |
| 14 | #ifdef I2C_INIT |
| 15 | #include <i2c.h> |
| 16 | #endif |
| 17 | #include <lib/mmio.h> |
| 18 | #include <lib/xlat_tables/xlat_tables_v2.h> |
| 19 | #include <ls_interconnect.h> |
Jiafei Pan | b9d543c | 2022-02-18 15:26:08 +0800 | [diff] [blame] | 20 | #include <nxp_smmu.h> |
Jiafei Pan | b9d543c | 2022-02-18 15:26:08 +0800 | [diff] [blame] | 21 | #include <nxp_timer.h> |
| 22 | #include <plat_console.h> |
| 23 | #include <plat_gic.h> |
| 24 | #include <plat_tzc400.h> |
| 25 | #include <pmu.h> |
| 26 | #if defined(NXP_SFP_ENABLED) |
| 27 | #include <sfp.h> |
| 28 | #endif |
| 29 | |
| 30 | #include <errata.h> |
| 31 | #ifdef CONFIG_OCRAM_ECC_EN |
| 32 | #include <ocram.h> |
| 33 | #endif |
| 34 | #include <plat_common.h> |
| 35 | #include <platform_def.h> |
| 36 | #include <soc.h> |
| 37 | |
| 38 | static unsigned char _power_domain_tree_desc[NUMBER_OF_CLUSTERS + 2]; |
| 39 | static struct soc_type soc_list[] = { |
| 40 | SOC_ENTRY(LS1044A, LS1044A, 1, 4), |
| 41 | SOC_ENTRY(LS1044AE, LS1044AE, 1, 4), |
| 42 | SOC_ENTRY(LS1048A, LS1048A, 1, 4), |
| 43 | SOC_ENTRY(LS1048AE, LS1048AE, 1, 4), |
| 44 | SOC_ENTRY(LS1084A, LS1084A, 2, 4), |
| 45 | SOC_ENTRY(LS1084AE, LS1084AE, 2, 4), |
| 46 | SOC_ENTRY(LS1088A, LS1088A, 2, 4), |
| 47 | SOC_ENTRY(LS1088AE, LS1088AE, 2, 4), |
| 48 | }; |
| 49 | |
| 50 | static dcfg_init_info_t dcfg_init_data = { |
| 51 | .g_nxp_dcfg_addr = NXP_DCFG_ADDR, |
| 52 | .nxp_sysclk_freq = NXP_SYSCLK_FREQ, |
| 53 | .nxp_ddrclk_freq = NXP_DDRCLK_FREQ, |
| 54 | .nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER, |
| 55 | }; |
| 56 | |
| 57 | /* |
| 58 | * This function dynamically constructs the topology according to |
| 59 | * SoC Flavor and returns it. |
| 60 | */ |
| 61 | const unsigned char *plat_get_power_domain_tree_desc(void) |
| 62 | { |
| 63 | unsigned int i; |
| 64 | uint8_t num_clusters, cores_per_cluster; |
| 65 | |
| 66 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 67 | |
| 68 | /* |
| 69 | * The highest level is the system level. The next level is constituted |
| 70 | * by clusters and then cores in clusters. |
| 71 | */ |
| 72 | _power_domain_tree_desc[0] = 1; |
| 73 | _power_domain_tree_desc[1] = num_clusters; |
| 74 | |
| 75 | for (i = 0; i < _power_domain_tree_desc[1]; i++) { |
| 76 | _power_domain_tree_desc[i + 2] = cores_per_cluster; |
| 77 | } |
| 78 | |
| 79 | |
| 80 | return _power_domain_tree_desc; |
| 81 | } |
| 82 | |
| 83 | CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256, |
| 84 | assert_invalid_ls1088a_cluster_count); |
| 85 | |
| 86 | /* |
| 87 | * This function returns the core count within the cluster corresponding to |
| 88 | * `mpidr`. |
| 89 | */ |
| 90 | unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr) |
| 91 | { |
| 92 | return CORES_PER_CLUSTER; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * This function returns the total number of cores in the SoC |
| 97 | */ |
| 98 | unsigned int get_tot_num_cores(void) |
| 99 | { |
| 100 | uint8_t num_clusters, cores_per_cluster; |
| 101 | |
| 102 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 103 | |
| 104 | return (num_clusters * cores_per_cluster); |
| 105 | } |
| 106 | |
| 107 | /* |
| 108 | * This function returns the PMU IDLE Cluster mask. |
| 109 | */ |
| 110 | unsigned int get_pmu_idle_cluster_mask(void) |
| 111 | { |
| 112 | uint8_t num_clusters, cores_per_cluster; |
| 113 | |
| 114 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 115 | |
| 116 | return ((1 << num_clusters) - 2); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * This function returns the PMU Flush Cluster mask. |
| 121 | */ |
| 122 | unsigned int get_pmu_flush_cluster_mask(void) |
| 123 | { |
| 124 | uint8_t num_clusters, cores_per_cluster; |
| 125 | |
| 126 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 127 | |
| 128 | return ((1 << num_clusters) - 2); |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * This function returns the PMU IDLE Core mask. |
| 133 | */ |
| 134 | unsigned int get_pmu_idle_core_mask(void) |
| 135 | { |
| 136 | return ((1 << get_tot_num_cores()) - 2); |
| 137 | } |
| 138 | |
| 139 | #ifdef IMAGE_BL2 |
| 140 | |
| 141 | void soc_bl2_prepare_exit(void) |
| 142 | { |
| 143 | #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE) |
| 144 | set_sfp_wr_disable(); |
| 145 | #endif |
| 146 | } |
| 147 | |
| 148 | void soc_preload_setup(void) |
| 149 | { |
| 150 | |
| 151 | } |
| 152 | |
| 153 | /* |
| 154 | * This function returns the boot device based on RCW_SRC |
| 155 | */ |
| 156 | enum boot_device get_boot_dev(void) |
| 157 | { |
| 158 | enum boot_device src = BOOT_DEVICE_NONE; |
| 159 | uint32_t porsr1; |
| 160 | uint32_t rcw_src, val; |
| 161 | |
| 162 | porsr1 = read_reg_porsr1(); |
| 163 | |
| 164 | rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT; |
| 165 | |
| 166 | /* RCW SRC NOR */ |
| 167 | val = rcw_src & RCW_SRC_TYPE_MASK; |
| 168 | if (val == NOR_16B_VAL) { |
| 169 | src = BOOT_DEVICE_IFC_NOR; |
| 170 | INFO("RCW BOOT SRC is IFC NOR\n"); |
| 171 | } else { |
| 172 | val = rcw_src & RCW_SRC_SERIAL_MASK; |
| 173 | switch (val) { |
| 174 | case QSPI_VAL: |
| 175 | src = BOOT_DEVICE_QSPI; |
| 176 | INFO("RCW BOOT SRC is QSPI\n"); |
| 177 | break; |
| 178 | case SDHC_VAL: |
| 179 | src = BOOT_DEVICE_EMMC; |
| 180 | INFO("RCW BOOT SRC is SD/EMMC\n"); |
| 181 | break; |
| 182 | case EMMC_VAL: |
| 183 | src = BOOT_DEVICE_EMMC; |
| 184 | INFO("RCW BOOT SRC is SD/EMMC\n"); |
| 185 | break; |
| 186 | default: |
| 187 | src = BOOT_DEVICE_NONE; |
| 188 | } |
| 189 | } |
| 190 | |
| 191 | return src; |
| 192 | } |
| 193 | |
| 194 | /* |
| 195 | * This function sets up access permissions on memory regions |
| 196 | */ |
| 197 | void soc_mem_access(void) |
| 198 | { |
| 199 | dram_regions_info_t *info_dram_regions = get_dram_regions_info(); |
| 200 | int i = 0; |
| 201 | struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION]; |
| 202 | int dram_idx, index = 1; |
| 203 | |
| 204 | for (dram_idx = 0; dram_idx < info_dram_regions->num_dram_regions; |
| 205 | dram_idx++) { |
| 206 | if (info_dram_regions->region[i].size == 0) { |
| 207 | ERROR("DDR init failure, or"); |
| 208 | ERROR("DRAM regions not populated correctly.\n"); |
| 209 | break; |
| 210 | } |
| 211 | |
| 212 | index = populate_tzc400_reg_list(tzc400_reg_list, |
| 213 | dram_idx, index, |
| 214 | info_dram_regions->region[dram_idx].addr, |
| 215 | info_dram_regions->region[dram_idx].size, |
| 216 | NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE); |
| 217 | } |
| 218 | |
| 219 | mem_access_setup(NXP_TZC_ADDR, index, |
| 220 | tzc400_reg_list); |
| 221 | } |
| 222 | |
| 223 | /* |
| 224 | * This function implements soc specific erratum |
| 225 | * This is called before DDR is initialized or MMU is enabled |
| 226 | */ |
| 227 | void soc_early_init(void) |
| 228 | { |
| 229 | enum boot_device dev; |
| 230 | dram_regions_info_t *dram_regions_info = get_dram_regions_info(); |
| 231 | |
| 232 | #ifdef CONFIG_OCRAM_ECC_EN |
| 233 | ocram_init(NXP_OCRAM_ADDR, NXP_OCRAM_SIZE); |
| 234 | #endif |
| 235 | dcfg_init(&dcfg_init_data); |
| 236 | #if LOG_LEVEL > 0 |
| 237 | /* Initialize the console to provide early debug support */ |
| 238 | plat_console_init(NXP_CONSOLE_ADDR, |
| 239 | NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| 240 | #endif |
| 241 | enable_timer_base_to_cluster(NXP_PMU_ADDR); |
| 242 | enable_core_tb(NXP_PMU_ADDR); |
| 243 | |
| 244 | /* |
| 245 | * Use the region(NXP_SD_BLOCK_BUF_ADDR + NXP_SD_BLOCK_BUF_SIZE) |
| 246 | * as dma of sd |
| 247 | */ |
| 248 | dev = get_boot_dev(); |
| 249 | if (dev == BOOT_DEVICE_EMMC) { |
| 250 | mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR, |
| 251 | NXP_SD_BLOCK_BUF_SIZE, |
| 252 | MT_DEVICE | MT_RW | MT_NS); |
| 253 | } |
| 254 | |
Howard Lu | b41f1ed | 2022-11-01 19:45:46 +0800 | [diff] [blame] | 255 | /* |
| 256 | * Unlock write access for SMMU SMMU_CBn_ACTLR in all Non-secure contexts. |
| 257 | */ |
| 258 | smmu_cache_unlock(NXP_SMMU_ADDR); |
| 259 | INFO("SMMU Cache Unlocking is Configured.\n"); |
| 260 | |
Jiafei Pan | b9d543c | 2022-02-18 15:26:08 +0800 | [diff] [blame] | 261 | #if TRUSTED_BOARD_BOOT |
| 262 | uint32_t mode; |
| 263 | |
| 264 | sfp_init(NXP_SFP_ADDR); |
| 265 | /* |
| 266 | * For secure boot disable SMMU. |
| 267 | * Later when platform security policy comes in picture, |
| 268 | * this might get modified based on the policy |
| 269 | */ |
| 270 | if (check_boot_mode_secure(&mode) == true) { |
| 271 | bypass_smmu(NXP_SMMU_ADDR); |
| 272 | } |
| 273 | |
| 274 | /* |
| 275 | * For Mbedtls currently crypto is not supported via CAAM |
| 276 | * enable it when that support is there. In tbbr.mk |
| 277 | * the CAAM_INTEG is set as 0. |
| 278 | */ |
| 279 | #ifndef MBEDTLS_X509 |
| 280 | /* Initialize the crypto accelerator if enabled */ |
| 281 | if (is_sec_enabled() == false) { |
| 282 | INFO("SEC is disabled.\n"); |
| 283 | } else { |
| 284 | sec_init(NXP_CAAM_ADDR); |
| 285 | } |
| 286 | #endif |
| 287 | #endif |
| 288 | |
| 289 | soc_errata(); |
| 290 | |
| 291 | delay_timer_init(NXP_TIMER_ADDR); |
| 292 | i2c_init(NXP_I2C_ADDR); |
| 293 | dram_regions_info->total_dram_size = init_ddr(); |
| 294 | } |
| 295 | #else /* !IMAGE_BL2 */ |
| 296 | |
| 297 | void soc_early_platform_setup2(void) |
| 298 | { |
| 299 | dcfg_init(&dcfg_init_data); |
| 300 | /* |
| 301 | * Initialize system level generic timer for Socs |
| 302 | */ |
| 303 | delay_timer_init(NXP_TIMER_ADDR); |
| 304 | |
| 305 | #if LOG_LEVEL > 0 |
| 306 | /* Initialize the console to provide early debug support */ |
| 307 | plat_console_init(NXP_CONSOLE_ADDR, |
| 308 | NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE); |
| 309 | #endif |
| 310 | } |
| 311 | |
| 312 | void soc_platform_setup(void) |
| 313 | { |
| 314 | /* Initialize the GIC driver, cpu and distributor interfaces */ |
| 315 | static uintptr_t target_mask_array[PLATFORM_CORE_COUNT]; |
| 316 | static interrupt_prop_t ls_interrupt_props[] = { |
| 317 | PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S), |
| 318 | PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0) |
| 319 | }; |
| 320 | |
| 321 | plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR, |
| 322 | PLATFORM_CORE_COUNT, |
| 323 | ls_interrupt_props, |
| 324 | ARRAY_SIZE(ls_interrupt_props), |
| 325 | target_mask_array, |
| 326 | plat_core_pos); |
| 327 | |
| 328 | plat_ls_gic_init(); |
| 329 | enable_init_timer(); |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * This function initializes the soc from the BL31 module |
| 334 | */ |
| 335 | void soc_init(void) |
| 336 | { |
| 337 | uint8_t num_clusters, cores_per_cluster; |
| 338 | |
| 339 | /* low-level init of the soc */ |
| 340 | soc_init_lowlevel(); |
| 341 | _init_global_data(); |
| 342 | soc_init_percpu(); |
| 343 | _initialize_psci(); |
| 344 | |
| 345 | /* |
| 346 | * Initialize Interconnect for this cluster during cold boot. |
| 347 | * No need for locks as no other CPU is active. |
| 348 | */ |
| 349 | cci_init(NXP_CCI_ADDR, cci_map, ARRAY_SIZE(cci_map)); |
| 350 | |
| 351 | /* |
| 352 | * Enable Interconnect coherency for the primary CPU's cluster. |
| 353 | */ |
| 354 | get_cluster_info(soc_list, ARRAY_SIZE(soc_list), &num_clusters, &cores_per_cluster); |
| 355 | plat_ls_interconnect_enter_coherency(num_clusters); |
| 356 | |
| 357 | /* set platform security policies */ |
| 358 | _set_platform_security(); |
| 359 | |
| 360 | /* Initialize the crypto accelerator if enabled */ |
| 361 | if (is_sec_enabled() == false) { |
| 362 | INFO("SEC is disabled.\n"); |
| 363 | } else { |
| 364 | sec_init(NXP_CAAM_ADDR); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | void soc_runtime_setup(void) |
| 369 | { |
| 370 | |
| 371 | } |
| 372 | #endif /* IMAGE_BL2 */ |
| 373 | |
| 374 | /* |
| 375 | * Function to return the SoC SYS CLK |
| 376 | */ |
| 377 | unsigned int get_sys_clk(void) |
| 378 | { |
| 379 | return NXP_SYSCLK_FREQ; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Function returns the base counter frequency |
| 384 | * after reading the first entry at CNTFID0 (0x20 offset). |
| 385 | * |
| 386 | * Function is used by: |
| 387 | * 1. ARM common code for PSCI management. |
| 388 | * 2. ARM Generic Timer init. |
| 389 | */ |
| 390 | unsigned int plat_get_syscnt_freq2(void) |
| 391 | { |
| 392 | unsigned int counter_base_frequency; |
| 393 | /* |
| 394 | * Below register specifies the base frequency of the system counter. |
| 395 | * As per NXP Board Manuals: |
| 396 | * The system counter always works with SYS_REF_CLK/4 frequency clock. |
| 397 | */ |
| 398 | counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF); |
| 399 | |
| 400 | return counter_base_frequency; |
| 401 | } |